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Lankford and Ballantyne (2) have established a semidecision
procedure for the incompleteness of finitely terminating sets of
permutative reductions. #hen the permutation equations are all
commutative equations, Lankford and Ballantyne (1) have given an
algorithm which decides unique termination for finitely terminating
commutative rewrite rules. In this note we develop an algorithm
which decides unique termination for finitely terminating

commutative-associstive rewrite rules.

It has been shown by Stickel (3) that commutativity and
associativity can be built into the unification algorithm. In
particular, he shows there is an algorithm CA which, given any
two terms t and u of a commutative associative theory T,
returns a finite set CA(t,u) of substitutions such that if ©
is any substitution for which b1 t©® = u@ , then there

exists py € CA(t,u) and a substitution A such that & '-:H)\



We first consider terms which contain only the commutative-
associative function [ and variables. Thus we are given
permuters
CP: (£(x,y),2z) = f(x,f(y,z)) , and
fx,y) = £{y,x)
and a finite set of commutative-associative rewrite rules
R: ~(L) — x(Ry) ,
x2(ly) —> % (R,) ,
where the Li and Ri are terms containing only variable symbols
and the function symbol f .
Theorem 1 If (R has the finite termination property relative to
(P, then R has the unigue termination property relative to @
iff (1) x(Byu)™ = ~(RjpM)* forall i, j < n and
all M€ CAlLyly) , (2) x(fxR)u)” = 2(@yu)", for al
i, J<n andall u € CA(f(x,Li),LJ.) » where x is a variable
symbol that does not occur in 1; or Lj » and  (3) Qﬁ(f(x,Ri)’J)* —_
2(f(,R) )T forall 1,5 <n endall H ¢ CA(E(x,L1), 8y, 15) )
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where x and y are variable symbols that do not occur in Ly or

(‘ll



Proof ( ::$) Consider each of the three cases. For example, in
case 2, NU(f(x,Rj)u) and = (Rjﬂ) are immediate @ -reductions
of ~ (f(x,Li)p) , so that the hypothesis of unique f -termination
gives us x(f(x,Ri)H )%: Q_'(HJM)* , where the * operator
permutatively reduces each equivalence class «(t) to an
irreducible form z(t)* relative to R . The other cases are
done gimilarly.

(&= ) It suffices to establish the permutative diamond lemme,
which we do in the following manner. Let g t1 = t; , u be
the result of replacing one occurrence of Li 91 in tl by ;8
and Vv be the result of replacing one occurrence of Ly 92 in

t, by “392 . Because (P is & commutative-associative theory,
it follows that e ty = Liel or for some W, kg 4, =
f(w),L407) and tp to, = Ly ©, or for some w, , o t, =
f(wz,Ljez) » which gives us three cases to consider. For example,
case 2 is the hypothesis which a2llows us to establish the permutative
diamond lemma when (-g t] = Ly &, and e to = f(wz,Ljez) .
In that case we have |—p Lij6;, = f(wg,i,jez) , so it follows
that o Lj6 = f(X,Lj)G » where we assume that Lj and Ly

have been standardized so as to have no.variables in common and

that x 1is 2 variable which does not occur in Ly or L Thus

j @
there is some 4 & CA(Li,f(x,Lj)) and a substitution A  such
that & = ,.4)! . It is clear that ""p u o= ﬂi H)\ and &—6,

v = f(x,Rj)H) » 80 it follows that 2a(u) and 2(v)



#
permutatively reduce to a common term, in this case Qi(ﬁiil) A

The other cases are done similarly. (.E.D.

when additional functions are present, we show below that by
adding certain additional superpositions, unique termination can
again be decided. Let ® ve 2 commutative-associative theory
and let 6{ be permutative rewrite rules containing arbitrary
function symbols.

Theorem 2 If (R has the finite termination property relative
to @ , then R has the unique termination property relative

to ® iff the Knuth and Bendix superposition test is satisfied
for {Ly —> By s oee » In —> Ry} U {f(x15) —> £(xRy) |
the leading function symbol of Ly is f ]— where unification
is replaced by commutative-associstive unification and reduction
is replaced by commutative-associative reduction. The variable
symbol x is assumed not te occur in Lj or Ri .

Proof This proof is like the proof of Theorem 1, but also involves
recursion on terms of lesser complexity. Also, some commutative-
associative matches need not be formed, namely, those matches
against subterms with leading function syﬁbol f which are

immediate arguments of some f . (.E.D.

Theorem 1 and Theorem 2 can also be extended to the casse when there

are 2 finite number of commutative-associative functions by using



Stickel?s method of generalization and recursive calls on the
unification algorithm for terms of lesser complexity (3). we

state the extension of Theorem 2 below.

Let us be given
F: r(5,x,5),2) = £1(x,19(y,2)) ,

£1(x,y) = £(y,x) ,

£(E(x,5)52) = Im(x,fp(y,2))

f(%,y) = fly,x) ,
R: ~(L) —>» (K1),

(L) —> 2R,
and a commutative-zssociative unification algorithm CA for the
commutative-associative functions f] , «eo £ -
Theorem 3 If R  has the finite termination property relative to
® , then R hes the unique termination property relative to @
iff the Knuth and Bendix superposition test is satisfied for
L =B, eee s Ip—> R} U {fj(x,Li) —> £5(x,R,) |
the leading function symbol of L; is fj }- where unification is
replaced by CAi-unification and reduction is replaced by permutative
reduction.

Proof Imitate the proof of Theorem 2 with CA-unification. GQ.E.D.



The semi-decision procedure for non-unique termination (2) was used
as a completion-attempting procedure, and produced the sets of
commutative-associative reductions below. In each case, the
non-unique termination semi-decision procedure did not halt, but
attempted to generate additional permuters and reducers (even though
none were generated;. when the examples were tested by a LISP
implementation of Theorem 3, 2ll were found to be complete sets of
commutative-associative reductions. Of course, Theorem 3 could
also have been used as the basis cf 2 completion-attempting
procedure, since all the permuters in the example are commutative-
associative. However, in practice, arbitrary equational theories
can seldom be transformed into complete sets of permutative
reductions such that all tke permuters are commutative—associativé.
We have recently lesrned that Stickel and Deterson (L) have
independently discovered and implemented a commutative-associative
completion-attempting procedure bzsed on a approach equivalent to
Theorem 3, and that their prograr derived decision procedures

for Abelian groups, commutative rings with unit, anc distributive

lattices,



EXAMPLES OF CCMPLETE SiTs OF COMMUTATIVL ASLOCIATIVE RADUCTIONS

x° = 1, IDENTITY, COMMUTATIVITY, AND ASSQCIATIVITY
P. Pl. (X-Y)2 = X (Yo2)
P2, XY = YoeX

®R: a1 {x-x}— {1}
we. {x-1, 1-x} —> {1}

ABELIAN GROUP THEORY

P: PL. (XY¥)+2 = X+ (Ye2)
P2. XY = Y X

R: m. {x-1, 1.1} —> {x}
R2. {1 -1t , e x} — {1}
e {17} —> {1

re. {7} —> {1}

R5. {(x -y, (v x,s'l} —> {;Cl -yl

, Y. x‘l}
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