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ABSTRACT

Complete sets of commutative reductions are defined and a unique

termination slgorithm is established.
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INTRCDUCTION

Commutative axioms cannot be useu uirectly as rewrite ruliles because
they allow infinite sequences of immediate reductions. For example,
f{x,y) =—> f(y,x) successively simplifies f(a,b) to f(b,a),
f(a,b), f(b,a), ... . Wwhat is needed are methoas which deciae
finite and unique termination. In this article we develop
techniques for combining commutative axioms with rewrite

rules to form decision procedures for some simple equational
theories. we assume familiarity with the basic results about
complete sets of reductions developed by Knuth and Bendix (1),

@

Lankford (2), and Slagle (3).

COMPLETE SETS OF COMMUTATIVE REDUCTIONS

Let fl’ ses fN be the function symbols ana Vis Vo v3, cee

be the countable number of variable symbols from which terms are

constructed. Constants are function symbols of degree zero. A4
term is a variavle symbol, constant, or expression fi(tlt""td-)
— i
where 13, c.. , tdi are terms and di is the cegree of fi .
let f be one of the function symbols of cdegree 2 3ana let 22
be the equivalence relation defined by t o u iff t = u is a

consequence of f(x,y) = f(y,x) . The eguivalence class a (t)

is finite for any term t . A commutative rewrite rule is an

expression a4(L) —» a4(R) where L and R are terms.

We say % (u) is an immediate commutative reduction of (i)




by (L) —=> (R) iff there exist a substitution 6
1t € 2(t), u' ¢ x{(u) , L' € %(L), and R* € =(R)
such that u? is the result of replacing one occurrence of LY

in tY by RY . A commutative reductlon is a finite seguence of

immediate commutative reductions. An irreducible equivalence
class is one that has no immeddiate reductions. When U is an
immediate commutative reduction of T we write T =3 U .

Let —»c be the reflexive, transitive completion of w===p .

We say that 2 (t) terminates naturally with <% (u) in case

~(t) —>»c x(u) ana =(u) is irrecucible. A set of

commutative rewrite rules R has the finite termination

property iff there is no infinite sequence =% (t1) —>

z(ty) —> z(tB) —>» ... . A set Q of commutative rewrite

rules has the unique termination property iff for any a4(t)

and any two naturally terminating sequences o (t) —>
2(u)) —> oo —> luy) and (L) —> (V1) —=> ...
—> 22(vy) of immediate commutative reductions, g(um) = alvy) .

A finite set 6{ of commutative rewrite rules is a complete set

of commutative reductions iff R has the finite and unique

termination properties.

Unique Termination Theorem Let @, be a set of commutative

rewrite rules with the finite termination property. To decide
whether @.. has the unique termination property, perform the

following steps. Throughout, unification on variables is not

permitted.




(1) For each pair of members £J(Ly) —> V) and
B(L) —> x(Ry) of R, eaon 7 in n(1y) , an
each\ Lj' in ‘,\g(Lj) , form all paramodulants x = y
of L' = P‘i and Lj‘-' = Rj by left sides into left
sides.

(2) For each paramodulant x = y from stepl, fully
commutatively reduce #2(x) and &(y) to
2(x)" and BN .

(3) ‘R has the unique termination property iff for each

paramodulant x = y from step 1, ®(x)" = a(y)* .

Proof (==9) Llet x =y be a parsmodulant from step 1. It can
be shown that there exists an equivalence class ’.}',(z) such that
wm(z) —> ®(x) and ®R(z) ==> % (y) . It follows that ',g(x)*
and % (y)* are equal.

(é:::) This case requires a diamond lemma; if a set of commutative
rewrite rules & has the finite termination property, then &
has the unique termination property iff for each 22 (t) and each
pair #(t) —> a(u) and R(t) —> @(v) of immediate
commutative reductions of & (t) , there exists 2 (w) such that
w(u) =3c (w) and M(v) —Ppc x(w) . Let t' and t'¢ be
in y(t) , et (L) —» w(R;) ana ¥ (L3) —> 2 (Ry) be
in (R, let L' be in ®(L;) , let Ly bedn R(Ly) , let
e , and 92 be substitutions, let u be the result of replacing

one occurrence of Lj° 91 in t' by Riel’ and v be the result



of replacing one occurrence of L‘}' 62 in 1'% by Rj 62 .
Notice that it is unnecessary to choose members of 2 (Ri) and
',g(aj) other than R; and HRj . If t' and t'' are identical,
then the methods of Knuth and Bendix (1) and Lankford (2) may be
used to complete the proof. If t' and t'" are not identical,
then t'' is obtained from t! by a finite number of applications
of f(x,y) = f(y,x) . Let tt = Ty s see 5 ty = 'Y Dbe the
sequence of applications of f(x,y) = f(y,x) . Let N be the
substitution such that t, is obtained from t; by replacing one
occurrence of f£(x,y)A in t; by f£(y,x) A. If f(x,y)A and
Ly? 91 do not interact, let wu' be the result of replacing that
occurrence of Ly? 91 in t2 by Riel » Since u and u' are
in the same equivalence class, we have reduced the problem to

the equivalent problem for the shorter deduction of t'' from t’2'
If f(x,y) A occurs in- Lyt 91 in a position that does not
correspond to a variable in L;* , then there exists an Li" in
z(Li) such that L;** 61 is the result of replacing the
occurrence of f(x,y)A in Lyt 91 by f(y,x))\. Here we also

have reduced the problem to considering shorter deductions. If

f(x,y) N occurs in a position in L@

119, that corresponds to =z

variable in Li" then let t,l' g 2oe tn' be obtained from
t1, ee+ s t, Dby replacing all occurrences of f(x,y)A by
£(y,x) A . It follows that t ' is obtained from ts? by n -1

or fewer applications of f(x,¥) = f(y,x) and there exist

substitutions ©;' and B,' , u' in ®(u), v' in B(v),




i J

result of replacing one occurrence of Ly** Gl' in tl' by

L.'¢ in =~ {L; ana L.'' in <2 (L.) such that u' is the
ar 1 8 J

Riel' and v' is the result of replacing one occurrence of

L;}” 6, in t,7 by Rj ©,' . Because t;' and t.z' are
identical, we have again reduced our problem to considering
shorter deductions. If Lj° 91 occurs in f(x,y)x in &
position that corresponds to a variable in f£(x,y) , then

there exists u' in % (u) such that u?' is the result of
replacing one occurrence of Li' 9}_ in t, by Rj 9l . Again
we have reduced to consideration of shorter deductions. If L6,
occurs in f(x,y) A in a position that does not correspond to

a variable position in f(x,y) , then there exists Li" in

2 (Li) such that u results from t, by replacing one occurrence
of L' Gl in t; by Ry 9l . This also reduces the deduction
length. This completes the proof of the unique termination

theorem.

The set (R consisting of

1. {x-1,1°x} —>0{x3,

2. {x-&H, e x} — {1}, ana
3. 1178 — {1}

is a complete set of commutative reductions relative to X +» y = ¥y o x

pe= ®

The finite termination of R. is established by an argument based

on decreasing the number of symbols. The unigque termination.-of

@\ is established by generating the paramodulants

-1

Le 1 "= 1 by 1 and 2, and




5 1 <1 =1 by 2 and 3 .

3
It can be seen that x(l“l)*: 2 (1) and =2 (1 - l)* = '..3(1)*.

N
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o
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LUSICORS

Treating reduction by equivalence class methods can solve some of

the problems of including commutativity in the notion of complete

set of reductions. It can be shown that these methods carry over

to the case of any finite number of commutative equations. It

can alsc be shown that complete sets of commutative reductions

can be combined with the narrowing methods of Lankford (2) and

Slagle (3) to form refutation complete resolution systems.

The primary difficulty with the approach of complete sets of

commutative reductions is that associatiativity cannot be treated

as a rewrite rule. For if it could, then we would have either

ae {09z, )z, 2w) 4 2w} —>{x(r2) , (=) , (32)x , (zy)x} or
B. {x(yz) , x(zy) , (y2)x , (zy)x} —> {(x)z , ()2 , 2(xy) , z(yx)},
both of which produce infinite sequences of immediate commutative
reductions, for example ®&((xy)z) —> %((yz)x) —> 2((xy)z)

—> 2((yz)x) —> ... . Since associative equations also result

in finite equivalence classes, perhaps associativity can be treated

by equivalence class methods.
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