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introduction

in this article recent approaches to equality in
computational logic are reviewed. Femiliarity with basic
aspects of resolution (1), paramodulation (2,3.4,5), and a
general knowiedge of recursive function theory is assumed.

®

1. Brute Force Substitution Of Eguals

There are two kinds of brute force substitution of equals -~
adding the equality axioms as clauses to a given equality
unsatisfiable set, and using & separate inference rule for
substitution of equalis, freguently caliled paramodulation
{23 Experiments with these approaches indicate that they

are grossly inefficient; subsequent restrictions (7.8,9,8.,6,
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10,11,12,13,14,153 have not significantly improved
efficiency. The most efficient brute force approach to date
is the modification method (7.8). Basically it amounts 1o
transforming & given set of clauses into an enlarged set of
clauses so that onily the unit reflexive axiom (x = xJ and
the transitive axiom of equality need be added for hyper-
resolution to semi-decide equal ity unsatisfiability. The
modification method is equivalent to & restriction of
paramodulation which prohibits unification on variable
symbofs and does not allow substitution into variable
positions. Before the modification method, all refutation

completeness results reguired adding the functional

reflexive axioms, all axioms of the form f{xX4.,...,%Xn3 =
${%4¢+,...:%n) whers 0 is the degree of H and f ranges
over all function symbols of the given set of clauses. The

inciusion of the functional reflexive axioms 138 known to be
necessary for the refutation completeness of renameabie
aaramoduiat%;n (123, it is not currently known if the
inciusion of the functional reflexive axioms 18§ necessary

for refutation completeness of other restrictions of

paramodulation (3,9,10,13,14,1513.

2. PBewrite Rules

Perhaps the earliest use of equations as rewrite rules in

computational logic is found in Guard, et al. (16) which led

to the first semi-automatic proof of a conjecture from the



titerature. Others (17,18,19,20,21,22,23,24,25,26,27) also
noticed the power of building-in equality with rewrite
rules, and the work of Knuth (24) and Knuth and Bendix (173
gives the first fully automatic proof of a mathematical

conjecture.

This section focuses on compiete sets of reductions (173,
also called sets of simplifiers by Slagle (183, Al though
“simplify" normally means "decrease ijength”, in this article
w"simplify"” is synonymous with "rewrite” (length may not

decrease) which is consistent with the terminoclogy

introduced by Slagle {181, They are sets of rewrite rules
which have two properties -- a finite termination property,
and & unique termination property. intuitively. a set of

rewrite rules has the finite termination property when no

expression can®be infinitely simplified. For exémgée,
¢ ---2 flcl does not have the finite termination property
because it infinitely simplifies ¢ . And a set of rewrite

§uies has the unique termination property if each expression
simptifies uniquely, regardless of the order in which the
rewrite rules are applied. For example, ¢ ---> ¢ and

¢ -=-->» & do not have the unigue termination property

because ¢ does not simplify uniquely.

The importance of a complete set of reductions R = {Ly ==-~2
Ry, ... sbn =—=> Rnl is that it yields a decision algorithm

tor the corresponding equational theory E{R) = 1Ly = Rs,




,Ln = Rnl . Knuth and Bendix (18) show that t = u  is
a conseqguence of ECH i4f, when t and u are fully
simplified by R to t® and u=s t®= and u® are
identical. Thus the identities (consequences) of E(R) are

decided by using R to simplify equations to canonical or

norma! forms. The identities of E(R) are just thoss
egquations t = u whose normal forms §¢= = y= are of the
form v = Vv . in other words, R decides the word problem
for EC(R)

flecause complete sets of reductions are decision algorithms
for the corresponding equational theories, and because there
exist (simple) undecidable word problems (28,803, arbitrary
finite sets of rewrite rules are not generally complete. in
fact, sets of rewrite rules need not he complete for a much
simpler reasoni namely. commutative rewrite ruéeé tike xXy
---3 y%Xx do not have and can not be oriented 1o have the
finite termination property. Nevertheless, many common
simple equational theories do have complete sets of
reductions, and the remarkable computer experiments of Knuth
and Bendix (17) provide convincing evidence that completion,
the process of generating complets sets of reductions, is
destined to become one of the most important methods for
equality in computational ifogic. s fundamental aspect of

completion is the following unique termination theorem.




Unigque Termination Theorem Given a set R = ILy ---> Hi.

La ~==> Rnal of rewrite rules known to have the finite
termination property, R has the unigue termination
property iff for each paramodulant t = u of two equations

of E(R) , where paramodulation is restricted to left sides
into left sides and unification on variables is not aliowed,
if t®= and u® are the result of fully simplifying { and

y by R , then t= and u®™ are identical gxpressions.

This theorem was first established by Knuth and Bendix (173
for sets of rewrite rules that satisfy certain order
conditions, then extended by Lankford (19,22) to any set of
rewrite rules known to have the finite termination property.
This theorem provides an algorithm which decides uniqgue
termination for sets of rewrite rules known to have the
sinite terminstion property. The unique termination
atgorithm forms all paramodulants with the aforementioned
restrictions, then simplifies the restricied paramodulants
as far as possible, and finally determines whether or not
atl simplified paramodulants have the form ¢ = 1t . There
is no need to generate all the restricted paramodulants
immediately; they may be generated, simplified, and tested

individually.

Here is an example which illustrates the unique termination
algorithm. it can be shown (17,189,223 that

2.1 (xRyl&z —==2> wRk{y®%zl ,




have the finite termination property. First generate all

restrictied paramodulants:

2.4 (wEk{xXy)lixXz = (wHx)}X(y%Xz} 2.1 and 2.1,
2.8 x%x{yXi} = xXy 2.1 and 2.2,
2.8 %Xz = xE(1X%Xz) 2.2 and 2.1,
2.7 x%y = xX({yXi) 2.2 and 2.1,
2.8 1 = 1 2.2 and 2.3, and
2.9 xXz = 1E{x%Xz]) 2.3 and 2.1.

Nex: notice that 2.8 has the form t =t and that 2.4, 2.5,
2.8, 2.7, and 2.9 simplify to the form t = t . Thus, 2.1 -

2.3 is a complete set of reductions.

Recall that arbitrary sets of rewrite rules are not always
complete sets Ef reductions. incompletensss is caused by

not having the finite termination property or not having the

unigue termination property. Let us now consider the latter
case, namely one or more restricted paramcdulants t = u
are fully simplified to 1% = u* with t* and u®™ not
identical. Suppose that 1% -3 u®  or y® --~->» t® can be

added to the current set of rewrite rules so that the
eniarged set of rewrite rules has the finite termination
property. And suppose this two step process, (1) generating
fully simplified paramodulants via the unique termination
algorithm and (2] enlarging the current set of rewrite rules

by expressing each new non-trivial paramodulant as a rewrite




rule which preserves finite termination, is iterated. One
of three possibilities occurs: (1} eventually i1 is
impossible to enlarge the current set of rewrite rules while
preserving finite termination, (2) the two step process
continues infinitely, oOF (3) eventually the two step process
terminates with a complete set of reductions. This two step

process 18 called completion.

Completion actually inciudes a third step which accounts for
a subétantial part of the method's power and efficiency.
This third step (previously omitted for simplicityl
eliminates redundancies in the enlarged set of rewrite
rules. Redundancy elimination consists of taking each
rewrite rule L ---> R , then fully simplifying L = R by
the other rewrite rules to t= = R= , and finally replacing
{ —==3> B by b® =---» R® oOF g® ---3> L® , provided finite
termination is preserved. Although redundancy elimination
ciearly presents opportunities for completion to halt with
an sguation that cannct be oriented as & rewrite rufe, it
cften generaties equations where L= and R= are identical,
which causes L ---> R to be deleted and the current set of
rewrite rules to shrink. Thus, completion is a recursively

generated sequsnce of sets of rewrite rules, where the

cardinalities of the sets may randomly go up and down.




The foliowing experiment from Knuth and Bendix (17)

itiustrates completion. Take the three left minimal group
axioms

2.10 1By ~==> %X ,

2.11 (x—-1)%y ~=-~>» 1 , and

2.12 (xBy)&z —=-=-» xX{yXz]
and produce paramodulants one by one. in order to simpiify
the presentation, many details are omitted. in particular,

details of paramodulation generation are not given; the
ordering which orients new rewrite rules is not discussed;
and only the parents from which new rules are derived are

listed beside each new rule.

2.13 (x=1)X(xXy) ---> y 2.11 and 2.12.
2.14 (1-1)%x --=-3 X 2.11 and 2.13.
2.15 (x=1)-1%X] ---> x 2.11 and 2.13.
2.16 (x-=1)=1Xy =---> xXy 2.12 an& 2.15.

Next the redundancy elimination procedure replaces 2.15 by
2.17 x®i1 —--~% X ,
and then completion continues with
2.18 1-% ~--> 1 2.12 and 2.17.
Here the redundancy elimination procedure simplifies 2.14 1o
x = x, which is then deleted, and completion continues with
2.1 {x~¥)-% --=-> x 2.18 and 2.17.
Now the redundancy elimination procedure simplifies 2.16 to
x%y = xXy, which is then delated, and completion continues.
Subseguent deletions are of the kinds itlustrated above.

2.20 xEx-? ---3 | 2.11 and 2.18.




2.21 ({xky)-1)R(xX(y&z)]) =-=--> Z 2.12 and 2.13.

2.22 xE{xX{xkRy)-1) --=> 1 2.12 and 2.20.
2.23 xR{{x-i)¥Ky) -=-=> ¥ 2.12 and 2.20.
2.24 yR(zX{xX((y*(zXx))~'3) ~~--> 1 2.12 and 2.21.
2.25 yX{zxR((yxXz) - *1Xx3) ~--> X 2.12 and 2.22.
2.28 xER{{y%x}-1) --~3 y=7 2.13 and 2.21.
2.27 yx({x%y)-tKz) ---> x7I1Xz 2.12 and 2.26.

Delete 2.24.
2.28 yX(zX(x%X(y*z)})) --=-> x7° 2.13 and 2.26.
Detete 2.25.
2.26 (xEy}-t —==)> y-—iRx-d 2.13 and 2.26.
Delete 2.2%, 2.23,
2.27, and 2.28.
Completion halts with a complete set of reductions for group
theory consisting of 2.10, 2 %1, 2.12, 2.13, 2.17, 2.18,

2.16, 2.20, 2.23, and 2.29.

Besides the ultimate obstacle of undecidable word probiems,
g major disadvantage of completion is that current methods
of detecting finite termination {17,19,223 fail to decide
finite termination. Detect finite termination means that an
algorithm is given a set of rewrite rules as input and
outputs one of iwo snswers -~ "yes, the set of rules has the
finite termination property.,” or winis algorithm can’t
determine whether the set of ruies has the finite
termination property." The methods currently used are all

hased on having & subset < 0f T2 that satisfies the
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foljowing two properties, where T is the set of all terms
and T# is the Cartesian product of T with itself.
Replacement Induced Order Property 1f t > u , and w i3
the result of replacing one occurrence of t in v by u ,

then v o> W

Finite Decrease Order Property There does not exist an
infinite seguence ty:, ta, ta, ... of terms such that te 2

te > ta >

The finite termination methods of Guard, et at. (16} use a
similar ordering > that also well-orders all terms. For a
given pair of terms t and u satisfying ¢t > uw , it does
not generally follow that 1% » u¥ for all substitutions X
where tX and uX are the substitution %nstaﬂc;s of %

and U by X . Thus their approach does nol really use

rewrite rules, but rather equations, both of whose sides

must be used for substitution. The advantage of thelir
method is that because the set of all terms is well-ordered,
all equations can be used for simplification. The

disadvantage of their method is that although unique
termination can be defined, most common algebras do not have
complete (in this new sense) sets of reductions, nor does
completion (in this new sense) generally terminate with a

complete set of reductions.
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The finite termination property is charactevized by the
previous two properties together with the following two

properties.

instiation Order Preserving Property If t » u and X is a

substitution, thenm tX > uX

Order-Rewrite Compatibility Property Ls > Ry , ... , and
Ls > Rs . where = iLq ~==> Ry » ... » La ——=2 Ral.
Finite Termination Theorem 1f B = {Ly -=-=> Ry .
Ly, =-=> Ral is a set of rewrite rules, then B has the

finite termination property iff there exists a subsetl b of
Te gsatisfying the replacement induced order property, the
finite decrease order property, the instantiation order
preserving greSe;ty, and the order-rewrite compa{ibiiiiy

propertiy.

A proof of the finite termination theorem is given in (273,

A finite termination detector is an algorithm which detects
tfinite termination. The finite termination detectors of
Knuth and Bendix (17) and Lankford {19,223 depend upon
guessaing a solution for sy of the finite termination
theorem. Knuth and Bendix (17) guess the ordering 7
before starting completion, although in several examples

they overcome initial failures by useful methods which allow
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them to reguess. Lankford (198,223 generalizes their
approach and introduces methods pased on partially guessing
s at the outset and using & decision algorithm for
etlementary algebra to compiete the guess dynamically while
completion is in progress. However, Stickel (943 has
recently pointed out that these approaches seversly restrict
which orderings *» may be guessed. What is ultimately
desired is a decision algorithm for finite termination. A
recent result by Lankford (27) provides such & decision
aigorithm for ground (variable free) rewrite rules. But the
decidability of the general finite termination is presentiy

an open guestion.

Another disadvantage of completion I8 that some eguations,
such as commutative equations, fail to have the finite
termination property. Judging by experimental evidence
(17,22,31), most finite termination detector failures are
caused by eguations which permute symbols, for example
fex,fly.z33 = fly,flz,x3J. 1§ finite termination orderings
b could be found so that failure equations are all of
predictable forms, and if those predictable forms could be
built into unification algorithms, then it might be
worthwhile to expand the notion of rewrite rule accovdingiy.
and develop unique termination algorithms for the expanded
notion. Unfortunately, jittle is known about how to build
arbitrary equational theories into unification algorithms

{18,20,30.342. On the other hand, commutative unification
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and commutative completion can be developed (29) and other

significant generalizations seem feasible.

The methods of Knuth and Bendix t17) were developed for
equational theories, OF equivalently, for sets of unit
clauses of the form ity = Ua » ... » ta 7 Ua - NOT(v = wll.
indipendently, Slagle (18) initiated the more general study
of combining complete and incompiete sets of reductions with
resolution on some kinds of non-unit clauses. Lankford
{39,22;2?,23) §ambined and generalized both approaches. The
basic idea (18,19,22) is to treat as many equations as
possible as rewrite rules, using unit rewrite rules to kesp
things simplified as far as possible. An important
theoretical lesson learned from these studies is that for
refutation completeness, the rewrite rules, whether complete
set or not, must be allowed to interact with the other
predicates in a procass catled narrowing (18,227 This lays
to rest the hope of entirely building-in equality even for

theories whese equational parts are decidable.

"Narrowing" is somewhat of a misnomer because it consists of
paramoduiating with jeft sides of rewrite rules and
rewriting the paramodulant as tar as possible. S0 even if a
rewrite rule decreases length, after unification,
replacement and rewriting, the resuliing "narrowed” clause

may be longer than the parsnt.
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Studies of narrowing £18,18,22) give the designer &
reasonably good ides of how to use compliete oOfr incomplete
sets of reductions, but an important theoretical problem
remaing to be solved. How does one apply rewrite ruie
methods to sets of clauses which contain equations in non-
unit clauses? The obvious approach has not been established
without adding the (undesirable!) functional raflexive
axioms. An apparently closely related problem is uniform
replacement (paramodulation causes a single occurrence of
one side of an equation to be replaced, while uniform
replacement causes each occurrence throughout the entive
clause to be replaced). The ground completeness of uniform
replacement has been established in the unit case (78,783,
and lifts without the functional refiexive axioms. But
repeated efforts to induct using the excess literal
parameter method {93) have not yielded a proof of the ground

uniform replacement conjecture.

Experiments which support the use of equations as rewrite
rules have been done in both purely equational theories and
in more general first order and higher order theories.
Experiments with purely equational theories include those
conducted by Ballantyne and Lankford (312, Guard, et al.
(18), Huet (23), Knuth (24), Knuth and Bendix (173, and
Mevins (20). The human-oriented deductive system developed
by Nevins (20} is not limited to purely equational theories,

apnd is in many wWays & heuristic anticipation of completion
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and narrowing. The first explicit computer experiments with
completion and narrowing by Ballantyne and Lankford (313
improved speed and search space size of one of Nevins’
examples by about two orders of magnitude. Other diverse
uses of rewrite rules are included in Baliantyne and Bledsoce
(261, Bledsoe (25}, Bledsce, et al. (213, Boyer and Moore

(323, and Milner (333
3. Building Equality Into Upnification Algorithms

Plotkin (34) suggests that equational theories be built into
unification algorithms and provides some guidelines for
doing so©. But the fact that associativity alone cannot
genarally be built-in is a major disadvantage, and moreover,
asscciative unification seems inefficient (20) when compared
with a rewriterrule treatment of associativity (223 .
Mowever. recall that if fipite termination equations were
all of a predictabie form, say permutative eqguations, then
having permutative unification algorithms available might
make it possible to treat such equational theories by
rewrite rules modulo permutative unification. Currently
oniy commutative (29) and commutative-associative (30)

upnification algorithms have been developed.

4 Decision Algorithms




The study of decision algorithms for equational theories was
perhaps initiated by Dehn (35) who gave a decision method
for the theory of fundamental groups of two dimensional
manifolds. Since then, word problem decision algorithms
have been developed for a number of equational theories; for
examplie, by Magnus (36,71) for group theory and one
additional axiom, by Tartakovski (37,38] for certain
enlargements of group theory. Mechanical theorem proving

experiments have not used these classical kinds of methods.

Complete sets of reductions, discussed above (in 2. Rewrite
nuies), appear to be a very powerful method for developing
practical mechanical thecrem provers in purely eguational

theories and some more general theories {using narrowingl.

Certain well-khown decision algorithms for severgi common
mathematical thecries, such as Abelian groups, rings. and
Boolean algebras, have been used successfully. For example,
the experiments of Bledsoce, et at. (213 and Ballantyne and
Biedsoe (26) approximate field theory with a built-in
canonical form for ring theory. Other common mathematical
theories, like polynomials over a ring and modules over a
ring, can be treated simitarly. it has not been
investigated how such decision aigorithms can be combined
with rewrite rule methods to form larger decision

algorithms, semi-decision procedures, and 30 on.

16
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The decision algorithms above apply to purely eqguational
theories. There are also well-known decision algorithms for
theories which contain non-unit clauses, of which contain
predicates in addition to equality; for example, the
elementary theory of Abelian groups (39); periodic,
divisible, cyclic, and p-groups {403); ordered Abelian groups
{41); algebraically closed fields (42,83,443; fields of
¢ixed characteristic (42,43,44); the field of complex
numbers (42,44); the field of real numbers (42,440
elementary algebra and geometry (45,65,723; elementary
hyperbolic geometry (46); Boolean ailgebras (42,47);
distributive lattices (47); Pressburger arithmetic, i.e.,
addition of natural numbers (48,67); addition of ordinais
(49); addition of cardinals (50); free commutative
semigroups (5133 the theory of equations (52); a subcliass of
pressburger arithmetic (53,54); computable fie&d; {6B); pure
equaiity of sets {56,873: unary predicates (87 ,58,59);
transitive-symmetric predicates (603; unary functions (813
linear ordering (62); real and p-adic fields (63); real
closed fieids and algebraically closed fields with a
predicate separating algebraic integers (651; certain free
atgebras (6€); and two successor functions (703, For

additional discussion and details see (8B7,68).

These methods, with the exception of a fragment of
Pressburger arithmetic (5317, have not been implemented.

Some progress has been made by Collins (683 toward an
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implementation cf elementary algebra. A problem with these
approaches is that they are frequently too complex
(66,73,74). However, the work of Bledsoe (53J) on
Pressburger arithmetic suggests that for practical
applications a feasible approach is to implement fragments

of & decision algorithm rather than an entire algorithm.

Another potential source of methods for treating equality
are the ground decision procedures for zero order predicate
calculi with equalitly (273. (The zero order predicate
calculus is the "ground® or"variable~free® first order
predicate calcutus.] it is well-known that ground clauses
without equality are decidébie by resclution (13. And it
foliows immediately from the work of Knuth and Bendix (173

that ground unit equational theories are decidable by

complete sets Of reductions. S0 it is str&ighitérward by
the excess literal parameter method (93) to show that ground
predicate calcull with equality are decidable by taking the

closure of the given set of clauses under resolution and
ordered (for example, by the texical order (131
paramodulation -- the given set of clauses is unsatisfiable
iff the closure contains the empty clause o7 & clause of the
form INOTIts = wusl, ... & NOTit, = uplld (273, This ground
decidability result is the nasis of the refutation
completeness results for rewrite rules reported by Lankford
(19,223, but it has not been shown to lift when equations

occcur in non-unit cliauses without the functional refliexive
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axioms. Overbeek (773 uses & simitar ground decision
atgorithm as the basis of a general jevel theorem prover
which semi-decides equality unsatisfiability by weli-
ordering the set of all ground terms and sending the ground

decision aifgorithm successively deeper instantiations of the

given set of clauses. These two methods can be regarded as
the general level analogs of the Knuth and Bendix (17) vs.
Guard, et al. (18) methods for purely equational theories.

A variation of the former ground decision algorithm above
nas been proposed but not established beyond 1ihe ground unit
case (78,787. The conjecture is that uniform replacement i3
a decision algoroithm for ground clauses. A theoretically
attractive feature of the ground uniform replacement
conjecture is that it would 1ift without the functional
reflexive axioms. Perhaps the recent discoveries of Brand

(7,8) could be apliied to this problem.

5. MNon-standard Model Theory

Recently i1 was jearned (75) that real number theory could
be formally axiomatized ysing the notion cf infinitesimal as
suggested by Liebnitz and Newton. Baltlantyne (76) and
Ballantyne and Bledsoce {263 noticed thatl non-standard
analysis methods provide more efficient implementations than
the classical epsilon-deita approach for much ¢f the
differential calculus. A close inspection of these meithods

reveals that many concepts, including convergence, uniform
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convergence, continuity, uniform continuity,
differentiability, and Cauchy seguence, can be expressed as
tormulas about the equivalence refation # which is defined
by x # vy it x and y are in the same monad (26]. This
equivalence relation is also & congruence relation on the
ring of finite real numbers, which means the relation #

may be treated as if it were equality on the ring of finite
real numbers. in particular, the infinitesimal
implementation (26) derives much of its power from
representing many formuias of the differential calculus as
equational formulas which are then treated by rewrite rule
methods. Since Ballantyne and Bledsoe (28) use mostly ad
hoc rewrite rule methods, completion methods
(17,18,19,20,22) might significantly enhance the nonstandard
approach. These non—-standard experiments (26,76} also
suggest the need for theoretical and exper%menta; knowledge
about how to combine two or more decision algorithms, sets
of rewrite rules, congruence relations, and so on. of
particular interest is the case when congruence relations

sccur within a larger theory of equaiity.

é. Conclusions And Remarks

There is curremtly no objective method for evaluating
mechanical theorem proving methods. A subijective evaluation
of an implementation can be obtained from the ltist of

theorems proved, but the value of such subjective
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evaluations is debatable for intricate ad hot
implementations, espacially those which include combinations
of methods. With considerable reservations based on the
above remarks,., ihe approaches to squality presented in this

articie are evalusted as foliows.

The most useful brute force method is the modification
method (7,83, but it is practical only for moderately

difficull problems.

For large or difficult theories, decision algorithm methods
seem to be the only approaches that offer much hope for
practical theorem provers in theories which inciude
equality. Consequentiy, the decision algorithm methods --
and especially the rewrite rule methods -~ should be studied
further, both *heoretically and experimentally. aé number of
theoretical and experimental research problems have been
presented In tnhis article, and the interested reader can

easily find others.

The above mentioned areas of application deal mainly with
traditional mathematical theories. Another area of growing
interest concerns the kinds of theorems which arise from
program verification, as iliustrated Dby the work of Deutsch
(881, Good, et al. (8931, King {901, Leviitt and Waldinger
{913, and others. Judging by the kinds of theorems they

encounter, complietion and other decision algorithms for
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equality should be useful in these kinds of program

verification systems.

The equality methods discussed in this article apply
directly to resclution, paramodulation, and ad hoc natural
deductive systems. Other deductive systems are also
possibie bases, including Gentzen systems (78,813 and
inverse systems (82,83,84,85,86,87), but the details have

not yet been worked out.
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