FORWARD CHAINING

CONTROLLED FORWARD CHAINIMG

GROUND RESULTS ONLY
CuT-OFF LEVELS

PROCEDURAL FORWARD CHAINING

ExAMPLES LATER
MANIPULATION OF DATA RASE

EXAMPLE

HYPOTHESIS CoNCLUSION

" 7
P(A) A (POO— 000 e €

»
’

\\-,

i
\
\'d

A)

N

St 1nF 34

FORWARD CHAINING

NEWELL - SIMON - SHAH

MANY OTHERS

EXTENSIVE USE

BUNDY 171 - DoiNG ARITHMETIC WITH DIAGRAMS
SIKLOSSY & MARINQV 1711 - BriTisH Museum
BALLANTYNE & BENWETT 41 - TopoLogY

NEVINS [581 - PLANE GEOMETRY

NON-STANDARD ANALYSIS 151 (LaTeR)

St 1ne 35

16.

7. OVERDIRECTOR

Every prover has a control routine which directs the search tree. See Slide 36.

Newell, Simon, and Shaw's control structure is shown in Slide 37.

This overdirector can bring to bear strategies or experts (see [28]), heuristics,
and advice tables, as it sees fit.

It is important that such anoverdirector have the flexibility to switch from
one line of attach to another, and back again, as the proof proceeds, thus pro?iding
a parallel search capability. This of course, requires a (controlled) back-up
mechanism such as that possessed by Micro-planner. Unrestricted back-up is intoler-
able. A contexual data base, which can be consulted by the éverdirector to help it
decide whether and how much to back-up, or what other line of attach to take, is an
indispensable part of the prover we have in mind. The concepts of Conniver [52] and

QA4 [68,65] apply here.

EXAMPLE from Non-Standard Analysis

The following example is given here to exhibit the use of some of the concepts
we have described above. These techniques have been used by Mike Ballantyne to
prove by computer (mot interactively) several difficult theorems in Intermediate
Analysis. See [5] for a complete description of this work.

The reader neéd not be conversant with non-standard analysis (or even inter-
mediate analysis) to follow the example given on Slides 38 and 39.

Notice that the proof follows the general procedure described by the rules of
Slides 23-24. First, the fact that £ is continuous, is noted in the data base
and the hypothesis Cont(f,SO) is dropped. Next the term "Compact" is defined
(in non-standard terms), and the formula Xq € f(SO) is "promoted" to the hy-

pothesis by Rule 17 of Slide 23, and then reduced to produce the new hypothesis.

Vi€ S, A X

0 € Sp /%= UV

0’

OVERDIRECTOR

DIRECTS THE SEARCH TREE

STRATEGIES-EXPERTS

HEURISTICS

ADVICE TABLES

CONTROLLED BACKUP

SLIDE 36

(STARD)

(NO MORE METHODS) <

A

SELECT PROBLEM

TRY METHOD < (NO MORE THEOREMS) <

.\‘ SELECT THEOREM &

v

ﬁ\/'

R IT —owu (FAID

N

- (GET NEW PROBLEM)

Y .

TRY SUBSTITUTION
,L (NO MORE
THEOREMS) |

SELECT THEOREM <

Y

v
RY IT —— AID

~

(PROOF

v
THROUGH

GENERAL FLOW DIAGRAM OF THE
LOGIC THEORIST (591

NEWELL - SIMON SHAW

19%7

SLipE 37/

MIKE PALLANTYNE
EXAMPLE

5.2 THEOREM. IF F 1S CONTINUOUS OMN A COMPACT SET S, THEN

F(S) 1S cOMPACT.

ConT(F,S) A Compact (S,) ===CoveacT (F (S,))

IN
o (DATA)
Base

NOTE: F IS CONTINUOUS ON S

CompacT (S,)) == LompacT (F ()
¥ . »~
(X e Sy—+sT() e Sl==p (xjc FSHI——sT(x) e FE))
DEFINITION

(") A X o€ F(SO),==% ST(XO) £ F(SO)

\

(X = Sy—pSTOO € S) A (Ve Sy xp = F(V) =
REDUCE

X e Sym——=s5T0) e §) A Vge Synxy = FV)
A ST e Sy == s1(x) ¢ F(,)

FORWARD CHAIN

SLiDE 38

]

S('):
TypPE:

TypEe:

FSo)'

DATA BASE
(ST(VO) , VO)
ST(VO) , STANDARD

ST(VO) , FINITE
Vo - FINITE

(sT(Vg) » V)

Xg--- F(Vy)

(F(sT(V)) FOV))
ST(F(V))meeop F(sT(V)))

: (F(ST(VO)) , F(xo))

(x ;MSO.__+ sT(x) « SO)====%; sT(xo)'é‘;zég)

(

TRUE

n

J==3p sT(F(V)) = F(S,)

)= F(sT(V)) = F(S,)

SLipe 39

AGENT

EL

STANDARD

1

FINITE
EquaLs

CONTINUOUS

"

1

7.

Forward chaining then gives the additional hypothesis: st(VO) € SO' -

At this point we leave the rules of Slides 23-24, and work with the data base.
See [5] for details.

Various routines such as EL, STANDARD, FINITE, CONTINUOUS, are used to put
things into the data base and to manipulate them to obtain others. For example,

the program detects (V0 € SO) and (st(VO) € SO) in the hypothesis and calls

EL which builds a set Sé in the data base with the elements VO’ and st(VO),

and drops (VO € SO) and (st(VO) € SO) from the hypothesis. This set 86 with

only two elements represents the set S which may be infinite.

0
Similarly the momad Ml: (st(VO),VO) is built in the data base. The reader
needs only to understand that continuous functions map monads into monads, (and not

what a monad is) and hence that the monad M1 is mapped into the monad

My (£(sE(V)), E(WQ)).

The hypothesis (x0==f(VO)) is used to generate the reduce rule R1 and another

routine generates R2. Thus the goal st(xo) € f(SO) is easily converted to the
new goal f(st(VO)) € f(SO), which is readily verified by inspection; i.e., the
program notes that the set f(SO)' in the data base, contains the item f(st(VO)).

In summary, one sees the manipulation of a data base and the execution of a

few logical operations, to produce the proof of this theorem.

*

18.

8. TYPES

The concept of typing plays a fundamental role in mathematics and computer
science. Using a letter e for the identity element of a group, lower case letters
X,V,2, for members of the group, and capital letters G,H, for groups and subgroups,

is immensely helpful to humans in proving theorems.

Similar typing is helpful in automatic provers. Other data type such as integer,
real, negative, complex, bags, sets, types, interval types, infinitesimals, infinitely
large, etc., can be advantageous in certain applications.

See Slide 40.

TYPES

e IDENTITY IN A GROUP
XY, Z MEMBERS OF A GROUP

G.H GROUPS, SUBGROUPS

X.Y.,Z POINT

A.B.C SETS
F.G,H FAMILIES
~13 TOPOLOGY
P.Q PREDICATE
X, Y REALS

Z COMPLEX

[.J,K INTEGERS

& 9% INFINITESIMALS
R,S,T STANDARD REALS
X,Y.Z NON-STANDARD REALS

w INFINITELY LARGE INTEGERS

BAaGS, SETS., TYPLES

INTERVAL TYPES

St ine U0

*

19.

9. ADVICE

One of the most powerful things a human can do to aid the prover is to provide
"advice" for the use of a theorem or lemma. Carl Hewitt's PLANNER [34] exploits
this idea.

For example in Slide 41 we see an example of Winograd's where, to determine
that a thing x is a thesis we are "advised" to either verify that it is long, or
that it contains a persuasive argument. This is given in Micro-planner 1énguage
in Slide 42.

Another such advice lemma is given in Slide 43, and this is used in Slide 44
td prove a theorem. This proof also clearly emphasizes the need for simplification
routines in proofs in analysis.

The concept depicted in Slide 43 might be generalized in a manner shown in
Slide 45. Then perhaps an instantiation of it (like Slide 43) could be saved by

the program for future use.

ADVICE

GOAL VERIFY

(THESTIS X) (LoNe %) (Use: CONTENTS - CHECK.
COUNT PAGES)

OR

(X CONTAINS Y)
AND

(ARGUMENT V)
AND

(PURSUASIVE Y)

WINOGRAD'S EXAMPLE

SLipe 41

(DEFINE THEOREM EVALUATE

sEVALUATE Is the name we are
sgiving to the theorem

(THCONSE(X Y)

sthis Itndicates the type of
stheorem and names its
svariables

(THGOAL(#THESIS $7X))
;show that X is a theslis
sthe "$?" iIndicates a varlable

(THOR

;sTHOR 1Is like "or", tryling things
:1n the order given until one works

(THGOAL(#LONG $?X) (THUSE CONTENTS=CHECK COUNTPAGES))
;s THUSE says to try the theorem
snamed CONTENTS-CHECK first,
sthen If that doesn't work, try
sthe one named COUNTPAGES

(THAND
;THAND Is llke Nand"

(THGOAL(#COMTAINS $?X $2Y))

:find something Y which is
jcontained in X

(THGOAL (#ARGUMENT $7Y)) ,
sshow that it Is an argument

(THGOAL(#PERSUASIVE $?Y)(THTBF THTRUE) D)D))

;prove that It Is persuasive, using
sany theorems which are appllcable

Figure 53 =-- PLANNER Representation

SLipe 472

GOAL

(Al <€)

ADVICE LEMMA

VERIFY
(A=B+0)
AND
(|B] f_el)
AND
(1C] < €9)
AND
(sl + €9 <€)
OR
(OTHER ADVICE)
(A =30
AND
(IR iﬁl)
AND i
]C[= 82)
AND
(81'82 ~<—€)
OR

(OTHER ADVICE)

SLIDE 43

EXAMPLE (OVERBEEK)

THe lal <E*-1a I8l <E*-1a 1+c= (DD
—— el <R

PROOF
GOALS C=AB+A+BHB
| A B

() c=A+B A.B/A, (A+B)/B
(2) 1aBl =5

(21) a.B=A.B a/A.B/B

(22) Al < 11 Ea“l/Ell

(23) Bl < epp E°-1/¢1)

N (F® B_1) < ,]
@) (E"-D(E-D =< e () ()/ eq

(3) |a+ Bl <

m
2

A

(32) 1Al < e «
A , 21 E 1/821
(33) 18l < 99 E"-1/299
(W) (€D +E-D <=y (ER-D + (E7-D/e

() (E*-1). (EP-1) + ((E%-1) + (E*-1)) < E* ¥ f-1

Fete] < E*TEg TRUE

AED

Usep: SIMPLIFICATION, ADvIcE LEMMA

SLipe 44

ADVICE

GOAL VERIFY

P(C) Finp P(A) 1N HypoTHESIS

AND

Express C IN TERMS oF A,
C=rlAP

AND
FIND P(a)a P(8)— P(F(a,8))
AND
GoaL P(B)

OR
(OTHER ADVICE)

SLIDE 45

20.

4 10. PROCEDURES (and Built-in Concepts)

These have been discussed already, especially in the Non-standard Analysis
example given in 7.

Slide 46 lists some of these concepts and examples. An "expert" is a set‘of
procedures for solving one type of problem. See Goldstein [28].

In Slide 47 we see an INDUCTION heuristic being applied [7]. 1In general
when a heuristic is to be applied, the program detects a pattern and consults a
1ist of recommendations (See Slide 48). In this example it detects the presence
of o in the theorem being proved and proceeds as shown.

Slide 49 shows some strategies from Goldstein's geometry prover [28], and

Slide 50 shows an example where the PAIRS heuristic [10] is being applied.

In this example a partial match was obtained between the two formulas

Cover(GO) and Cover(éo) s

which triggered the program to consult the PAIRS table (See Slide 51) for advice.

The first advice given from the PAIRS table, namely (G g‘éo), failed, but

0

the second omne, (G, < C GO), succeeded.

0

PROCEDURES

STRATEGIES
HEURISTICS
SYNTACTIC
SEMANTIC (DOMAIN DEPENDENT)

EXPERTS

EXAMPLES

INDUCTION

BUILT-IN PARTIAL AND TOTAL ORDERING., INEQUALITY, ASSOCIATIVITY,
ETC.

“SoLVERS"

GOLDSTEIN'S GEOMETRY PROVER
LiMIT HERUISTIC
PAIRS HEURISTIC
ONCEPTS:
FOLLOW A PLAN RATHER THAN SEARCH.

CALCULATE AN ANSWER RATHER THAN PROVE A FORMULA.,

Stine OR

INDUCTION HeurisTiC

THEOREM. o= «

QEW

W welU o, (U agw), DernoF =

AEW aeEW

SUBGOAL 1

an (we U) EASY

aAcew

SUBGOAL 2
a2y (U agw)
(Toeaki a—+TOew) DEFN OF ©
(g e 0 ATy e g =Ty w) REDUCE

PROOF FAILS BY THE NORMAL PROCEDURES. [T DETECTS THE PRESENCE OF
we TRY INDUCTION. Pre-INDUCTION PuTs IT IN THE FORM:

(ao £ w — (TO e ay Ty € w))

— e
28
P(ao)
IT now TRYs: P(0) AND (P(ao)~» P(uo +1)).
1 2
12.1 (TO E0 Ty w) SUCCEEDS

1 (agew a (g e ay— Ty w) = (1 elagrD— Tgew)),
SUCCEEDS
To = 0(0 v 7;60(0

SLipe 4/

HEURISTIC RULE

1. DETECT a PATTERN

2. CoNsuLT A TABLE oF RECOMMENDATIONS

(THINGS TO TRY)

SLIDE 48

GOLDSTEIN (1973)
STRATEGY EQTRI13
TO-PROVE: TrianeLE XYZ = TRiANGLE UVW
ESTABLISH: 10 see X/ = sea VM
20 anLE XYZ = aneLE UWY
30 aNGLE YIX = ancLE VWU

REASON: CONGRUANCE BY ASA

(THIS IS LIKE BACKCHAINING)

CONVERSTON ANGLE-BISECTOR
GIVEN: seq@ DB BEsecTs ANGLE ARC
ASSERT: ANGLE ABD‘= ANGLE CDB

FORGET: GIVEN

(THIS 1S LIKE REDUCE)

COROLLARY EQTRI-2
GIVEN: TriancLE XYZ = TriansgLE VW

ASSERT: AneLE XYZ

i

ANGLE UVW

ANGLE YZX = aNGLE VHU

ANGLE ZXY = ANGLE WV

oL fa

PAIRS HEURISTIC

ExAMPLE
[HEOREM. ¥/G (Cover (G) — CovERr (E))

(1) COVER\fGO) Cover (EO)
L
No MaTcH

/

PARTIAL MaTcH: Use PAIRS HEeurisTic

_ ConsuLt PAIRS TaBLE unper “Cover”
(1.1) TrY (GOE GO) FaiLs

(1.2) Tev G,€ € Gy “T* By REDUCE
OR

(Ay ¢ GO=>C € EOA A,S 0) DEFN OF &€
Vet -
(AoeﬁozszGoAC=B A Aye O

(A, ¢ 6=>B ¢ Gy, a A€ B) SUB =

SUBGOAL 1

(1.21) (A, © G,=>B < 6) A/B
SUBGOAL 2

(1.22) (A, ¢ G=> A € A) “T" sy REDUCE

QED

Stipe 50

FINITION

A THe CrLosure oF A, (noTE: A€ A),

T = (A:A e G

XSU o
ael

COVER (G,X)

1

6 S< F (G 1s A REFINEMENT oF F)

- VYacedc-Faco

REDUCE TABLE (SinGLE ENTRY)

IN ouT
A s. Z\ IITII
G g g é IITII
PAIRS TaBLE
IN PATTERN RECOMMENDATIONS
CovER (Cover (G) — Cover (F)) ((GehGes B
1 2
COUNTABLE (CounTABLE A — COUNTABLE B) [(B €A
1

(3F (F IS A FUNCTION » DOMAIN
2

St ine 51

FE A. BE RANGE F)) 4>

]

21.

11. MODELS

In Slide 27 we see the flow chart of Gelernter's geometry prover, with its
famous ''diagram filter", being used to discard unwanted subgoals. This is an ex-
cellent example of a MODEL or counterexample being used to help with a proof.
Since models and counteregamples play such crucial roles in mathematics it is not
surprising that théy have been found useful in automatic provers. We expect
their role to be expanded.

Slide 52 shows Reiter's Rule 4 (See [66]) and an explanation of how the model
M 1is used in the execution of this rule; and Slide 53 gives an example of a theorem
being proved by his system. Slide 54 gives an example of a group that might be used
for his model.

The names of some others who have used Models and Counterexamples in automatic

proofs are shown in Slide 55.

RE1TER'S Use orF MODELS 1w MATHfHACK

of Y AsB
T4 YA hkivas O M%BW.‘)
owd BT ndsis T
i

SUPPOSE THAT, DURING AN ATTEMPTED PROOF OF A, X IS INSTANTIATED
BY THE TERM T. AT THIS POINT. MAKE THE SEMANTIC TEST M k=:==EB(T).

IF SUCCESSFUL, PROCEED WITH THE PROOF OF A, OTHERWISE, A’'s PROOF
HAS OBVIOUSLY GONE ASTRAY AND MUST BE REDIRECTED. THUS., RATHER THAN
PAT IENTLY WAITING FOR A TO DELIVER A (POSSIBLY WRONG) °1 - THE

WFF B SHOULD‘BE CONTINUOUSLY SEMANTICALLY MONITORING THE PROOF

OoF A, THEREBY MINIMIZING THE RISK OF RECEIVING AN INCORRECT °1°

WE BELIEVE THAT THIS KIND OF PARALLEL PROCESSING OF DEPENDENT SUB-
GOALS WILL CONSIDERALY ALLEVIATE THE PROBLEM OF BACK-UP ENCOUNTERED
BY PURELY SYNTACTIC THEOREM-PROVERS.

SLine 52

THEOREM.

IT 1P

IF S IS A SUBSET OF A GROUP SUCH THAT xy™L ¢S

WHENEVER x AND v ¢S . THEN x 1S WHENEVER x ¢S .

EX =X A X& =X A xx'1=&A x"lx=e_

o

-1 _

ABEeS A (XxeS,YeSAxy*=z=»7c¢3)

BACKCHAIN ON o TO GET THE SUBGOAL

(1)
(11
(12)

(121)

(122)

(11)

(12)

T 1T T T T

T T

XES,\Yss,\XY_l=B”1
X e S B/ X
YeS, By’ =571

YeS 8/Y
BBl =B

FAILS IN THE MODEL, SO BACK UP TO (1).

XY"l = B"l €/x., B/Y
QESABES

EASILY PROVED,

Srine 53

{‘—_B‘les.

REORDER SUBGOALS.

FOR REITER EXAMPLE

HERe THE MobpeL M MIGHT BE THE KLEIN FOUR GROUP

€ A B C
e h}é A B C
A A € C B
B B cC € A
c C B A €
IN WHICH GOAL (122), BB‘l = B"l, CLEARLY FAILS. MORE COMPLICATED

MODELS ARE NEEDED FOR OTHER PROOFS, ESPECIALLY WHERE COMMUTATIVITY

IS NOT ASSUMED.

P Sy

LN

SL1DE

MODELS-COUNTEREXAMPLES

GELERNTER [26] - (EOMETRY

SLAGLE 721 - RESOLUTION

REITER [66] - (Roups

NEVINs [58] - (EOMETRY

SikLossy [701 - Rosots (DISPROVER)
WINOGRAD [84] - DLOCK'S WORLD
BALLANTYNE [3] - TopoLoGy

HENSCHEN [33] - BRoOUPS

(-]
[

®

Stipe 55

22.

12. ANALOGY

Perhaps the biggest error made by researchers in automatic theorem proving has
been in essentially ignoring of the concept of analogy in proof discovery. It is
the very heart of most mathematical activity and yet only Kling [39] has used it in
an automatic prover. His paper showed how, with the use of knowledge, a proof in
group theory could be used to help obtain a similar proof in ring theory.

We strongly urge that other workers in this field famaliarize themselves with

Kling's work and extend and apply them more effectively.

23.

13. MAN-MACHINE . :

One of the most irksome things about current automatic theorem provers is the
apparent need for the human user to prove the theorem himself before he gives it
to the computer to do so. This is necessary because he must determine (for the com-
puter) what axioms, or supporting theorems, are needed in the proof, and if he puts
in too many, the proof will bog down. See [12, p.45].

See Slide 56.

This problem is partially eliminated by the use of the various concepts men-
tioned above, such as procedures and REDUCTION tables, which effectiﬁely carry
the information needed from some of these reference theorems, and are able to give
this information when needed without slowing the system down. The remainder of the
difficulty can be eliminated by having the human user insert reference theorems only
when they are needed.

Also present systems cannot prove very hard theorems, so they don't get in-

volved in interesting mathematics. We take as a maxim:

Automatic provers will not compete successfully
with humans for the next 100 years. Therefore the
most effective systems will be those in which the

computer acts as an assistant to the human user.

Thus it is imperative that this work attracts researchers from pure mathematics, and
therefore, that interactive programs be made convenient for the user, not the pro-
grammer .

Some of the needs of the user mathematician are listed on Slide 57. Point 3
on Slide 57 is important because a mathematician will not long use a system which
repeatedly requires him to give trivial information to the system.

We feel that a well-built system can be exercised on a large number of examples,

thereby obtaining much valuable information on the utility of concepts in the program.

THEOREM

THEOREM

SLipe 56

AXTOMS AND SUPPORTING
THEOREMS NEEDED IN
THE PROOF,

THEOREM BEING PROVED

BUILT IN PROCEDURES
AND REDUCTION TABLES

(GIVEN ONLY WHEN NEEDED

Ul

MATHEMATICIAN'S NEEDS

READ anD EAsiLy COMPREHEND THE scope

FOLLOW Tw= PROOF

HELP COMPUTER oNLY WHEN NEEDED

Ax10MS AND REFERENCE THEOREMS
(1) BuiLt-In (SOME)
(11) OTHERS ADDED ONLY WHEN NEEDED

CoNVENIENT COMMANDS

Stine 57

24,

By running a large number of examples, the user can learn by experience, those
places where he needs to improve the automatic part of the system, places where a
little extra programming can greatly reduce the load on the human user.

This objective has been partly attained in an interactive program verification
system [29,13] which has been running for the last year in Ralph London's laboratory

of the Information Sciences Institute, Los Angeles, and is now also running at the

University of Texas. Peter Bruell, Mabry Tyson, and Larry Fagan were instrumental
in developing this system. Much more needs to be done on it to make it truly

effective.

Others who have (earlier) worked on interactive systems include

Guard, et al [30]
Allen and Luckham [2]
Huet [37]

and others.

25.

ITI. Programming Languages

The new programming languages, such as PLANNER [34], MICRO-PLANNER [78],

QA-4 [68], Q-LISP [65], and PLASMA [35], which have been proposed and/or im-

plemented during the last few years have much to offer automatic theorem proving.
Especially are they rich in concepts such as: Knowledge, data base, procedures,
goal oriented, automatic backup, pattern directed invocation, demons, data types.

Also these languages have built-in structures and conﬁrols to handle the
kinds of things we propose.

However, we do not believe that the lack of use of these programming languages
in current automatic prover has hurt their performance. No proof of a hard theorem
has been omitted because the user did not use one of these. This may not remain to
be the case as automatic provers get more sophisticated, and as these languages get
more powerful and efficient. Many of their features are ready-made for provers,

and we should move toward adopting them, with needed modifications, for our use.

26.

IV. Comments

The reader should not get the idea that we have found the secret to automatic
theorem proving. We believe in these concepts but are certain that others will
evolve.

We have talked at lot and proved very few hard theorems (by computer) during
the last several years. It is time do, to show that our concepts are good. It
is time to get a lot more experience with our provers. This will allow us to
eliminate some of our ''good" ideas.

It is not the time to give up on automatic theorem proving. How can that be
rational at a time when so little has yet been done to try the ideas we already
have? For example, why doesn't someone else use analogy in automatic proofs?

One thing that would help push this field ahead, would be for authors to follow

the practice of publishing the proof of at least one hard theorem in each new

methods paper. We do not believe this field will remain vital unless we develop
truly powerful provers, and not jusf theories.

Completeness in itself is not a bad concept, if handled correctly. For ex-
ample, a complete unification system with built-in associativity and commutativity
such as [77], needs to be reworked in a way that will make it a useful part of a

practical prover. It is believed that a properly constructed overdirector (See

IT1.7) can so direct the search that one can have both efficiency and (essential)
completeness. At least we can try for this.
"Trapping" remains a serious problem, whereby a substitution a/x that

satisfies a goal P(x) may fail on Q(x), and hence on

®) A Q%))

Backing-up theoretically solves this but can be very time consuming. Huet's

"delaying" as used for matching in higher order logic [36] might be a good idea here.

27.

Another worry is the "learning' problem. During the last decade most researchers
in AI have avoided machine learning, because of such poor results from earlier ex-
periments, and have favored the use of Man's "knowledge" in AL programs. However,
eventually that barrier must be removed if the automatic prover is to be very effective.
Slides 45 and 43 and accompanying comments provide an example of the kind of controlled
learning that might be useful.

Other works. such as studies on Induction (by Meltzer [53] and others) might be
important to our efforts.

One should also not ignore proof checking as a potential use for automatic

theorem proving [51,1,11], and also computer aided teaching of mathematics [47].

28.

V. Challenges

Let me close by suggesting a few theorems, from various fields of mathematics,
whose proofs by automatic means would be impressive at this time or in the near

future. See Slides 58, 59.

In our efforts to mold our experience into an effective theorem prover, we are

reminded of a 1918 statement by Albert Einstein [62]:

Man tries to make for himself in the fashion that
suits him best a simplified and intelligible picture of
the world. He then tries to some extent to substitute
this cosmos of his for the world of experience, and thus
to overcome it.

The supreme task...is to arrive at those universal ele-
mentary laws from which the cosmos can be built up by
pure deduction. There is no logical path to these laws;
only intuition, resting on sympathetic understanding of

experience, can reach them...

woio9y] yorueg uyeH
wei02y] 910§ SUTSH

(*1eUY PIBpPUBIS-UON 0/M)

‘qu0) ATwaoFruf
sT 39§ 3oedWO) WO IDF *3IUOD

(*1eUY PIBPUBIS-UON 0/T)

‘Y] SSBAJISIADTIIM ourziog

snonuIIUod I I0J SISIXS x@w,%
wox09YyyL §,9110Y

(9T13STINRH 3ITWIT 0/M)

Swo109y] ITWIT

WOI0VY] UTSISUISE-IDPIOYDS

HONATIVHD

Q¢ 3d17§

("1RUY

paepuelg-uoN 3ursfl)
-quon Afurojfup ST 39S
jordwon uwo udj °3JUO)

-y SSeal1sIdTOM OuBZ10g

(9T3STaINSY ITWIT YITH)

swoxoayl ITWIT

M0
0 D =M

(W)yszesqng Yy M=®

Axoay] 319§ Aaejusweld

aIncdd
SKHYOHH.L

ST SATVNV

SATNOIVO

A¥0HHIL LIS

aQ1a1a

£S 34178

B.qQ=q.8 < 0 #£X

0] =X e

£
0=(a-) +(8-) + (q=) +B+ 9+ (B~) +q4+®
Bo = o8B o & () = (X4 X) + X
0#% a0F 1= mx ® £3t3uepT 3udTY
ONTIY dnoad VagE v
wexodyl JIOUSYITL o
do «—
21qeZTa39W ST (8 n v)uedo
ooeds Teuwiou ‘oiqeiedos ¥ e (Puedo Vv (y)uado A95071040L
wex09y], ueaio8eyidd e S, HINEATID KILIROED
HONATIVHD A qIA0dd q1aId

SWHIOHHL

10.

11.

12,

13.

14.

15.

29.

References

Paul W. Abrahams. Application of LISP to checking mathematical proofs.
In The Programming Language LISP: its operation and applications, The
MIT Press, Cambridge, Mass., 1966, pp. 137-160.

J. Allen and D. Luckham; An interactive theorem-proving program.
Machine Intelligence, 5(1970), 321-336.

Michael Ballantyne. Computer generation of counterexamples in topology.
The Univ. of Texas at Austin Math. Dept. Memo ATP-24, 1975.

Michael Ballantyne and William Bennett. Graphing methods for topological
proof. The Univ. of Texas at Austin Math. Dept. Memo ATP-7, 1973.

AM, Ballantyne and W.W. Bledsoe. Automatic proofs of theorems in analysis
using non-standard techniques. The Univ. of Texas at Austin Math. Dept.
Memo ATP-23, July 1975.

W. Bibel and J. Schreiber. Proof search in a Gentzen-like system of first
order logic. Bericht Nr. 7412, Technische Universitat, 1974.

W.W. Bledsoe. Splitting and reduction heuristics in automatic theorem
proving. Artificial Intelligence, 2(1971), 55-77.

W.W. Bledsoe. The sup-inf method in Presburger arithmetic. Dept. of
Math., The Univ. of Texas at Austin, Memo ATP-18. Dec. 1974. Essentially
the same as: A new method for proving certain Presburger formulas. Fourth
IJCAI, Tblisi, USSR, Sept. 3-8, 1975.

W.W. Bledsoe, R.S. Boyer, and W.H. Henneman. Computer proofs of limit
theorems. Artif. Intell., Vol. 3, No. 1, pp. 27-60, Spring 1972.

W.W. Bledsoe and P. Bruell. A man-machine theorem-proving systém. In
Adv. Papers 3rd Int. Joint Conf. Artif. Intell., 1973, pp. 55-65; also
Artif. Intell., Vol. 5, No. 1, pp. 51-72, Spring 1974.

W.W. Bledsoe and E.J. Gilbert. Automatic theorem proof-checking in set
theory. Saudia Corp. Research Report, SC~RR-67-525, July 1967.

W.W. Bledsoe and Mabry Tyson. The UT interactive theorem prover. The Univ.
of Texas at Austin Math. Dept. Memo ATP-17, May 1975.

W.W. Bledsoe and Mabry Tyson. Typing and proof by cases in program veri-
fication. The Univ. of Texas at Austin Math. Dept. Memo ATP-15, May 1975.

R.S. Boyer and J.S. Moore. Proving theorems about Lisp functiomns. J.
Assoc. Comput. Mach., Vol. 22, pp. 129-144, Jan. 1975.

Frank Brown. (unfinished Ph.D. thesis on automatic theorem proving), Univ.
of Edinburgh, 1975.

16.

17.

18.

19.

20.

21,

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

30.

Peter Bruell. A description of the functions of the man-machine topology
theorem prover. The Univ. of Texas at Austin Math. Dept. Memo ATP-8, 1973.

A. Bundy. Doing arithmetic with diagrams. In Adv. Papers 3rd Int. Joint
Conf. Artif. Intell., 1973, 130-138.

R.L. de Carvalho. Some results in automatic theorem-proving with applications
in elementary set theory and topology. Ph.D. Thesis, Dept. of C.S., Univ.
of Toronto, Canada. Tech. Report No. 71, Nov. 1974.

C. Chang and R.C. Lee. Symbolic logic and mechanical theorem proving.
Academic Press, 1973.

D.C. Cooper. Theorem proving in computers. Advances in Programming and
Non-numeric Computation. (L. Fox, ed.), 155-182.

J.L. Darlington. Automatic theorem proving with equality substitution and
mathematical induction. Machine Intelligence, 3(1968), 113-127.

L.P. Deutsch. An interactive program verifier. Ph.D. Thesis, University
of California, Berkeley, 1973. Also Xerox Palo Alto Research Center Report
CSL-73-1, May 1973.

George W. Ernst. The utility of independent subgoals in theorem proving.
Information and Control, April 1971. A definition-driven theorem prover.
Int'l. Joint Conf. on Artificial Intelligence, Standord, Ca., August 1973,
51-55.

D.H. Fishman. Experiments with a resolution-based deductive question-answer-
ing system and a proposed clause representation for parallel search. Ph.D.
Thesis, Dept. of Comp. Sci., Univ. of Maryland, (1973).

Fronig. Private Communication Institut fur informatik, Universitat Bonn.

H. Gelernter. Realization of a geometry theorem-proving machine. Proc.
Int'l. Conf. Information Processing, 1959, Paris UNESCO House, 273-282.

G. Gentzen. Untersuchungen uber das logische Schliessen I. Mathemat.
Zeitschrift 39, 1935, 176-210.

Ira Goldstein. Elementary geometry theorem proving. MIT-AI Lab Memo 280,
April 1973.

D.I. Good, R.L. London and W.W. Bledsoe. An interactive verification system.
Proceedings of the 1975 International Conf. on Reliable Software, Los Angeles,
April 1975, 482-492, and IEEE Trans. on Software Engineering 1(1975), 59-67.

J.R. Guard, F.C. Oglesby, J.H. Bennett and L.G. Settle. Semi-automated
mathematics. J. ACM 16(1969), 49-62.

Patrick Hays, Forthcoming book on automatic theorem proving. University of
Essex.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

31.

A.C. Hearn. Reduce 2: A system and language for algebraic manipulation.
In Proc. Assoc. Comput. Mach., 2nd Symp. Symbolic and Algebraic Manipu-
lation, 1971, 128-133; also Reduce 2 User's Manual, 2nd ed., Univ. of
Utah, Salt Lake City, UCP-19, 1974.

Lawrence J. Henschen. Semantic resolution of horn sets. Advanced papers
for IJCAI-75, Tbilisi, USSR, Sept. 1975.

Carl Hewitt. Description and theoretical analysis (using schemata) of
PLANNER: a language for proving theorems and manipulating models in a
robot. Ph.D. Thesis (June 1971). AI-TR-258 MIT-AI-Lab. April 1972.

Carl Hewitt. How to use what you know. MIT-AI Lab. working paper 93,
May 1975.

G.P. Huet. Constrained resolution: a complete method for higher order

logic. Ph.D. thesis, Case Western Reserve Univ. Jennings Computing Center
Report 1117.

G.P. Huet. Experiments with an interactive prover for logic with equality.
Report 1106, Jennings Computing Center, Case Western Reserve University.

J.C. King. A program verifier. Ph.D. dissertation, Carnegie-Mellon Univ.
Pittsburgh, Pa., 1969.

R.E. Kling. A paradigm for reasoning by analogy. AI Jour. 2, (1971),
147-178.

D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras.
Computational Problems in Abstract Algebra. J. Leech, Ed., Pergamon Press,
1970, 263-297.

Dallas S. Lankford. Complete sets of reductions for computational logic.
The Univ. of Texas at Austin Math. Dept. Memo ATP-21, -Jan. 1975.

Dallas S. Lankford. Canonical algebraic simplification in computational
logic. The Univ. of Texas at Austin Math. Dept. Memo ATP-25, 1975.

V.A. Lifshits. Specialization of the form of deduction in the predicate
calculus with equality and function symbols. Proc. of the STEKLOV Inst. of
Mathematics. No. 98(1968), 1-23.

Donald Loveland. Forthcoming book on mechanical theorem proving in first
order logic. (Duke University).

Donald W. Loveland and M.E. Stickel. A hole in goal trees: some guidance
from resolution theory. Proc. third Int'l. Joint Conf. on Art. Intel.,
Stanford, 1973, 153-161.

Bernard Luya. Un systeme complet de deduction maturelle. Thesis, Univer-
sity of Paris VII, Jan. 1975.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Thought, Feigenbaum and Feldman (Eds.), 134-152.

32,

Vesko Marinov. (An interactive system for teaching set theory by computer at
MSSS, Ventura Hall, Stanford). Private Communication.

S. Ju Maslov. Proof-search strategies for methods of the resolution type.
Machine Intelligence 6(1971), 77-90.

S. Ju Maslov. (1964) An inverse method of establishing deducibility in classical

predicate calculus. Dokl. Nauk SSSR, 159, 17-20.

John McCarthy. Programs with common sense. (The advice taker). In Semantic
Information Processing, Marvin Minsky (Ed.), 403-418. '

John McCarthy. Computer programs for checking mathematical proofs. Proc.
Amer. Math. Soc. on Recursive Function Theory, held in New York, April, 1961.

D.V. McDermott and Gerald J. Sussman. The CONNIVER reference manual. Al
Memo 259. MIT-AI-Lab. (May 1972), (Revised July 1973).

Bernard Meltzer. The programming of deduction and induction. Univ. of

Edinburgh, Dept. of Art. Int., DCL Memo 45, 1971. Also See AI Jour., 1(1970),
189-192. .

*
Jack Minker, D.H. Fishman and J.R. McSkimin. The Q@ algorithm ~-a search

strategy for a deductive question-answering system. A.I. Jour., 4(1973),
225-243. '

Marvin Minsky. A framework for representing knowledge. In P. Winston (Ed.),
The Psychology of Computer Vision. New York: McGraw-Hill, in press.

Arthur J. Neving. A human oriented logic for automatic theorem proving.
MIT-AI-Lab Memo 268, Oct. 1972. JACM 21(1974), 606-621.

Arthur J. Nevins. A relaxation approach to splitting in an automatic theorem
prover. MIT-AI-Lab. Memo 302, Jan. 1974. To appear in the AI Jour.

Arthur J. Nevins. Plane geometry theorem proving using forward chaining.
MIT-AI-Lab. Memo 303, Jan. 1974.

A. Newell, J.C. Shaw and H.A. Simon. Empirical explorations of the logic
theory machine: a case study in heuristics. RAND Corp. Memo P-951, Feb. 28,
1957. Proc. Western Joint Computer Conf. 1956, 218-239. Computers and

A. Newell, J.C. Shaw and H.A. Simon. Report on a general problem-solving
program. RAND Corp. Memo P-1584, Dec. 30, 1958.

Nils Nilsson. Artificial Intelligence. (Including a review of automatic
theorem proving.) IF1P, Stockholm, Sweden, 1974.

Robert M. Pirsig. Zen and the art ofmotorcycle maintenance, pp. 106-7.

63.

64 .

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

33'

G.D. Plotkin. Building equational theories. Machine Intelligence 7, 1972,
73-89.

D. Prawitz. An improved proof procedure. Theoria 25, 102-139, (1960).

Rene Reboh and Earl Sacerdoti. A preliminary QLISP manual. Stanford Research
Inst., A.I. Center Tech. Note 81, August 1973.

Raymond Reiter. A semantically guided deductive system for automatic theorem
proving. Proc. Third Int'l. Joint Conf. on Art. Intel., 1973, 41-46.

Raymond Reiter. A paradigm for automated formal inference. To be presented
at the IEEE theorem proving workshop, Argonne Nat'l. Lab., I1l., Jume 3-5, 1975.

J.R. Rulifson, J.A. Derksen and R.J. Waldinger. "QA4: a procedural calculus
for intuitive reasoning". Standord Res. Inst. Artif. Intell. Center, Standord,
Calif., Tech. Note 13, Nov. 1972.

Robert S. Shostak. On the completeness of the sup-inf method. Stanford Re-
search Institute. Report 1975.

L. Siklossy and J. Roach. Proving the impossible is impossible is possible:
disproofs based on hereditary partitions. IJCAI-73, 383-387.

L. Siklossy, A. Rich and V. Marinov. Breadth-first search: some surprising
results. A.I. Jour., 4(1973), 1-28.

J.R. Slagle. Automatic theorem proving with renamable and semantic resolution.
JACM, 14(1967), 687-697.

J.R. Slagle. Automated theorem-proving for theories with simplifiers, commu-
tativity and associativity. JACM, 21(1974), 622-642.

J.R. Slagle. Automatic theorem proving with built-in theories of equality,
Partial Order and Sets. JACM, 19(1972), 120-135.

J.R. Slagle and L. Norton. Experiments with an automatic theorem prover having
partial ordering rules. CACM, 16(1973), 682-688.

L.M. Norton. Experiments with a heuristic theorem-proving program for the
predicate calculus with equality. A.I. Jour., 2(1971), 261-284.

Mark Stickel. A complete unification algorithm for associlative-commutative
functions. Advanced papers for IJCAI-75, Tbilisi, USSR, Sept. 1975, 71-76.

G.J. Sussman, T. Winograd and E. Charniak. Micro-planner manual. MIT-AI
Lab. Memo 203A, Dec. 1971.

N. Suzuki. Verifying programs by algebraic and logical reduction. Proc.
Int'l. Conf. on Reliable Software, 1975, 473-481.

Mabry Tyson. An algebraic simplifier. The Univ. of Texas at Austin Math.
Dept. Memo ATP-26, (to appear).

81.

82.

83.

84.

34.

R.J. Waldinger and K.N. Levitt. Reasoning about programs. Artif. Intel.,
5(1974), 235-316.

Hao Wang. Toward mechanical mathematics. IBM J. Res. Dev. 4(1960), 224-268.

Steven K. Winker. Complete demodulations in automatic theorem proving. Uni-
versity of Northern Illinois, Computer Science Department, July 1975.

Terry Winograd. Procedures as a representation for data in a computer program
for understanding natural language. Ph.D. Thesis, MIT. MAC-TR-84, Feb. 1971.

