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ABSTRACT

We establish some new refutation completeness results for sets
of rewrite rules in conjunction with resolution and parameodulation.
A1) results of this paper deal with the case when none of the
equations of an equality unsatisfiable set occur in non-unit
clauses. When the set of reductions is complete we shqw that
blocked :esolution and immediate narrowing are refutation complete.
We also show that special paramodulation, which is paramodulation
into positions which are not variables, and resolution are
refutaiion complete. Finally, we show that, in the presence of a
suiteble complexity measure, derived reduction is refutation
complete. In addition, we draw a connection between complexity
measures and decision procedures for elementary algebra. We also
indicate applications of these theoretical results to human-

oriented systems of natural deduction.



1. INTRODUCTION

Our primary purpose in this paper is to combine certain
algorithms which often decide the word problem for arbitrary
abstract algebras with the refutation procedures resolution (14)

and paramodulation (13) in a refutationally complete manner. Our

point of departure is from a class of decision procedures called
complete sets of reductions which were discovered by Knuth and
Bendix (10) and independently by Slagle (17) who calls them sets

of simplifiers. The central idea behind complete sets of reductions
is that equations which axiomatize an algebra are often used in one

permanently fixed direction for simplification.

For example, the axioms of a semigroup with unit

ot

‘l (xoy)oz:xo(yoz)’

ot

2 X1 = x, and

1.3 1°x=x

congstitute a’solution of the word problem for semigroups with no
generators and no relations as follows. If the axioms are used for
simplification from left to right,then t = u is a consequence

of the axioms 1.1 - 1.3 iff t' and u' are identical terms,
where t' and u'! are the result of simplifying ¢ and u as
far as possible, e.g., (1 °*x) * (y 1) = (x * y) * 1 because

Xy and x *y are identical terms, while (x - y) * 2 ;E



(x> y) * (we+1l) because x ° (y » z) and x ° (y - w) are not

jdentical terms.

For the heuristic of unidirectional substitution of equals to
be useful,there must be available some powerful and general methods
for detecting when an algebraic theory can be realized by a
complete set of reductions. Knuth and Bendix (10) provide such a
method which consists of two algorithms: a finite termination
property and a unique termination property. Their finite termination
property is a complexity measure on terms which often determines
when a set of unidirectional rewrite rules always leads to a finite
sequence of simplifications, while their unique termination
property is a necessary and sufficient criterion based on
unification (14) for a set of rewrite rules which necessarily have
the finite termination property to have the Church-Rosser property,
consult Rosen (15). Their method has been enlarged through the
' discovery of other complexity measures by Lankford (11). It is not
presently known if there is an algorithm which decides unique
termination for sets of rewrite rules which do not necessarily have
finite termination or if there is an algorithm which decides

finite termination.

The unique termination property was originally stated by Knuth
and Bendix (10) in terms of a concept they called superposition,

which we rephrase using the notlion of most general unifier below.



Let (R = {Ll =P Rys ec0 , Ly —> Rn} be a finite set of

rewrite rules, where Li and Ri are terms. A special eguality

inference of R is an equation t = u which is obtained from
two rewrites Ly —> Ri and Lj — Rj of 6& by replacing

one occurrence of L;6 in the left side of Lje = RJG by R;6
where @ is the most general unifier of L; and a subterm of Lj

which is not a wvariable.

1.4 The Unigue Termination Algorithm If & is a set of rewrite

rules such that each sequence of simplifications by 6{ is finitey
then 02 has the unique termination property iff each special
equality inference t = u of (R_ has the property that ¢ and

u simplify to identical terms.

For a proof of 1.4 consult Knuth and Bendix (10). To illustrate
the unique termination algorithm, let us establish the unique
termination of the semigroup axioms 1.1 = 1.3. For the moment let
‘us assume that the rewrite rules
15 (x°y) cz2—>x-(y - 2),
X o 1 =3 x, and
le¢e X =—==>px

A¥ 4]

ot
o

1.

)

have the finite termination property. Some of the special equality

inferences of 1.5 -~ 1.7 are (for brevity we do not show all)

oot

8 (we(xey)) oz =(w-x)+(y+2) byle5andl.5,

1.9 x = x by 1.6 and 1.6 (or 1.7 and 1.7),



[
e

)
o

yez=1¢(y-°z) by l.7 and 1.5,

|

g
-

xe2z =x-°(1ez) by l.6 and 1.5, and

fd

12 x ey =x-° (y 1) by 1.6 and 1.5.

Of course the actual forms of the special equality inferences
depend upon the formal language used and upon the unification
algorithm. When each of the above is simplified as far as
possible by the rewrite rules 1.5 - 1.7 (aprplied in whatevér order
one wishes) the corresponding sides of the equations become
identical, namely x ¢ (y » (2 + w))), ¥y » 2, X » 2, and x « ¥

(both sides of 1.9 are already identical).

The simplicity of the solution of the unique termination
problem which is evident from the preceding discussion stands in
sharp contrast to the present state of affairs for the finite
termination problem. The partial solutions which have been
arrived at by Knuth and Bendix (10) and Lankford (11) do not seem
to have been obtained through a deep understanding of the problem.
For example, the family of complexity measures of Knuth and Bendix (10)
is based primarily on the fact that if t is a term and n3(t) is
the number of occurrences of function symbols of degree i in t

then

113 ng(t) = 1+ np(t) + 203(8) + «oo + (J = Dnylt) + .00

Despite its obscure origin, their family of complexity measures
handles any associative axiom when expressed as f£(f(x,y),z) —>

£(x,£(y,2)) , many axioms which decrease length, and certain



complexity measurss of their family handle axioms which increase

length, such as (x » y)™1 —> (y~1) « (x"3) .

Briefly, their complexity measures are definsd in the usual

manner, with a countable number of variable symbols vy, Vs V35 eee

and a finite number of function symbols £15 oee fy of degrees

dy, ees , dy. Constants are function symbols of degree O . Terms
are variables, constants, or (recursively) expressions fi(tl,...,tdi)
where t3, ... , and tdi are terms. Associated with each function
symbol fj is a non-negative integer w; called the weight of fj.
The weights of functions satisfy two additional properties:
1.14 (1) each constant has positive weight, and

(2) each function symbol of degree 1 has positive weight,

with the possible exception of the last function fN N

The weight of 2 term t is defined as

1.15 wit) = MINZn(vJ,t) + Zwkn(fk,it)

.where n(vJ,t) is the number of occurrences of vy in t, n(fy,t)
is the number of occurrences of fk in t , and MIN 4is the minimum
of the weights of the constants. An order relation > is defined

on terms by
_}_._l_é t > u iff either (1) w(t) > w(u) and n(vy,t) = n(vi,u)
for all i, or (2) w(t) = w(u) and n(vi,t)‘::
n(vj,u) for all i, and either t = fN("'(fN(VJ))"‘)’

u = vy where dy = l,0or t = fd(tl,...,tdj),



u = fk(ul,...,udk) and either (2a) J > k or
() § =k and ¢, = Up eee , and t, >
for some n, 1< nédj .
By 1.13 and 1.14 it follows that > 1is a well-oré;ring on terms
without variable symbols and it is also shown by Knuth and Bendix (10)
that if ¢ > u then t© > uf for any substitution & . It
follows at once that if 62 is a set of rewrite rules for which
each rewrite L —>» R satisfies L > R then (R has the finite
termination property. The finite termination of the axioms of a
semigroup 1.5 - 1.7 is now easily settled by letting 1 and -

have weight 1 .

A striking feature of the approach of Knuth and Bendix (10)
is that if a set of rewrite rules does not have the unique termination
property then the uniqueness algorithm 1.4 forms the basis of an
algorithm which often extends the incomplete set to a complete set.
In order to describe this extension algorithm, we first define a

simplification algorithm, denoted # , to be any algorithm which,

given a set of rewrite rules R with the finite termination
property and an expression t , produces a corresponding expression
t¥ which cannot be further simplified by the rewrites of 0?. o As
and example of a simplification algorithm, consider the set of
rewrite rules 6{ as an ordered set, that is a sequence, and
assume that the subexpressions of an expression t are ordered by

depth first, and when at the same depth by left-most position.



Given the ordering of 62 and the ordering of subexpressions, let

# be the algorithm which simplifies an expression t by taking

the rules of 6{ in order and attempting to simplify the subexpressions
of t in order, beginning with the deepest subexpression. When a
simplification is made, * recycles through 62 s again beginning
with the deepest subexpression of the simplified expression. With

a given rewrite of R , % must fail to simplify every subexpression
before going on to the next rewrite of R. with one simplification
algorithm in mind it is clear that by changing the order of 02 or

the ordering on subexpressions other simplification algorithms can

be defined.

1.17 The Knuth and Bendix Extension Algorithm Let > be &

complexity measure defined by 1.16, let (R be a set of rewrite
rules such that each member L —> R of R satisfies L > R »
and let #* be any simplification algorithm.
(1) set 1=0, R =R .
(2) Let £ be the set of all special equality inferences
of 6(1.
(3) Let EZ* be the equations of & which have been
completely simplified by # wusing 021.
(L) Let ( Ef)' be ff* minus all equations of the form t = t.
(5) 1If each equation t = u of ( Ef)' does not satisfy one

of t >u or u >t then terminate, otherwise let



(6)

(1)

(8)

(9)

(10)

(11)
(12)

-(—ET)—; be the set of rewrite rules obtainéd from (&%)
using the complexity measure 2> . |
Set j =0, J,}:Riu ('fé"’?i? where afj is a
sequence of rewrites, k = the number of members of Qf e
and a = 1.

Select the first member L ~—> R of J j and form the
equation L¥ = R® where * uses 6% - {'L o R}
for simplification. |

If both L and R were already completely simplified,
f.e., if 1¥= L and R* = R, then let JJ+1 be
J modified with the first rewrite placed last, set
a=a+1l,andset j = J+1, otherwise go to (10).

If a > k, set 6214'1:' i= 141,

j4+1° set
and go to (2), otherw se go to (7).

If L¥ and R* are identical then set of; | =
Jj- {L—-—)R} , st = j+1,8et k= k-1,
and go to (7). '

I L* and R* are > -incomparable then terminate.

Now L* and R® must be > -comparable, i.e., L > R*
or R* > 1% . Let t —> u be the rewrite that
results from the equation ¥ = r* s 18t J 341

(edj -{L———}R} ) U {t-—-}u} where t =—> u is
the last rewrite in the ordered set j+ 10 set j =

J¥+1, st a =1, and go to (7).



One should notice that this algorithm terminates at G{T only
in case either G{T is a complete set of reductions, or one of the
simplified special equelity inferences of GZT is > -~incomparable,
or a » -incomparable equation is generated when eliminating
nredundancies™ in 1.17 (7) - (12). The extension algorithm is
amply illustrated with examples by Knuth and Bendix (10), including
a derivation of a complete set of reductions for groups with no
generators and no relations. Beginning with a minimal axiom set for
groups,

1.18 x ¢ 1 =3 x,

1.19 x ° (xfl) —3> 1, and

1.20 (x e y) cz2—=>x-(y - z),

an implementation of their algorithm produced the following seven
additional rewrite rules in 30 seconds:

1.21 1 ° x —> X,

1.22 (x‘l) S X == 1,

1.23 17— 1,

1.2 ()l — x,

125 (x5t — D) - (xD),
1.26 x - ()« y) —> 5, and
1.27 (x1) » (x + ) —> 5.

For the complexity measure > , . and -1 were given weight O

and the constant 1 was given weight 1 .
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Because of this and their other examples,one is impressed with

the power and efficiency of their approach. For example, in the
above process of extending to a decision procedure for groups,their

program has established as a byproduct a‘number of theorems about
elementary group theory which in the past have been found difficult

for other theorem provers. The major difficulty with their

approach is that given an initial set of axioms,there is at
present no perscription for selecting a complexity measure which
will lead to a set with unique termination. For example, in
retrospect it can be seen that a complexity measufe which will
derive 1.18 - 1.27 must give the function -1 weight O 3 otherwise,
1.25 will fail to satisfy (x - y)™1 > (y1) - (x}) . But the
selection of this weight is anything but obvious from inspection
of the initial set 1.18 - 1.20, which any assignment of weights
will establish. The family of complexity measures of Lankford (11)
also suffers a similar defect. Thus an important question is:

does there exist an algorithm which, given an axiom set and a
family of complexity measures, determines whether or not one or
more of the family can establish uniqueness? Another disadvantage
of the Knuth and Bendix family defined by 1.16 is that although
the distributive rewrite x ¢« (y4+ 2) —> (x = y) + (x - z)

has finite termination, none of their family will detect this fact.

The family of complexity measures of Lankford (11) contains

members which insure the finite termination of these distributive
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rewrites. Let us briefly summarize his approach below. Recall the
term structure of the first order predicate calculus. For each
function symbol fl’ ves fN let Fl’ see 3 FN be functiecns
from the positive integers to the positive integers such that
3:§§ (1) the degree of each F{ is the same as the degree of the
corresponding fi s

(2) Fi(xl,;..,xj,...,xdi) < Fi(xl,...,y,...,xdi) when %, < ¥,
and let ||<]] be the function defined on all terms by

(3) llvifl is some fixed positive integer for all i ,

(&) l[fil( = F, when f, is a constant, and

(5) llfi(tls.--,tdi)’l = Fi()ltlli:""l{tdin ) .
It has been shown by Lankford (11) that if 6{ is a set of rewrite
rules and ||L8I| > ||R@Il for all substitutions © and a1l

L =R in R then 02 has the finite termination property.

A complexity measure is determined by specifying Fl""’FN
satisfying 1.28 (1) and (2), selecting a positive integer for 1.28(3)
which determines |[*|l , and defining

1.29 t > u iff €] > ”ugn for all substitutions & .

The primary defect with this approach is that the selection of the

F.

; and the fixed constant for 1.28 (3) must presently be made by

trial and error. To illustrate this approach, notice that F (x,57) =
x(1+27) , F (x) =x*, F, =2, and llvill = 2 detect the

finite termination of the ten group rewrites 1.18 - 1.27.
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Another difficulty is that we know of no algorithmic test for
the cémplexity measures defined by 1.29. However, when the F; are
polynomials a weaker version of 1.29 can be realized by any decision
procedure for elementary algebra, such as those of Tarski (18),

Seidenberg (16), Cohen (L), and Collins (5), as we show below. Let

S be the sentence

1.30 Jr¥x ... Vxn(xl?__r Avee A x> = lltll > ”u“)
where [t || and ’ﬁ;T[ are obtained by replacing f{vill{ R

coe s l{vin[{ in |t and llull by Xy, eee s X (the vij
are the variable symbols that occur in t and u ). For the
sentences S to faithfully capture 1.29, they musi be considered

to be sentences interpreted over the integers. Unfortunately, methods
used by Davis (6) to show the algorithmic unsolvability of Hilbert's
tenth problem can be used to show that there is no algorithm to

decide sentences of the form of 1.30.l Stili, a

weaker realization of 1.29 can be obtained by considering S to be
" a sentence of elementary algebra. In that case the complexity
measure defined by

1.31 t > u iff S is true, where S is defined by 1.30,

is realized by any decision method for elementary algebra. Collins (5)
has reported that an implementation of his decision method will soon
be available. We do not know of any implementations of the other
decision methods for elementary algebra.

1. A proof of this fact was given by Martin Davis at the Oberwolfach

conference on automatic thecrem proving on January 7, 1976, and
will be included in a revision of this paper.



As has been said, our primary concern in this paper is to
combiﬁe complete sets of reductions with the refutatioh procedures
resclution and paramodulation refutationally complete manner. OQur
approach is straightforward and is based on the simple idea to
perform ordinary inferences followed by simplification of the
ordinary inferences as far as possible, discarding the partially
simplified intermediate steps and saving only the final completely
simplified expression. To illustrate this approach let us establish
a fragment of a proof of a theorem found in Herstein (7) that H
is a subgroup of G iff H 1s not empty and for each x and y
in H, x -+ (y}) € H. Let us establish just one part of the
above by showing
1.32 ¢ € H, and
133 x e H Ay el = x° (y1) €&
imply
1.3, 1 € H .

We assume the presence of the complete set of reductions for groups,
given earlier in 1.18 -~ 1.27. For this example modus ponens is

used to illustrate the natural appearance of canonical inference.

By modus ponens with 1.32 and 1.33 the ordinary inference

1.35 ¢ * (c71) € H

is inferred. When 1.35 is simplified as far as possible, 1l.34

results. It is easy to see how the other parts would be established,



This paper also deals with sets of rewrite rules which do not
have the unique termination property. That such sets exist naturally
is a consequence of the unsolvability of word problems. Moreover,
there is no algorithm which will decide from the axioms of an
algebra whether or not its word problem is solvable, nor is there
a partial algorithm which solves the word problem just for those
algebras with a solvable word problem, consult Jones (9). In view
of these negative results,it would seem that the best use of
rewritg rules is while searching for a refutatién or proof to
simultaneously use the Knuth and Bendix extension algorithm to
attempt to find a complete set of reductions. The derived reduction
algorithm below does just that. Essentially we have taken 1.17,
and when it would normally terminate with a > =incomparable
equation or be unusable with an initial axiom which is »-incomparable,

we have continued to form inferences using special paramodulation,

which is defined to be ordinary paramodulation with the restriction
that substitution into variable positions is not permitted, and

special substitution of equals, which is defined to be paramodulstion

between a rewrite rule and an equation where substitution into a
variable poSition is not allowed, only left sides of rewrite rules

are substituted into by an equation, and only left sides of rewrite
rules are replaced by right sides when rewrite rules are paramodulated

into equations.
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1.36 The Derived Reduction Alporithm Let > be a complexity

peasure defined by 1.16 or 1.29, and let & be a finite equality
unsatisfiable set of clauses which contains the trivial reflexive
axiom x = x and such that no equation occurs in a non-unit
clause.
(1) set i =0, let R; be the equations of '25 which
can be expressed as rewrites by the complexity measure > ,
let E i be the remainder of the equations, and let J i
be the remainder of ng .
(2) By an obvious modification of 1.17 (7) - (12) we may
assume Ri and Ei to be such that equations of Ei

cannot be further simplified by @

i and that no rewrite

L —3R of &i can be further simplified by
R; - {t — R} .
(3) Reset Ji to Ji* , where 3 uses Ri .
(4) Form all the resolvents R , all the special equality
inferences I , all the special pé.ramedulants P, and
all the special substitution of equals S , and from
I U P* U s* put all the >-comparable equations as
rewrites into fR , and all the 7> -incomparable
equations into E . Set 621.*. 1= GQIUGQ s
£i+1: EiUE . Ji-&l :JiUR* , i =141,

and go to (2).
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We will presently show that [J € ef; for some k . Refutation
completeness of 1.36 holds in two interesting degenerate cases:
(1) when 6{0 is a complete set of reductions and ELO is empty,
and (2) when there is no complexity measure 2 . A less general
form of the first degenerate case has been reported by Slagle (17)
where he assumes that the input set :5 is fully narrowed. The

second degenerate case sheds some light on the functional reflexive

problem (13). In fact for the general case of l.36,the functional
reflexive axioms are not needed. Recently several researchers have
announced that special parampdulation is refutation complete
without the functional reflexive axioms.t However, this writer has
been unable to extend the degenerate case above to the case when
equations occur in non-unit clauses, and he is presently unsure of
the status of the announced solutions. An algorithm similar

to 1.36 has also been reported by Winker (19). An implementation
onSpecial paramodulation has been used by Nevins (12) with some
impressive successes. A partial implementafion of 1.36 by
Ballantyne and Lankford in LISP at The University of Texas at Austin
substantially improved an example of Nevins (12) that in a group
% =1 implies h(h(x,y),y) = 1 where h(x,y) = xyxnly_l.
Nevins' program took 30 minutes and terminated with a
search space of 415 formulas, while Ballantyne and

Lankford's program took 30 seconds and terminated with a

search space of 11 formulas.

1. See Resolution and Equality in Theorem Proving, by D. Brand, Dept.
of Comp. Sci., Tech. Report # 58, Univ. of Toronto, Nov. 1973, and

A Note On The Functional Reflexive Problem, M. Richter, Insbesondere
Informatic, Technische Hochschule, Aachen, West Germany.
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2. CANONICAL INFERENCE

The terms of the first order logic are constructed in the usual manner

from variasble, constant, and function symbols. A set of reduction relations

is a finite set of objects L—>R where L and R are terms and each

varisble symbol which occurs in R also occurs in L . Each set of reduction
relations @ is assoéia’ced with a corresponding set of equations BR) vy
identifying each reduction relation L—>R with the equation L =R . The

term u is an immediate reduction of the term t , denoted t—>u s in case

for some substitution © , u is the result of replacing one occurrence of

L& in t by R& . A set of reduction relations has the finite termination

property in case for any term t each sequence t —> tl———-> to—>> oo of
jmmediate reductions originating with ¢ terminates after a finite number of
steps; that is, some term t, of the sequence above has no immediate

reductions. A set of reductions is a set of reduction relations with the

finite termination property. A set of reduction relations has the unique

termination property in case for each term t , any two terminating sequences

of immediate reductions originating with t terminate with identical terms.
A set of reductions with the unique termination property is called a complets

set of reductions, which is somewhat more general than the complete set of

reductions discussed by Knuth and Bendix (10) and essentially the same as a
set of simplifiers described by Slagle (17). Let (R. be a complete set of
reductions and let # be any algorithm which associates with each term t

the corresponding term +* such that t% 4is the last term in a (necessarily
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ternminating) sequence of immediate reductions originating with t . When ¢
has no immediate reductions, ¥ is t . Ve call such terms t* irreducible
with respect to &i , and omit reference to Gi when ambiguity is unlikely.
It may sometimes be convenient to use ——> to denote a finite (zero or more)
sequence of immediate reductions. The operator * and the relation ——>
are extended to predicates, literals, clauses, and sets of clauses in the

obvious manner,

While familiarity with the investigations of Knuth and Bendix (10),
Lankford (11), and Slagle (17) would be helpful, we have attempted to
include the pertinent background. We do assume a thorough knowledge of
the basic results about resolution and paramodulation, and especially
the excess literal method of Anderson and Bledsoce (1). our approach to
estab}ishing 1.36 is to establish the two degenerate cases first. We

begin with an extension of some results reported by Slagle (17).
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2.1. BLOCKED RESOLUTION

It might be hoped that complete sets of reductions could be combined
directly with resolution; that is, we might conjecture that if S5 is a set of
clauses that contains no equations and S L} E(R) is equality-unsatisfiable, then
s* {{x = x}} is unsatisfiable. But let (R be {f(g(x,y)} — g(f(x) ,f(y))}
and let & be {{P(f(x))}, {‘TP(g(f(a),f(b))}} and notice that S is
irreducible and satisfiable in the presence of x = x . While the general
conjecture fails, we shall see in Theorem 1 that the corresponding ground
conjecture holdsa Of course, the counter-example above shows that the ground
result cannot be lifted in the usual way. Indeed, examination of this 1lifting
failure will guide us to one solution for the general case. As a necessary
preliminary, we first establish the following property of equality-unsatisfiable

sets of ground unit clauses.

Lemma 1 If S dis a set of ground unit clauses which is closed under
paramodulation, contains no complementary pairs,‘and contains no inequality

of the form t # t, then S has an equality model.

Proof Let T be 8 together with all ground unit equations of the
form + =1 Twhere % is any ground term over the Herbrand base of S .
Let P(T) be the closure of T under paramodulation. It is clear that P(T)
has no complementary pair or inequality of the form t #t. Let I be the

partial interpretation which consists of the positive literals of P(T)
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and let M‘ be the interpretation obtained by adding to I every negative
ground literal over the Herbrand base of S which is not a complement of a
member of I . This "most negative' interpretation device was a prominent
feature of the maximal model construction of Wos and Robinson (20) which
was used to establish the refutation completeness of paramodulation for
equality unsatisfiable sets which contain the functional reflexive axioms.

It now easily follows that M is an equality model of S .

Theorem 1 If R is a complete set of reductions, S is a set of
ground clauses which contain no equations, and S U E(Gl) is equality-
unsatisfiable then there is a deduction of [:] from S* L}-{{? = x}} using

resolution.

Proof We induct on the excess literal parameter of S . Throughout, let

us depict that R is a resolvent of C and D by the diagram

\/

and that P 4is a paramodulant of C by E , where E is the equation of

-

substitution, by the diagram

Because of Lemma 1, there must be a complementary pair or an inequality of the
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form t # t which is derivable from S and a finite set of ground instances

B8Ry of E(R) , when S consists entirely of units. Thus, in the unit

case it can be seen that there exists a refutation of D which has one of

two forms:

i

“1::>i 1“(::"1 =M
Py Q

@
L] 2
@ @

th = =Py Q= T

Y

where C and D are members of S and the equations ¥, = u, and v, = W

1 J J

are inferred from the ground instances E(R)' , or

t1=u1::.>v#w

{

Vl#wl

®ea

t’n = U :>vn—l

#wn-l
X=X t £t

N/
]

wnere v # w is a member of S and the equations ti = uy are inferred from
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the ground equations E(R)' . Let us consider the second form first. It is
clear that v =1t and w=1 are conssquences of E(G{} s and since it has
been shown by Knuth and Bendix {10) that the %\ algorithm is a canonical
simplification algorithm for E(é{), it follows that v* and t% are
identical and that w° and t° are identical,; hence that v’ and w' are
jdentical. So in this case it follows that S° contains the inequality

v # v , and hence [:I is derived by resolving with x = # » For the
second form we extend the approach used above in the first form. Recall that
any literal has the form x(xl,..o,xk) or ~1X(xl,°.¢,xk) where X 1is a
predicate symbol and the x; , i =1, ..o , k , are terms. Consequently, we
can represent C , D, P, , and C, by ixc(cl,..c,ck) s jXD(dl,e.o,dk) »
:XPn(pl,...,pk) , and :me(ql"'°’qk) . It is clear that the equations

Cy =Pj s i=1, ccc 5 k, and the equations g¢; = di s =1, o0 5 k 5
are consequences of E(R) and that p; and q s i=13,; 200 3 kK, are
identical. It follows that ¢;* and d;7 , i=1, ... , k , are identical.
In this case we see that C¥ and D* are complements. This completes the
proof of the unit case. The induction step is routine, and so is not presented

here.

The direct lifting of this result fails primarily because an instance of
an irreducible clause may fail to be irreducible. Therefore, in order for
the usual 1lifting lemma to apply, we must first develop a procedure which
given any clause C and any instance (' of C , transforms C into a

clause D which has C'* as an instance. This can be easily done by
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treating the reductions as equations and allowing paramodulation ontc subterms
which are not variables by the left sides of the reductions, followed by

 reduction of the resulting paramodulant to irreducible form. This kind of

restricted par§modulation is called immediate narrowing by Slagle (17).

Our discussion is more general here since he considers only sets of reductions
which produce only finite sequences of immediate narrowings originating from
any term t . For exaﬁple, any complete set of reductions which contains an
associative reduction f£(f(x,y),2z) —>f(x,f(y,2)) will produce the infinite
sequence of immediate narrowings f(xl,xg) s f(xl,f(x2,x3}) 3 vee
f(xl,f(xz,...f(xn_l,xn)..o)) s o++ o A narrowing is a finite sequence of
immediate narrowings. The following lemma was stated without proof by

Slagle (17).

Lemma 2 If 6{ is a complete set of reductions, C is a clause, and
C' 1is an instance of C then there is a narrowing CN of C

which has (C')}* as an instance.

Proof Let €& be the substitution which takes C to C' , and let (Ct!
be the substitution instance of C | under G% » where 8% is the substitution
which results from © by applying # to each term of each substitution
component of © . It can be seen that C't is also the result of applying
a finite sequence of immediate reductions to C' ; and as such can be thought
of as an intermediate step in the construction of (C'}* ., If C'v is

irreducible then we are dohe. If C'' 4is not irreducible then let
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vt —> C1 be an immediate reduction of C'' . Since C'' 1is an instance
of C under an irreducible substitution, the reduction which takes C'' +to
€y must apply to a subterm of C'' which does not correspond to the position

of a variable in C ., Thus there is a paramodulant of C which has C; as
an instance, which we denote by P . Let Cl‘ be the partial reduction of
which is obtained by the corresponding sequence of reductions which takes
P to P’ . It can be seen that the immediate narrowing ?* of C has Cl‘
as an instance under an irreducible substitution. As this process is iterated,
we succesively produce ground clauses Ci' which are instances of narrowings

of C and which are also intermediate steps in the production of (c)y* .

Because of finite termination, (C‘)* must eventually be one of the Ci‘ o

Once the appropriate narrowings of a set of clauses are foundgthe ground
refutation can be lifted in the usual way without further need of narrowing.
In fact, since the ground refutation is irreducible at each step, the 1ifted
refutation will be such that all resclvents are irreducible, and in addition
each most general unifier is irreducible. Slagie (17) has called this kind

of deduction blocked resolution . These facts are summarized below,

Theorem 2 If Oa is a complete set of reductions, 5 1is a set of
clauses which contains x = x and no other equations, and S U E(G%) is
equality-unsatisfiable then there existe a finite set of narrowings SN

of S from which the empty clause can be refuted by blocked

resolution and blocked factoring.
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Theorem 2 now forms the basis for a refutation complete

algorithm for equality unsatisfiable sets af which contain no

occurrences of equations other than units and for which the set of

equations E(qg ) of J are consequences of some complete set of

reductions (R .

2.1 (1)

(2)

(3)

Set GJO = J* , from which we may assume all tautologies
have been deleted.

Form all blocked resolvents B of 05 k and all immediate
narrowings (n of kK °

set &, . T Jk UBUN  and return to step (2).

To illustrate this algorithm let us return to the subgroup problem

of 1.32 - 1.34. Again we assume the presence of the complete set

of reductions for groups. Following 2.1, ng o consists of

+3

'N
w

2.2 ¢ € H,
g_gx¢HVy¢HVx-(y‘1)ex,and
24 1 €.

he only blocled resoclvents of J o &are
y ;{ Hvee(yl) € H by 2.2 and 2.3, and

26 x ¢ H Vx° (¢c™1) € H by 2.2 and 2.3.

Some of the immediate narrowings of egf o are

2.7 x ¢ HV1E&H byll9and 2.3,

R
ow

x1¢ HV1 €H by 1.22 and 2.3, and

2.9 x¢HVy‘1¢ HV x°*y € H by 1.24 and 2.3.

On the second round 1 € H is produced by block resolving 2.2

and 2.7, so that [J 4is produced on the third round.
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Notice that since blocked resolution with narrowing is complete,
ordinary resolution followed by simplification (with narrowing)
is complete. Thus the refutation completeness of 1.36, derived
reduction, in the degenerate case when RO of 1.36 (1) is a
complete set of reductions,is a corollary of the refutation

completeness of blocked resolution.



27

2.2 SPECIAL PARAMODULATION

In this section we establish the refutation completeness of
1.36, the derived reduction algorithm, in the degenerate case when
there is no complexity measure. Here we modify the approach used
to establish the refutation completeness of blocked resolution.

The basic idea of this section is to take the equations of a finite
equality unsatisfiable set of ground instances of a general finite
equality unsatisfiable set, extend these ground equations to a
complete set of reductions, use Theorem 1 to get a ground refutation,

and with an analog of Lemma 2 1ift the ground result.

Lemma 3 If G{ is a set of reduction relations with the
finite termination property, then G{ has the unigue termination

property iff the following lattice condition holds:

2,10 if t is any term and u and Vv are immediate reductions
of t, then there exists a term w and two sequences u =
uo-——>...-—->un=wand V= Vg =P co0 =V = W

of immediate reductions from u and v which terminate with w .

For a proof of Lemma 3 consult Lankford (11).

Lemma 4 If (R is a set of reduction relations with the
finite termination property and * is a simplification algorithm,
then the lattice condition for 63 holds iff each special equality
inference t = u of 62 has the property that +¥ and u*

are identical terms.



Proof (=>) Let t — u be a special equality inference
of & . This means there are members Ll ey Rl and L2 —> R,
of & , and a most general unifier & of L, and a subterm of
L, which is not a variable such that t = (L29~)' and u = R,O
where (Lzé)' is the result of replacing one occurrence of Lle
in Lge by RlB e MNotice that + and u are immediate reductions
of L, 6 , and so by the lattice condition with the help of Lemma 3

it follows that ¥ and u* are identical.

(&) Let t —>u; and t —> v, be immediate
reductions of t by reduction relations Ll —p Rl and L, —> Ry
of R . If Ll and L, do not "interact)' then reducing ug by
Lo — R2 and Vo by Ll —3 Rl in the corresponding positions
that t was reduced produces ug -—-} w and vg—>» w . If Ll
and L, do interact,then without loss of generality assume that
Ll e 1 replaces a subterm of L2 62 N where Ll 61 is replaced
by R;60; in t to produce uy and L,6, is replaced by R,6,
in t to produce '
If the subterm of L292 replaced by Llel corresponds to a

variable position in L2 s then replace all other occurrences of

16; in L262 which result from that variable in 92 . Thus we

have t = (...L38,..0) —> vy —> ... —> (eeeln(B51)0c0)

where the substitution 92' = {tl/vil, N 'tj'/vij’ cee ,tk/vik}
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is obtained from the substitution &, = {tl/vil""’tj/vij”"’tk/vik}
by replacing the one corresponding occurrence of Llel in ¢ 3 by

R, 6, . Next form the immediate reduction (...Ly(€j')ec) —>
(eoeRo(O5')ee) = w . On the other hand,we have t = (00l €sees)
> (ceeRpB05.00) = v, end by forming a similar sequence of

immediate reductions we have Vg =3 .00 = ("'RZ( _92')...) =W .

If the subterm of L,6, replaced by Ly 91 does not
correspond to a variable position,then there is a special equality
inferefxce u=v of Ll o Rl and L2 P R2 and a substitution
© such that uy = ub and Vo = v6 . By assumption u  and
v¢ are identical, and by performing the corresponding reductions to
those used to obtain w  and v*, we get ug —>» ... —» W and
Vo 3 ses =3 W o This completes the proof of Lemma 4. It
should be noticed that Lemma 3 and Lemma 4 constitute a proof of

l.4, the unique termination algorithm.

Theorem 3 Let > be a relation which satisfies
g_._l_l_(l) exactlyoneof ¢t > u, u>+%t, or t and u are
identical, for each pair of ground terms ¢t and u,
(2) if t , u and v are ground terms, t > u é.nd
w 1is the result of replacing one occurrence of t in
v by u;then v > w, and

(3) there is no infinite sequence- t’l > t2 > t3 P e .‘
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The lexical order (14) and the Knuth and Bendix complexity measures

satisfy 2.11 and may be kept in mind as a model for the relation

of this theorem. Let E be a finite set of unit equations and

JJ a finite set of ground instances of E . Delete all equations

of the form t = t from éf and using the relation > express

the remainder of g as a set of rewrites &O .

2,12 (1) set E, = the set of triples (t = u, ,L —> R)
where L -—> R 1is a rewrite of &O and is the
substitution instance of t = u under € . It may
happen that u = t , instead of t = u , is in 8
but then u = t can be derived from E_ by special
paramodulation. So without loss of generality we
assume that if t = u is in £k then u= t dis in
E,.

(2) Form all the special equality inferences S of &k .
Delete from S all equations of the form t = t and
divide the remainder into two sets S5; and S2 , where
S; 4ds the set of all equations which were obtained by substituting

Ly --}Ri into a subterm of L, that corresponds to a

J
variable position in tj for some (tj = uy, 8,L; —> Ri)
and (tJ: Uy ej’Lj — Rj) in E’k » and where S,

is the set of equations that were obtained by substituting

into a position that does not correspond to a variable.

(3) Further siniplify each equation Lj' = Rj of S:L to
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(LJ')' = Rj' which is the substitution instance under
93' of ty = uy where 93' is formed like 92'
in the proof of Lemma 4, and replace S; by S5;*® which
consists of all the corresponding (Lj')' = Rj' .
Delete from S;' all equations of the form t = t ,
and express the remainder as rewrites, which are then
used to form El the set of all triples (tj = u,, 8.,
(Lg")t —> Ry") or (u5= ty, 657,R50 —> (Ly7)1)
depending on whether (Lj')t > Rj' or Ry' > (Lj')' .
(4) From 82 , because substitution is into a position that
does not correspond to a variable, we can form Ziz
the set of triples (v = w,8,L —> R) where L —3> R
is a reduction obtained from S, and is the instance of
v=w by © andwhere v =w or w=1v isa
special paramodulant of two equations that are first
coordinates of two triples of> éak .
(5) set E,01=E,UEWEZ, R, the
third coordinates of Ek-i- 1 If Ek‘i- 1 and 51{
are identical then terminste, otherwise return to (2).
The algorithm 2.12 terminates and the terminal set of reductions

QT is a complete set of reductions.

Proof If 2.12 did not terminate then by 2.11 (2), it would

follow that there is an infinite sequence ty 7> t3 se0

contradicting 2.11 (3). We establish that (RT is complete by
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showing that the lattice condition holds. Our proof is similar to
the (<= ) part of the proof of Lemma L. Let t —> u and

t —>» v be immediate reductions by Ly — R and Ly, —> R2

of @T s The case when L and L, do not interact is obviocus.
When L and L, do interactjconsider the triples (t1 =1y, €,

L, —>Ry) and (3, = uy, 6,5,L, —> Ry) of ET 5 and without
loss of generality assume L; is the subterm of L, that is
replaced. If the subterm of L, that is replaced corresponds to

a variable position in t,,then form 6,' (as in the proof of
Lemma 4) and perform the corresponding sequence of reductions

t = (eeelpeoe) = eoo =3 (ceolpes.) where Lot = t(6,7) .
On the other handywe have t = (ceelgees) =3 (ceeRpose) — o0
—> (+eRyfe0c) where Ry' = uy(6,%) o If Ly' and R, are
identical then we are done. Otherwise,one of (t2 = U, 92',L2' e RZ')
or (u, = to, 92',R2’ —> L,') isin (C:T « Thus it is clear that
there exists some w such that U e=—p oo =P W and Vv —> ...
—=3 W . The case when substitution is into a position that does not
correspond to a variable is handled similar to the corresponding

part of the proof of Lemma 4.

Theorem 4 If J is a finite equality unsatisfiable set of
clauses for which no equation occurs in a non-unit clausesthen there
is a refutation of [ from J together with x = x wusing

factoring, resolution, and special paramodulation.
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Proof Let Zj be a finite equality unsatisfiable set of
ground instances of J o Using the lexical order with Theorem 3,
form 8 T the terminal set of 2.12. The resulting complete seb
of reductions &T is used to form & * , where #* is any
simplification algorithm. By Theorem 1 there is a blocked
refutation of 0O from e§7 . Using the equations of 5'1‘ and
special paramodulation,we can derive a set g SP from J which
has the clauses of b* as instances. The proof of this is
similar to the proof of Lemma 2 and so is omitted. The ordinary
lifting lemma for resolution now lifts the ground refutation from

&" in the usual manner.
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2.3 DERIVED REDUCTION

In this section we establish the refutation completeness of
1.36, derived reduction. OQur approach is motivated by Section 2.2
and especially by Theorem 3. Now, however, if we try to duplicate
the proof of Theorem L, beginning with an equality unsatisfiable
set of ground instances,and use Theorem 3 to extend to a complete
set, several things go wrong. We no longer have only equations at
the general level but also reductions. Moreover, the general
reductions, equations, and clauses are simplified during each
round; so it follows that these simplifications at the general level
often force simplifications at the ground level which cannot be
duplicated by the original ground instances or their inferences.

And in addition, because the general level reductions are determined
by a complexity measure, we must find a relation > which

satisfies 2.11 and is also compatible with the complexity measure.

Let us consider the complexity measure problem first.

A complexity measure is a structure > , % where

2.13 (1) > is a subset of the Cartesian product of the terms

with themselves,
(2) 2«2 1is an equivalence relation on the terms, that is
(a) t ~ t for any term t ,
(b) if t 22 u then u=x t , and
t =~ M

{c) if u and u X v then t & v,
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(3) if ¢t > u and u >v then t > v,
() if ¢t > u (t ¥ u) and & is any substitution
then t8 > uf (1@ = ub),
(5) if ¢t > u (t ® u) and w is the result of replacing
one occurrence of t in v by u then v > w (v w),
(6) there is no infinite sequence t; > t, > t3 > ... &

A complexity measure is said to be ground regular in case

2.14 (1) t>u or u>t or t ®u for any ground terms t , u,
(2) t > u v implies t > v fbranygroundtermst,u,v .
It is now easy to see that
_2_:_];2 if a complexity measure is ground regular then exactly one of
t >u,u>t,or t ®u is true for any ground terms ¢t , u .
The complexity measures 1.16 of Knuth and Bendix with < the
jdentity relation and 1.29 with t = u defined by Hell = Jlull
are ground regular complexity measures. The ground regular
complexity measures are those for which we can show derived
reduction is refutation complete. We now define a relation 2>
satisfying 2.11 which is compatible with a given ground regular
complexity measure. Let R be any relation satisfying 2.11 and
?_:3_6_ for each ground term t there are only finitely many u
such that t Ru ,
let C , & be a ground regular complexity measure, and for each

pair of ground terms t and u let

2,17 (1) t > u if tCu,
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(2) upt if uct,
(3) t>u if t v u and t Ru, and
(L) uw >t if t 2% u and uRt .
It is easy to show that > defined by 2.16 and 2.17 satisfies

2.11, and 2.17 was designed so that if ¢t Cu then t > u .

Theorem 5 If 2> is a ground regular complexity measure then

1.36, the derived reduction algorithm, is refutation complete.

Proof We assume a ground regular complexity measure, >, =
which has been extended by a relation R satisfying 2.11 and 2.16,
so that we may assume > satisfies 2.17. Thus we may assume that
> satisfies 2.11 and 2.16. We then take a finite equality
unsatisfiable set of clauses J and a finite equality unsatisfiable
set of ground instances & . Let & be divided into the
reductions R(Y )O and the remainder ﬁ o ¢ Throughout we assume
equations of the form t = t are deleted. Now at the general
level by 1.36 we have le R &k , and df . At this point each
member of b x 1s a substitution instance of a member of QJ;
while each member of R(& ), is an instance of a member of sz U Ek .
We also assume that each Ek is such that if t = u is in 6

k
then its symmetric copy u = t 1is there also. A4s redundancies

are eliminated from Rk and gk in 1.36 (2) the corresponding

simplifications and deletions are made in R(J )y - The ground
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reductions that are used in making those simplifications are added
to R(b)k . As clauses of Jk are simplified in 1.36 (3) the
corresponding simplifications of clauses of &7 x &re made, and the
ground reductions that are used in making those simplifications are
added to R(& ), . As @k+l . £k+l , and Jk-i—l are
formed in 1.36 (&), R(H Jk + 1 1s formed by performing the
corresponding inferences at the ground level and in addition adding
all those reductions of R(Y )i which correspond to immediately
reducing one of the terms of substitution which makes some member
of R(ﬁ)k an instance of a member of Rk U 8k (like was done
in the formation of 92' in the proof of Lemma 4). Because the
complexity of the left sides of each reduction that is added to
R(b)k is less than or equal to some expression in & s it
follows that eventually no new additions are made to R(&)k . It
also can be shown that the terminal set R({ )T is a complete set

of reductions. Moreover, c§7 can be regarded as an intermediate

T
step in the formation of ¥ where # is a simplification
algorithm using R(g )T . To complete the proof we modify the
proof of Theorem 4: form bT* (= &% wnile simultaneously
forming special inferences at the general level (along the lines of
the proof of Lemma 2), so that the clauses of &T* are instances
of JT 43 for some i , and by Theorem 1 obtain a refutation

of OO from .§7T* by resolution which can be lifted by the

ordinary 1lifting lemma for resolution.
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CONCLUSION

We conclude with some questions and remarks which were

suggested by the results of this paper.

1.

2.

3.

b

56

6.

Does there exist an algorithm which will decide whether or not
a set of rewrite rules has the finite termination property?

If a set of rewrite rules does have the finite terﬁination
property, do there exist polynomial functions and a constant
so that 1.28 will detect that fact? Is there an algorithm
which will construct a collection 6f such polynomial functions
when they exist?

Equations whose sides are identical up to permutation of
variable symbols, such as commutative axioms, cannot be used
as unrestricted rewrites without giving up finite termination.
Can the notion of rewrite rule and simplification be enlarged
in a non-trivial way to include permutation axioms?

Special paramodulation has been announced refutation complete
as a positive solution to the functi§nal reflexive problem.
The statu# of the refutation completeness of special
paramodulation should be settled at the earliest possible
moment .

Closely related, is derived reduction refutation complete
when equations occur in non-unit clauses?

Can one of the decision procedures for elementary algebra be

used as an efficient basis for 1.31%
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Are there decision procedures for 1.29 when the functions Fy
of 1.28 are not polynomials, but from some other specified class?
How useful will sets of reductions be as part of a practical
theorem prover? Many provers, such as the UT interactive
prover of Bledsoe and Tyson (2), have long recognized the value
of reduction'and used sets of reductions

in an ad hoc manner. With the systematic use of reduction we
expect to see substantial improvement. Sets of reductions also
occur naturally in various approaches to program verification,
such as Boyer and Moore (3) and Horwitz and Musser (8). It
should be determined if the methods of this paper facilitate

these and similar approaches to program verification.
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APPENDIX

Many of the theoretical ideas contained in this paper have been
implemented by Nevins (12). In particular, his treatment of equality
is for the most part an implementation of derived reduction. The
primary differencg is that Nevins (12) did not treat associative
axioms by reduction, but instead used an associative unification
algorithm. We have discussed this difference and we believe that it
agcounts for much of the improvement in the x3 = 1 group problem
mentioned earlier. Another difference is that Nevins (12) did not
have a complete set of reductions for groups and in particular
used equation 1.25 as a rewrite in the opposite direction. But we
believe that most of the improvement reported by Ballantyne and
Lankford 1is due to the treatment of associativity. For the general
predicate calculus Nevins (12) used 2 human-oriented system of
natural deduction which incorporated reasoning by cases. We do not
know of an analogy to reasoning by cases for resolution for which
refutation completeness results are known, nor do we know of any
refutation completeness results for reasoning by cases. But the
notion of canonical inference, that is ordinary inferences followed
by simplification with the intermediate simplifications discarded,
is equally applicable to resolution based and natural based deductive
systems. Nevins (l2)idid use cancnical inference, and we believe
that accounts for a substantial part of the power of his natural

deduction program.
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POSTSCRIPT
March 1978

Some of the questions we raised at the end of this paper
have been subsequently answered. We summarize these
recent results below.

1. There is no algorithm which decides finite termination.

Huet, G. and D. Lankford. On the uniform halting problem
for term rewriting systems, preliminary IRIA-Laboria and
USC-ISI report, October 1977.

Lipton, R. and L. Snyder. On the halting of tree
replacement systems, Conference on Theoretical Computer
Science, Univ. of Waterloo, July 1977.

9. There are rewrite rules with the finite termination
property which cannot be detected by polynomials.
Stickel, M. E. Personal communication.

3. Commutativity can be dealt with.

Lankford, D. S. and A. M. Ballantyne. Decision
procedures for simple equational theories with a
commutative axiom: complete sets of commutative
reductions, Automatic Theorem Proving Project, Univ.
of Texas, Math. Dept., Austin, Texas, report #ATP-BS,
March 1977.

Lankford, D. S. and A. M. Ballantyne. Decision pro-
cedures for simple equational theories with permutative
axioms: complete sets of permutative reductioms,
report #ATP-37, April 1977.

Lankford, D. S. and A. M. Ballantyne. Decision
procedures for simple equational theories with
commutative-associative axioms: complete sets of
commutative-associative reductions, report #ATP-39,
August 1977.

Stickel, M. E. and G. Peterson. Complete sets of
reductions for equational theories with complete
unification algorithms, unpublished paper.
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%
ADDENDUNM
1/14/80

The proof of Theorem 3 is more complex than is necessary for
the following reason. The proof consists of two parts--the
completion of a finite set of ground rewrite rules, which
therefore decides the uniform word problem for finitely presented
algebras, and the 1ifting of that ground decidability result.
At the time "Canonical inference" was written, I had not
carefully thought about the completion procedure for finite
sets of ground reWrifé rules. Much later, I noticed that the
superposition step (critical pair step) was not required for
ground rewrite rules, but that the redundancy elimination step
was énough to derive complete sets of ground reductions.
Moreover, if the redundancy elimination procedure alone is used
(in conjunction with the lexical order), then if easily follows
that the ﬁniform word problem for finitely presented algebras
is decidable in constant space. Although I have not checked
all the details,Ait seems to follow that thebredundancy

elimination procedure also solves the uniform word problem for

finitely presented algebras in O(n3) time.

The decidability of the uniform word problem for finitely
presented algebras goes at least back to Ackermann [19547,
though he did not give a practical algorithm. Several other
algorithms have been given by Kozen [1977] (polynomial time),

% to "Canonical inference”
L7



Nelson and Oppen [1979] (O(nz) time) and Downey, et al. [1979]
(O(nlogzn) time). Both algorithms require O(n) space.

Shostak [1977] also develops a similar algorithm, but we do
not know complexity results for his algorithm. Presumably

it is slower than the other two mentioned above.9

Experimental evidence for the Nelson and Oppen [1979] procedure

(in the Stanford Pascal Verifier) indicates the approach is
practical. However, we do not agree with their conclusion that
a fast congruence closure algorithm is the best method available
for handling equalities in mechanical theorem provers. An equally
convincing body of experimental evidence suggests that term
rewriting methods are the best methods avéilable for handling
equalities in mechanical theorem provers. As we have said,

the uniform word problem for finitely presented algebras has

a constant space solution by rewrite rule methods. A4nd we think
it is fair to say that time is cheaper than space. Another
advantage of the rewrite rule methods is that they "1ift" to

the general level in a particularly nice way, i.e., to Church-
Rosser decision algorithms for uniformly terminating term
rewriting systems. Also, the term rewriting methods can be
combined with inference rules, like resolution, to form
refutation complete procedures for the first order predicate
calculus with equality. Experiments with this approach by
Lankford and Ballantyne [1979] suggest that rewrite rule

methods are the best available for treating equality in a

9. rumored exponential
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mechanical theorem prover for the first order logic with
equality. Finally, the rewrite rule methods are very "natural”
in the sense that they closely approximate what a human
mathematician might do, i.e., simplify and/or rewrite equations.
Thus, mechanical proofs based on rewrite rule methods are easler

to read (which must be done to verify that the mechanical proof

is indeed a proof).

I+ may very well be that for finitely presented algebras in |
“particular and ground theories with equality in general the
fast congruence closure method is more efficient, especially
if its linear space ccmplexitywérows~slowly. But as a general
level method we believe that fast congruence closure is

clearly in second place at this time behind term rewriting

methods.

It has recently been my good fortune to receive a number of
papers and cprrespondence from Trevor Evans concerning térm
rewriting methods based on the diamond lemma (Newman [19427).

I had not realized before the debt which the Knﬁth and Bendix
approach owes to Evans [1951a7, which contains solutions for the
uniform word problem far finitely presented loops and other
non-associative algebras by term rewriting methods based on the
diamond lemma. In retrospect one can see in Evans [1951a] the
inception of the Church-Rosser (critical pairs) algorithm (see

the large table of what are more or less the critical pairs
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for loops). Other solutions given by Evans [19512a] are not the
complete sets of reductions which one wouid get by running the
Knuth and Bendix completion procedure on a given presentation
where rewrite rules are determined on the basis of some

uniform termination test, but are special complete sets of
reductions where all ground rules have the form f(a,b) —> ¢
where a, b, and ¢ are generators and f 1is one of the
operators. However, we believe that the Knuth and Bendix
completion procedure would halt uniformly on finitely presented
loops and other non-associative algebras with the lexical order

used to determine rewrite rules.

The Special rewrite rules mentioned above (when considered as
equations) are called closed sets of relations by Evans [1951v],
who establishes some very general hypotheses under which the
word problem can be solved. To a first approximation, closed
sets of rewrite rules are rules of the form f(tl,...,tk) —_— t
where ti, seo p tk and t are constants. For example, the
uniform word problem for finitely presented algebras can be
solved by complete sets of closed rewrite rules as follows.

For each relation of the form f(tl,...,ti) = g(ul,...,uj)

one introduces a new constant c¢ and replaces the relation

by the two rewrite rules f(tl,...,ti) —3> ¢ and g(ui,...,uj)
—> ¢ . Then for each rewrite rule f(tl,...,ti) — C

and each argument t. which is not a constant, one introduces

J
a new constant d and replaces f(ti,...,ti) —> ¢ by the two
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f(ti,...,d,...,ti) ~3 ¢ and tj —> d . Continuing in this
way, one eventually gets a closed set of rewrite rules. The
Knuth and Bendix procedure, when applied to this closed set

of rewrite rules, (or perhaps we should say the redﬁndancy
elimination procedure) terminates with a complete set of
reductions that consists of two parts, a complete set of closed
reductions and a complete set of redﬁctions all of the form

Cs — dj where Cs and dj are constants.

Other results based on term rewriting methods include, a
selution of the uniform word problem for finitely presented
trees, see Evans [1963b] (this also contains some of the early
work on eguivalence class term rewriting systemsj; a solution
of the uniform word problem for finitely presented Steiner
loops, see Treash [1969]; and additional very general
hypotheses under which algebras have a solvable word problem,

see Evans [19697, Evans, et al. [1975] and Evans [1978a].
Two useful survey papers are Evans [19767 and Evans [1978b].
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ADDENDUM
2/13/85

As the transparencies fof our talk at the Fourth
Workshop on Automated Deduction (Austin, Feb. 1979) were
being written, we noticed that the blocking refinement can
be further refined as follows, cf. the transparencies for
additional details. Let a clause C (literal L , atom A ,
term T , etc.) be defined as a clause-substitution pair
c,® (L,© 3 A,6 ; T,6), where initially the
substitution is the empty substitution.r As clauses are reduced

by a complete set during narrowing, or tested for irreducibility
during resolution, the current substitutions are checked to

see if they are irreducible. If not, the resolvent, narrowing,
etc. is not kept. This potentially reduces the search space ’
further. We might call this refinement blocking with history.
No computer experiments have been performed with blocking with
history. Other variations are also suggested, e.g., blocked
completion, etc. See also footnote 7, page 24 of this article.
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