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ABSTRACT

Complete sets of permutative reductions are defined and two
mathematical characterizations of the unique termination property
are established. These mathematical characterizations of unique
termination are used as the basis of new theorem proving techniques

for first order logic with equality.
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INTRODUCT LON

Most practical mechanical theorem proving systems for first order
logics with equality have treated the equational inferences through
algebraic simplification methods. The work of Knuth (1), Knuth

and Bendix (2), lankford (3), Nevins (4), and Slagle (5) provides

a theoretical basis and experimental justification for using
algebraic simplification methods based on the concepts, proéerties,
and techniques related to complete sets of reductions. We assume
familiarity with those concepts, properties, and techniques,
especially, immediate reduction, finite termination property,
unique termination property, complete set of reductions, the
diamond lemme, the unique termination theorem, the unique
termination algorithm, and the Knuth and Bendix completion

- attempting technique.

In this article we consider the problem encountered by Knuth and
Bendix (2) of treating commutative axioms by reduction mehtods.

The difficulty is that commutative axioms cannot be used directly
as rewrite rules because they allow infinite sequences of immediate
reductions. For example, f(x,y) —>» f(y,x) results in the
infinite sequence of immediate reductions f{a,b) —> f(b,a) —
f(a,b) = ... .



Here we develop one approach to the commutative problem by extending
the complete set of reductions concepts, properties, and techniques
to equivalence classes of terms. The central result of this
article is a mathematical characterizetion of the unique termination
property for finite sets of certain equivalence class rewrite rules.
With this mathematical characterization of unique termination, we
generalize the Knuth and Bendix completion attempting technique to
equivalence classes of rewrite rules and show how the extended
completion attempting technique may be used for mechanical theoren

proving in first order logics with equality.

COMPLETE SETS OF PERMUTATIVE REDUCTIONS

Let £y, .. , fN be the function symbols and Vis V25 V3p eee

be the countable number of variable symbols from which terms are

constructed. Constants are function symbols of degree zero.

A term is a variable symbol, constant, or an expression fi(tl,..e,td_)
— i

where tl, ves tdi are terms and dy is the degree of fi N

Let n(x,Y) be the number of occurrences of the symbol x in the

term Y . An egquation is an expression t = uy , where t and

u are terms. A permutation equation is an equation t = u

such that n{x,t) = n{x,u) for each symbol x . Let P ve a

finite set of permutation equations and let 22 be the equivalence
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relation defined by ¢t o u iff t = u 1is a conseguence of 67
or any equation of the form v = v using the inference rule
substitution of equals. It follows that for any term t , the

equivalence class of t , denoted ~(t) , is a finite set.

A permutative rewrite rule relative to ® is an expression

(L) —> %(R) where L and R are terms and each variable
symbol which occurs in R also occurs in L . wWe say =«x(u) is

an immediate permutative reduction of 44 (t) by (L) —> a(R)

relative to (P iff there exist a substitution & s t' in
~(t) , w' in o{u) , L* in (L) , and RA' in & (R)
such that u' is the result of replacing one occurrence of L' @
in t* by R'*6 . When 2(u) is an immediate perfnutative
reduction of & (t) we write ®(t) —> ¥(u)} . A set R o

permutative rewrite rules has the finite termination property iff

there are no infinite sequences %(tl) —3p %(tzi — 'X’(t3) R
of immediate permutative reductions. An equivalence class is
irreducible iff il has no immediate permutative reductions.

Let —>c be the reflexive, transitive completion of —=3

We say that os(t) terminates naturally with <4(u) iff

v (t) =—>»c ~(u) and (u) is irreducible. A set 62 of

permutative rewrite rules has the unique termination property iff

for each equivalence class ®(t) , if (t) terminates naturally
with 2 (u) and @(v) , then ®(u) = x(v) . Aset R of

permutative rewrite rules is a complete set of permutative reductions

iff @\ has the finite and unique termination properties.



The functional reflexive axioms for a set E of sguations are

the equations f("lt"':"df) = f(vl,...,vdf) s Where

f 4dis any function symbol which occurs in any term of any equation
of E . Let &O be the set of all equations L' = R where
L* is in ®(L) and x(L) —> =~(R) is in R » and define
Ri; 1= R; U P where P is the set of all
paramodulants t = u of (i) an equation L = K of lR.i and
and equation p = g of ® » where t corresponds to g and
paramodulation is by L into p on a subterm of p that is not
a variable, or t corresponds to L and paramodulation is by

p on a subterm of [ that is not a variable, or (ii) an equation
L = R of &i ana a functional reflexive axiom p= p for ODU 02 0
where p = p paramodulates onto a varisble symbol of L ,

t corresponds to L , and u corresponds to¢ R . Let Rm = U&

2

First Unique Termination Theorem If a set R of permutative

rewrite rules relative to {7 has the finite termination property,

then Ga has the unique termination property iff for each

paramodulant v = w of Ly = Ry of Rm and L, = Ry of ﬂo by
left sides into left sides on a subterm that is not a8 variable,

~(v) = 2(w)” where 2(v) terminates naturally with 2(v)*

and <« (w) terminates naturally with z(w)* .



Proof (== ) Let v = w be a paramodulant of Ly = R, and
Ly, = R, of R by left sides into left sides on a subterm
that is not & variable, and let H be the most general unifier
of paramodulation. Without loss of generality, assume Ll
paramodulates into L, . Since Q:(Rl) is an immediate
permutative reduction of %2 (L;) and ".:J(Rz) is an immediate
permutative reduction of (Lp) , it follows that = (v) is an
immediate permutative reduction of (LQH) and 22(w) is an
immediate permutative reduction of 2$(L2,4) . since R has the
unigue termination property, it follows that aﬁ(v)*:: gg(w)* .
(&= ) This case requires a diamond lemma: if 2 set of
permutative rewrite rules R relative to ® has the finite
termination property, then 0{ has the unique termination
property iff for each a4(t) and each pair «(t) —» a(u)

and ®{(t) —> x(v) of immediate permutative reductions of
~x(t) , there exists 2«g(w) such that =(u) —>c x(w) and
a(v) —>c {w) . Let t' end t'' be in o (t) ,

2 (L)) —> 2(R)) and RU(Ly) —> R(Ry) bein R, L7 be
in (L) , Ly' be in (L) , €, and 6, be substitutions,
u be the resuit of replacing one occurrence of Lyt 91 in t¢

by Ry 91 » and v Dbe the result of replacing one occurrence of
L' @y in t'f by H, 8, . If t' and t'! are identical,
then methods like those of Knuth and Bendix (2) ena Lankfora (3)
may be used to complele the proof. Wwhen t' anc t?'! are not
identical, let t¥ = ¢

ees 5 L, = t'Y be a geduction of tt¢

i ¢ n



from t' by ecuations of & .

Let t, be obtainea from tl by replacing one occurrence of PA
in t,y by q)\ where p = q 1is in @ . If pA and L191
do not interact, then it follows that there exists uf in v (u)
such that u' 1is the result of replacing one occurrence of Llel
in t, by 3191 > and thus we have reduced the problem to
considering showter deductions. If PA occurs in }_.161 in s
position that corresponds to a variable in Ly , then paramodulate
into L3 = Ky with the functional reflexive axioms until a member
L' = Ry of (Ra; is produced which is such that 116, isen
instance of 1;* and the occurrence of pA in Ll 91 does not
correspond to a varizble in Lj' « Thus there is a paraemodulant

LB = RB of j“}' = i3 and p =g by p into Ll' such that
u is the result of replacing LBG‘ in t2 by RBO" , and we
have reduced the problem to considering shorter deductions. The
cases when L,8; occurs in ph are treated similarly. By
iterating the reduction of the problem to shorter deductions, we
eventually consider the case of 8] el and ;299_ interacting,
wnere Ly = R isdin R, ani 1, = R, isin Ry - This
case is treated by techniques like those of Knuth end Bendix (2)

and Lankford (3).



The practical disadvontage of the first unique termination therocem
is twofold, the functional refliexive axioms watch with almost
everything in sighti, and a2 completion attempting algorithm based
on it may not terminate after a corplete set of permutative
reductions is found. The secona unicue termination theorem below
shows that we moy aispense with the functional reflexive axioms
while restricting psramodulation into subterms which are not
variables. The techniques of proof are essentially the same zs
the first case even though they appear superficially different.

The halting problem will not be considered here.

Let us define the 6’~inferences of 6{ as follows. The
@ -inferences of degree 0 are Lyt = Ri' where 1;' ¢ Q,’(Li) >
Ri' € ;;'(Ri) and (Li) —> x(R;) € Gi The @—inferences

Ly = By of degree j 4 1 are obtained from the (P—inferences

Lp = Rp of degree j as follows: L = Ry is a2 paramodulant
of Lp = Rp by a member of @ into or by LD on a subtern

that is not a varisble.

A critical pair is 2 pair a2 (t) , ¥(u) where t = u is 5

=y

paramodulant of a (P -inference L = K and Lt R;" on left

i

sides, by left sides, on 2 subterm which is not a variable, where

Li'e (L) 5 Byt e 3(Ry) , ane () — ~ () e R.



Second Unigue Termination Theorem If &,,@ hzs the finite

w0

terpination property, then GK,G) has the unigue termination
property iff for all critical pairs = (t) , x{(u) ,

~ W) = a .

Proof (==») Obvious. (&= ) we show that the permutative

diamond lemmz is satisfied. Let

tal A co o Q:: tn
L L —> &y 1/‘_(—-9:«(
u v

depict the hypothesis of the permutative diamond lemm2. Let
~(t) = x(ty) (:{tl soeee s Ly } ) » and let as(t)
be well-ordered by <« such that tn is the <« -least member of
~(t) . It can be shown that there is a derivation of t, from
tl such that t; > ty > cee >, 1 > tn and paramodulants

Py = 93 s ¢ » Py _ 3 =G, _ 1 suchthat t; , , is obtained

from tg by replacing an instance of Py in ti by the same

j are obtained by iterated

paramodulation of membters of ® . if =9 paramodulates

instance of. g, and the Py = qj

into a variable position in Ly , then replace all occurrences
correspending to that variable position, and we are reduced to
considering shorter deductions. If P; = G; paramedulates into
a position that does not correspond to a variable, then we obtain
a (P-inference L =R of L = ‘;al by paramodulating

pp = g into L, = Rl , and this P-inference L = R



"reduces" 1, . Thus we are reduced to considering shorter
derivations. bventually we must consider a G>—inference L= R
wreducing® s which gives risec to the consideration of critical

pairs.

CONCLUSICONS

The unique termination theorems provide 2 semi-decision procedure
for non-unique termination for those sets ofqpermutative rewrite
rules that are known to have the finite termination property. we
are presently studying the feasibility of implementing a permutative
non-unique termination procedure as the basis of a permutative
canonical inference theorem prover. We also plan to study
refutation completeness questions for blocked resclution,

permutative narrowing, and complete sets of permutative reductions.
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