A Man-Machine
Theorem Proving System

W. W. Bledsoe and Peter Bruell

University of Texas, Austin, Texas

ATP-4

2 t .
#Cn 3 Theorem Proving eud

c: 1
A MAN-MACHINE THEOREM PROVING SYSTEM . o
¥. W. Bledsoe and Peter Bruell
University of Texas, Austin .

[RACT: This paper describes a man-machine theorem with the mathematician. The theorem prover, which is
7ing system at the University of Texas (Austin) described in Section 3, is written im LISP and is
th has been used to prove a few theorems in based on IMPLY (see Section 4 of [1]) and the methods
zral topology. The theorem (or subgoal) being © glven in [1] and [2]. It has the ability to prove
ved is presented on the scope in its natural form theorems on its own; human intervention is used to
that the user can easily comprehend it and, by a increase its power and speed up proofs.
Les of interactive commands, can help with the The DETATIL Feature.
of when he desires. A feature called DETAIL is “One of the principal dlfflculties with most man-
loyed which allows the human to interact only when machine provers is in knowing when and how the man
led and only to the extent necessary for the proof., should intervene. Firstly the human may have trouble

The program is built around a modified form of in reading and comprehending the text omn the scope,
JY, a natural-deduction-like theorem proving and secondly, he doesn't know when the machine should
anique which has been described earlier. be helped, and how much he should do. He does not

A few examples of proofs are given. want to make a lot of unneeded entries, and if he

makes a mistake he wants to easily recover.

The first difficulty is solved in the system
described here by employing the human oriented lan-
guage IMPLY and in displaying the theorem on the scope

o -~ in a "pretty-print" form. This is further described
1. Introduction. below.
’ . The second difficulty is handled by a precedure
Some workers in automatic theorem proving, in- which allows the computer by itself to first try to
iing the authors, believe that it will be wmany © prove the theorem (or subgoal). If it succeeds, then
rs (if ever) before machines alome can prove all is well, but if it fails within a prescribed time-
ficult theorems in mathematics. Thus some, who limit, it prints on the scope the statement of the
2 to see machines used as practical assistants to theorem and the word "FAILURE" and awaits a command
2 mathematicians, have redirected their attention . - from the user. If he commands "DETAIL" then it will
nan-machine theorem provers [3, 4, 5] and theorem - proceed (again) with its proof to the point wheres the
>f checking [6, 7, 8]. . current goal is split into subgoals. At that point it
The present paper describes a man-machine theo- prints on the scope the statement of the new subgoal
proving system at the University of Texas which for which it failed and stops, and the whole process
been used to prove a few theorems in general i can be repeated.)
slogy. Our system is organized in the same general At any of these stops the user can employ a
as those of Guard [3], Luckham [4], and Huer [5], variety of other commands such as DEFN, PUT, USE, ete.
with many major differences. For example, . (which are described below) to help with the proof.
<ham and Huet use variations of Resolution as - In this way he can easily isolate the difficulty and
ir principal rules of inference whereas we use a make only those entries needed by the machine in irts
ified form of IMPLY [1l], whic.. is a natural-deduc- proof. Indeed he can start the machine on the proof
a-type method. of a theorem without encugh hypotheses (reference
Also our system displays formu‘as on the scope theorems) and supply them only when and if they are
a natural, easy to read, manner and has available needed in the proof. .
eriety of interactive commands the user can employ The following is a symbolic example for explain-
nelp with the proof. Among these is a feature ing the DETAIL process. Real examples are given in
led DETAIL which allows the human to interact only Section 4. o
n needed and only as much as is required for the Suppose the machine is able to convert the
of. - example (H > C) into two subgoals (8 + D) and
As yet this system has proved no new theorem in (H»E) by defining C as (D ~E) and suppose it
ology. The program is still in the state of devel- can prove ({ > D) but not (U > E), but that it can
ent and it will be sowmetime before we can deter- prove (H - Hz + E). Then the dialogue would be as
2 whether it can materially help a mathematician ° follows: .)]
ve new theorems. o
This paper describes the fac1lity, the inter- Human: EE) (H+>0C)
ive commands available to the user mathematician,
modified version of IMPLY which is used, and . Machine: (l) (H *;C)
28 a few examples of proofs of theorems. — FAILED
- Human: DETAIL
2. The Facility and Interactive Commands. Machings M>D ~E)
“The facility consists of a Datapoint 3300 ter- i (1;) égozég)
8l connected to the CDC 6600 computer via the UT
eractive (time-sharing) system TAURUS [11]. A Human: GO

tematician (the user) sits at the terminal, types

2 theorem to be proved and occasionally helps the Machine: (12) @@ > E)

gram with the proof by providing information he FAILED
ls {s needed and answering questions the program Human: . DETATL
B8, . S

‘The computer program conalsts of a large auto- Machine: (12) O > E)

le theorem prover and a subroutine for interacting FIJLE§

x

Y Ruman: USE H

2,
(note: here H2 is some lemma or axiom)
Machine: (12) (H -~ Hz > E).
’ PROVED
Machine:) ® -~ H2 > C) :
PROVED?

Notice that the only real human intervention was
at the step where he commanded (USE Hz), and thgc

help was glven only when needed.
The Interactive Commands.
T TThe following is a listing of some of the inter-
active commands available to the user. A few of
these are further explained below and in [12]. 1In
the following the word 'theorem" is sometimes used

© to represent the current subgoal being proved.

THE MACHINE'S RESPONSE

NAME OF USER TYPES

COMMAND

Pty

PUT The machine replaces
each occurrence
in the theorem being

proved by ().

It replaces all occurr-
ences of A by its
(stored) definition.

PUT x= ()

DEFN

It fetches theorem
pumber N from memory
and adds it to the
hypothesis of the cur-
rent theorem.

It adds (
. hypothesis.

USE USE N

USE ()) to the

LEMMA () It first proves ()

and then calls USE ().

PROCEED - It proceeds with the
proof with no changes

by the user.

DETAIL DETAIL ~ (see explanation above)
It finds the first sub-
goal of the current
goal, displays it on

the scope, and stops.

COUNT CNT N It increases the time-
limit on the current

subgoal by a factor N.

FATL F It fails the current
,subgoal (i.e., returns

NIL).

It assumes the current
subgoal to be proved
and proceeds.

It returns NIL and
backs up in the proof
to the previous goal.

ASSUME
BACKUP

REORDER N> M) It reorders the goal,
. ’ placing hypothesis

number N first and

conclusion number M

first.

It deletes hypotheses
number N, M,...

DELETE DELETE N M ...

7

PRETTY-PRINT TP It prints the theorem
on the scope in a
easily readable form

(see Example below).

If PUT ¥ = () has
been used earlier, it
prints the theorem on
the scope with each
occurrence of () re-
placed by the symbol F.

¥, G

™ F

TP F G ...
TPC F

Similarly for etc.

Similarly for conclu-

sion only.

TPH F Similarly for hypo-

thesis only.

HISTORY RUN HISTORY

The machine redoes the
steps in the proof
down to the current
point, but eliminates

unproductive steps.

(.) 1is (permanently)
added to the REDUCE
table.

ADD-REDUCE ADD-REDUCE ()

ADD -PAIRS () 1is (permanently)
added to the PAIRS

Table

ADD-DEFN (A ()) () is added to the
definition table as
the definition of the
atom A.

Computation can also be stopped at any point by
the use of an interrupt which will cause the program
to return to the beginning of the function IMPLY and
hale.

Most of the commands described above are retrac-
table. If a command -has changed the theorem in any
way the machine displays the changed version and then
asks "OK77?" The program will then make the change
permanent only if the user types "OK." :

The machine theorem prover used in this system
has been revised (from [1]) to provide a more parallel
type of search. This is described below.

As in [2] the presentatiom of the theorem on the
scope 1s in its original natural form for easy reading
by the mathematician. No unnatural conversions, such
as changing (A > B) to (~A v B), are made. Add-
itionally, whem a symbol, say F, has been replaced
by a long expression (), the mathematician can,
by typing TP F, cause the presentation on the screen
to be in terms of F instead of (), thus making it
easier for him to comprehend.

Such conveniences are necessary to make possible
real-time communication between the mathematician and
the computer's prover.

Skolem functions are used to eliminate quantifiers
but the expressions are left in their natural form
(see p. 37 of [1] and p. 18 of [10]), easily rTeadable
by the human. Printing of theorems and subgoals on
the scope is done with skolem arguments suppressed to
further improve readability.

PUT. One of the principal difficulties encountered in

automatic theorem proving (indeed in human theorem

proving) Ls the problem of instantiating a variable.

For example, it is essentially trivial to instantiate

the variable x as X in

(xg€ A>T x (x € AD*

ADD-PAIRS ()

ADD-DEFN

*The quantifier "o {s retained here for ease of
presentation. Such quantifiers are replaced by skolem

expressions in actual computer proofs,as indicated above .

/
7

; 1t is far more difficult to find an acceptable

lue for G 1in the expression
(G 1s a closed cover -
} H'*ﬂc G is a locally finite °

G 1is a refinement of FO),

ere H 1s a given hypothesis. In such a situation
rachine prover might eventually find and verify a
tisfactory G, depending on the nature of H, but
s work can be tremendously reduced if the mathe-
tician would indicate a value for G. TFor example,
might put

) G=(C:]A (Ae G ~C =Closure A)}.
en (1) becomes

iz a closed
o cover
.} is locally finite

» ({c:J A (A e G ~C= Closure a))
IR
~{

vich can now be split (by the computer) into three
ibgoals. The first subgoal of (3) becomes

} is a refinement of FO),

21> ({ } 1s a closed cover)
;ich is converted to ‘
B> (Ce { } + C 18 closed :
+) : .
: (A)} covers X) .
his is again split; the first subgoal becomes
> (Ce (C:JA (Ae G ~C=€losure A)] > C is
losed) which is reduced by the computer to
1 ->3A (A e ' ~ C = Closure A) + C is closed
nd then to
5) . H ~Ae G' > Closure A is closed.
The subgoal (5) is now easily proved by the com-
wuter referring to a REDUCE table (see p. 57 of (2]

ind Section 3) which shows that Closure A is always
:losed.

Similarly, the second subgoal of (4) is reduced to

(6) H ~x ¢ X+3A (A e G' ~x e Closure &)

sich again is easily proved if H "contains the
iypothesis ’
¢' 1s an open cover.
" The other subgoals of (3) are handled similarly,
using cother hypotheses from H.

Thus the very difficult problem (1) has been re~-.
duced to a series of eagier problems by the human
action (2) and some machine manipulations. It is
true that the mathematician is required to provide
the most difficult step in the proof but then the
computer does the rest, proving a series of smaller
theorems and verifying that the mathematician's
cholce for G was indeed correct. If he made a
wrong choice at (2) he might want to intervene later,
backup, and try a different value for G.

The PUT feature, though quite simple, is a very
powerful device. It alone makes a tremendous differ-
auce in the number of theorems the computexr program
can prove. :

DEFN. When the mathematician desires that a certain
expression, such as "Reg.", be defined, he types

D Reg
and the machine immediately replaces each occurrence
of "Reg" (in the subgoal being proved) by its defini-
tion.

When an expression is replaced by its definition,
the particular skolemization of that definition will
depend on its position in the formula. For example,
the expression

(Reg > C)
would be replaced by
[x € A ~ open A > open B(x,A) ~ x € B(x,A)’
~ Clsr B(x,A) € A] > C,
vhereas V
(H > Reg)
. would be replaced by

H > [xo € A, ~ open A0'+ open B A x, € B

0 0

~Clsr B < AO]'

An option is provided so that DEFN can be applied
to only parts of the expression. Thus for example,
"Reg" might be replaced by its definition in the
econclusion but not the hypothesis. -
PRETTY-PRINT, The command TP causes the machine to -
print the current theovem (subgoal) in a parsed, easy
to read form. For example, if the theorem is

(> (~(0C (FSD1)) (~(REG) (OCLFR))) (~(CC G)(~
(REF G(FSD1)) (LF G))))

the command TP will cause to be'printed on the scope!
(©CEFY)
(REG)

-~

. (OCLFR)
>
cc G

(REF G(F))
(LF G).

Note that the skolem comstant (FSD1) has been printed
as (F), though its complete form is retained by the
program.

Now if the command

PUT G = (C: Closed C}

is used, the conclusion of (1) is altered accordingly..
The command TPC if issued now will cause

(cc{c: Closed C})~

~

(REF(C: Closed C} (F))
® @F{C: Closed C))

to be printed, whereas TPC G causes

58

/- (cc 6) (range Ax ux) = (y:{x (y = ux)}
/‘ ~ .
(REF G (F)) etc.
REDUCE helps convert expressions into forms which are

UF G)

more easily provable by ™MPLY. It also is a con-

o be printed. venient place to store facts that can be used by the

ISTORY. If commanded the program keeps a record machine as they are needed. For example REDUCE returns
1lstory) of each step it has taken in the proof of a "TRUE" when applied to such formulas as (Closed Clsrt
teorem, including steps where the human intervenes A}, (Open X), (Open 9), (Open interior A), (P < A),

it excluding unproductive steps. This history can ete. . -
> used by the mathematician later, upon the command Forward Chaining. It seems that unrestrained forward
WUN HISTORY N", to rerun all or part of the proof

chaining i{s a poor idea in automatic theorem proving
lthout interruption, and to try if desired a because it tends to

produce an excessive number of
-fferent line of proof at any step.

useless hypotheses (lemmas). Consequently, our earlier

3. The Machine Prover versions of IMPLY relied heavily on backward chaining.
The prover-hsea—gy this system consists mainly However, the use of the man-machine system (especially
" a modified form of IMPLY (Section 4 of [1]), with the PUT feature) on theorems in topology has brought
e addition of REDUCE (see p. 57 of [2]), and other to our attention the power of forward chaining in
mecepts from [2] and [17].

many prodfs, especially in cases where the chaining

Two of the principal differences in the present expression is a ground (all constant) formula. We

rsion is that DPLY is now the main routine (instead therefore have provided ground forwsrd chaining as a
CYCLE), and REDUCE is now applied inside IMPLY. new rule in IMPLY. '

, .
e SPLIT functions (p. 56 of [2]) are an integral RULE (forward chaining). If P_ is a ground expres-
rt of IMPLY itself. Also IMPLY has been given a sion (i.e., contains no variables)which is an instance
eadth-first search capacity (see below), and the cf P(i.e., there is a substitution T for which

ck-up feature (see Footnote 1l of {1]) has been PO = Fr) then the goal
moved and replaced by a human back-up capability,
PLY. TMPLY is a natural deduction type system which
ocesses formulas in their "natural’ form (see also

» 101). It consists partially of a few rewrite

les such as

®~@>Q) ~P >0y

is converted to the new goal

< ®~ @>Q) 2 ~0qr+c).
. (H-)(B-)C))::}(HAB-)-C)
‘ This rule need ouly be applied at the time some-
H> A“>38))=(H ~ A *B) ~ (HA~B >4) thing new is added to the hypothesis, such as when an,

expression (H > (A » B)) 1is converted to H ~a»38),
or when another forward chaining step has just been
completed. ’

This rule has been further extended in the system
to provide for so-called "PEFX forward chainin
which works as follows<
: ‘ RULE (PEEX forward chaining). If P_ is a ground
kehain, substitute equals, and forward chain (new expression, PO = Pr, A hasg the deginition ® > Q)),
ition). A fundamental part of IMPLY is a matching then the goal
tine (unification): if 7+ is a most general
fier of A and A' then the subgoal

lch comvert the expression being proved from one
m to another. Its main function is to split a
tl into subgoals

11
(7’

@>A~B)=®H>A) and H>B)

H~A AP >0

. 0
CA-> A") - : T 4s converted toﬂthe new goal

Judged "TRUE" with being returned to be applied
further subgoals.

UCE. REDUCE consists wholly of a set of rewrite

es which converts parts of formulas. It contains
cial heuristics for set theory, topology, etec.
example

(H*AAPO»‘\QT'*C).

Note that the machine "peeks" at the definition of
A to see if forward chaining is possible, but then
returns A to its original form. This variation is
very useful (see Example 2, (111 HL)). Returning A
to its original form makes the theorem much easier to
coumprehend for the wmathematician reading the display
on the scope.

Forward chaining still tends>t5 clutter up the
scope with useless hypotheses,

(te ANB)=(t e A ~te B)

(LeAUB)=>(teAvte B)

. and the user occasion-
(co € 0F0)=$ A e Fo ~the A) ally finds it useful to remove some of them by the
. X -~ command DELETE. * More importantly the user, when he
(same as 3 A(Ae FO -~ glves the computer a theorem to prove, need not list
t e A) A all required lemmas bur can give them only as they are
0) needed in the proof, and thereby can eliminatre much
. #* ‘irrelevant forward chaining.)
°or (fpedF) = (Aye Fyatie A - Dreadth-Firsc-Search. One of the difficulties with the
(Cholce A € A) = (A # %) ‘ previous version of IMPLY was that its search was

essentlally "depth-first." For example, i{n proving
te (xt Px)]=>P(t
(() © (H(x) » P(x)) ~ Pxy) > B (xy)
ce REDUCE 1is now called from inside IMPLY, it (RE-
) must eliminate quantifiers and skolemlze in the
s8¢ of reducing formulas, As was explained in Sec-

2 under DEFY, the exact form of this skolemization

nde on the position of the expression in the theorem.

it would back chain off of

TV

B WAL S

AN s

e i d chns
W T

RR R

H(x) > P(x))

d try to prove H(x,), before finally getting
ound to the trivial proof (P(xo) > P(xo))-

A human, acting more intelligently, would
sually glance across the hypotheses, and notice
x,) before trying to establish H(x.).

A more serious difficulty is encountered in
stantiating definitions, in that not enough direc-
on is provided as to which definition to instantiate
rst. As a general rule, an expression such as "reg"
>uld not be replaced by its definitiom unless it
1 "do some good." Otherwise a glut of new symbols
aper both man and machine. Also it is usually
-ter to instantiate definitions in the conclusion
‘ore those in the hypothesis, and to instantiate
linitions of "strange" terms such as "paracompact"
‘ore those of ordinary terms such as "closed" or

11}

We have attempted to remedy these two diffi-
-ties and have also added another feature called
JIRS" which tries if possible to apply that
othesis which is like the desired conclusion, even
n a complete match cannot be made.

The following is a rather sketchy description of

revised IMPLY program, which gives only the
vor of it. A detailed description is given in
1.

When a theorem (or subgoal)
@->0)

glven for IMPLY to prove, it first calls REDUCE,

1 applies its own rewrite rules, and SPLITS it if
ropriate. Next it does a breadth-first search
trying the following seven steps in the order
Lecated. If any step fails it goes to the next;
success of a step usually results in another call
the function IMPLY.

1. Match

2. Match and Backchain
3. PAIRS

4. PEEX

5. Define C

6. Define strange terms
7. Define any term.

These are described in more detail below. With

exception of step 5 each of the steps listed

lves a call from DMPLY to a function called HOA.

-basically happens is that IMPLY splits the

rem into subgoals on the basis of the OR-AND

cture of C, and HOA attempts to use the hypo-

€3 to prove these subgoals.

l. Try matching the conjuncts of H with (. -
That is 1f H 1is of the form H. - Hz -~ H3
it tries to match ¢ with one 6% the™ H, .

2. Same as 1., except that backchaining is
allowed. For example, in

B ~ @, >C)>c .

it would first try matching € and H R
and then if that failed, it would try ‘to
-match € and €' and backchain.
3. Try PAIRS. If the main connective of (
matches the main connective of a conjunce
Hi of H (but C and Hi do not match),

then comsult the PAIRS table for conditions
which would yield

oy >),

PR

60

and tfy to prove those conditions.
For example, given

(Ref GOFO) > (Ref HOJO)

(there (Ref GOFO) means that GO is a re=~
finement of FO), PAIRS wogld‘consult the
PAIRS table and "find

(Ref HOGO) ~ (Ref FOJO)
there. If it can establish this new subgoal,
the proof is concluded. If that fails it
will look for another entry on the PAIRS
table concerning Ref,
4. PEEY, at. definitions in H. Here we do not
. ark’ xarily instantiate definitions of ex-
pres$ions in H, but rather do so only if we
find in a conjunctive position of H 4
possible match for c. For example, in

(reg ~ open coveerO > cover GO)

we first look at the definition of reg and
find no reference to "cover", so we leave
reg as it was and try the definition of open
cover FO’ which is

Cover FO - F0 ST

Since "cover” appears in a conjunctive posi-
tion; we retain this definition, and our
, theorem becomes

(reg ~ (Cover FO ~ Fo ST) > C?vet GO).

Starting again at Step 1 we eventually con-
sider PAIRS (Step 3) on

(Cover Fo > Cover GO),

which may or may not succeed. If it fails,
the theorem is returned to its original form

(reg ~ Open Cover FO > Cover G

and Step S is then tried, A
5. Instantiate the definition of the main con-
nective of (.
6. . Instantiate the definition of the first
"strange" symbol in H. :]
7. Instantiate the definition of any symbol in C
Equality Substiturion., DMPLY employs a form of equal-
ity substitution whereby if given the goal ~

(a=b ~ 4> c)
the program first tries to prove
(A‘ P Cl) .

where A' and ¢ are obtained from A and ¢ by
replacing all occurrences of a by b, and then if
that fails, tries replacing b by a.

This has been sufficient for many applications,
but more sophisticated methods may be needed such as
those used by Nevins in [9], Slagle in [14], or the
"equality-term-locking” of (16}, or others, which pro-
vide guidance for which of a or b should be re-
placed by the other.

o’ .

.

5w e .

B e s s n o s o1 x

. Examples.
The examples we have exolored are mostly from

Kelley's General topology [13], though in fact any
reasonably precise text would do.

We have taken examples from various parts of the
book. Example 2 is a theorem about paracompactness.
The examples tried so far have been about just one
topology. This is convenient since it allows fixed
symbols T and ¥ for the topology T on the space
X. The space X is assumed to be non-empty. The
definitions used by the computer are stored (perma-
nently) in {ts memory.

The theorem labels used in the following examples
are also those used by the computer. They help inform
the user where he is in the proof. For example, if a
goal has theorem label (1 2) and it SPLITS, then the
two parts will be labeled (1 2 1) and (1 2 2). 1f
back chaining is used om a theorem labeled I, then
the two steps are labeled (LB) and (LH).

The presentation on the scope is always in the
"pretty-print' format depicted on page 1ll. But to
conserve space we have here shown our examples in a
more compact form, and some lines of the proof are
omitted. ’

In this presentation, an "h" at the left indi-
cates 2 human input, an "Ed" indicates an editorial
comment, "m" indicates machine output. The

and an ''m
m's are omitted in our description after the first
few lines of each example.

In the examples

The expression Means

T : The topology (family of open
gets) on the 'space X

Cover G Xc' U A

: AeG

Oc G G <& T~ Cover G

cc G - G € Closed ~ Cover G

Reg . ' The topology is regular (defined

: below) ;

Lf G- G is locally finite

Ref G F G 18 a refinement of F

Oclfr Every open cover of X has an
open locally finite refinement

Occlfr Every open cover of X has a
closed locally finite refinement

¥ N x ¥ 1is a neighborhood of x

subsets A The set of subsets of A

oG U A
AeG

EXAMPLE 1. (Theorem 1, p. 38 of [13]). 4 set is

open 1f open if and ouly if it contains a mneighborhood of each
of its points.

DIALOGUE

|

h (Open A#> xe A >3NQD N x ~NCA)

Bd This is the statement of the theorem to be
proved.

‘m (1) (Open A = xeA*BN(’NbNx»NC:A)

. FATLED TIMELIMIT ..

. Ed The two dots, .., indicated that the mac-
hine has stopped for human inmput. The

. computer has failed to prove (1) in its
wrnoredhoad rimelimit.

m (1

a1

(111

(111

S an

(111

1

a

1

Ed

1)

Ed

2)

2)

3

2)

Ed

Ed

Ed

DETAIL

> (x, e A, >Nb N x

(Open Aq > (xy € A,y)

~NC AO))
FAILED <.
The computer has taken the skolemized
expression (1 1) as the first half of
.’ AO and x,. are skolem constants
and N “is a variable for which a value
must be found that satisfies the con-
clusion.

DETAIL

{Open 4, ~ x, € A, > Nb N x

0 0 0 0

(Open AO ~ % € Ao > Nb N xo)

FATLED ..

~ NS A

DETAIL

It now defines "Nb".
©Open A, ~x. € A >Open A ~ACN

0 0 0
. AXOGA)
(Open AO ~ X € AO + Open A)
PROVED .. (A,/A)
GO
(Open AO ~ xo € AO > AO cN) .
(Open AO ~ xo € AO > (t0 € AO > tO e X))
) " .
(A‘to £ AO > tO e N)
PROVED .. (A /N)
GO
(Open AO ~ X € AO > x5 € AO)
PROVED ..
. ©
(Open AO ~XgE AQ > Ao c AO)
_ PROVED .. '

This was proved by REDUCE which knows
that A C A for any A.

G0)
((x € Ao + Nb N(x)x ~ N(x) € AO) > Open AO)
FATLED ..)

This 1s the second half of (1). MNote

that the skolemization is different from
that in (1 1).

DETAIL

The machine (at Step 5 of IMPLY), "de-
fines'" open., Note that in this case a
useful characterization is given in
place of a bonafide definition.

((x < Ao

(}'c: TAA = gF)
~ (Opeu B o~ Open D ~A

> Nb N{x)x ~ N{x) € A) >

0= BN DY)

2 1)

1 1)

Ed

21 1)

21 2)

21 21)

Ed

Ed

1 211)

Ed

¢)')FEI_TAAO-UF)
FATLED ..

DETAIL

(Y>FCT)

FATLED ..

At this point the human user realizes

that he must help the machine by giving
a value for F.

PUT F = T N subsets A

0
144)+(TﬂsubsetsA)§T
o - Y> B, e (TN subsets A
> Open B 9)
«)y~ (")
+ Open B _))
0

«) ~ (Open By ~ By S AO)

‘ + Open Bo))
((x € AO > Wb Nx)x ~ N{x) € AO)
> (TN subsets AO) <
PROVED ..
GO
{((x ¢ AO > Wb N(x)x »~ N(x) € AO) > AO
= g N subsets Ao))
FATLED .. 2
DETAIL
(() > IAO <.0(T N subsets AO)
~o()<C AO]) .
« j) + Ay S o{T-N subsats A0
« R IR R AR
« B Bl AU
+‘t0 € o(T N subsets A))
t. € A is forward chained into the

eQisting hypothesxs to yield
b N(r)) W(t Y < AO) which is added
to the Rypothesis

«) ~Nb RN

~ to € Ao +> to

where {3 written for the skolem
expressign N(t).

0% ~YoS4

€ o(71 N subsets AO))

((:) A" A" > Open A
A .
AA__AO tOEA
7
«)y ~NbH_t ~N_ <A

00 0-"0

.~ t, € A, > Open A)

0 0

It now "peeks" into the definition of
mip", finds "open' there, and hence uses
the definition of Nb.
() ~ (Open A1 ~ Al < NO
- -
~tge Al) No S Ay
~t,e A > Cpen A)

h

T (121 212)

Ed

h

EXAMPLE 2.

PROVED .. (AllA)
Ree)
’ " PRI
o . \)A Alguo NOSAO
> A S Ag)

This subgoal easily follows by the trans-
itivity of "C'. Such a rule could be
build in as in [14], or we could use a
locked axiom as in Chapter 7 of [15].
Another possibility is to "forward chain”
(Al < No) into (NO < AO) to get (Al < AO).
Same such device will probably be used in
future programs, but here we employed the
command “USE', and the program easily
completed the proof.

USE (ACB ABCSC>ACC)

(Theorem 28(b > ¢), p. 156 of [13]). If

X is a2 regular topological space and each open cover
of X has a locally finite refinement, then each open

cover of X

. h
m (1)

n

.

Bd
“h

m

aun

Ed .

Fd

a1 1).

Ed

has a closed locally finite refinement.
DIALOGUE
" (Reg ~ Oclfr » Occlfr)
(Reg ~ Oclfr & Occlfr)
(FAILED TIMELIMIT ..

The computer has tried and failed to
prove (1) in its prescribed timelimit.

DETAIL ot R /
(Reg ~ Oclfr » (0c FO > cc G ~ Ref GFO
A LE G)) ' o
(Reg ~ Oclfr ~ Oc FO > cc G ~ Ref GFO
~ Lf G)

(Reg ~ Oclff ~ Oc F0A+ cec G)

| FATLED TDMELIMIT ..

The computer has defined Occlfr, moved

the expression Oc¢ ¥, to the hypothesis,
and split the conclusion, giving (1

“as the first subgoal of (1) on whlch *t
falled.

Here F is a2 skolem constant and G

is a vagiable which is to be chosen to
gatisfy the theorem. The most important
and hardest thing the program has to do
is to find an acceptable G.)

DETATL

(Reg ~ Oclfr - Oc"I-'O > Cover G . C <
"Closed) ‘

" (Reg ~ Oclfr ~ Oc F_ > Cover G)

FATLED- ..

0

AL thYs pofnt the human operator realizes
that he must help by giving a value for
G. YHe does this i{n three steps below,
by first asking that the expression
Oclfr be defined, and then giving values
for the variables F' and G.

111

(l

Q1

a1l

1

(1

Ed

Ed

Ed

")

1)

Ed

1)

P)

Ed

Ed

“ v
o ~ Ref GF

+ Cover G)

(Reg ~ [Oc F' &> Cover G

Lf G0] AtOC Fo

PUT F' = {B':
Clsr B' < B))

Open B' ~ B (B ¢ Fy~

In this writeup we have denoted by G
the skolem expression G(F'). The
machine retains its complete skolem
expressions but prints only (G) on the
scope for ease of reading.

0

Since the new entry [+] in the hypothesis
i8 an implication, and since F' has been
given a value, the machine first tries
proving OcF' before proceeding. This is
done in (111 H) below. If it succeeds

it will then retain the hypothesis

{Cover G, ~ Ref GOF' ~Lf G

0 o

instead of [>].
TRY PROVING HYPOTHESIS
(Reg ~ Oc FO + 0c F')

We are writing F' here but the machine
retains the value of F' given above.

(Reg ~.0c FO > 0c F')
FATLED TIMELIMIT ..

CRT 4 .

The operator has increased the timelimit
by a factor of 4 (for this goal only)
and this causes success. More details
of this part of the proof will be given
below. ‘

(Reg ~ Oc FO + 0c F")

ESTABLISHED HYPOTHESIS -

0" Ref GyF' ~ Lf GO]

¥+ Cover G)

~

(Reg ~ {Cover G

- OCFO

It is now ready to continue with the proof

of (1 1 1). The human makes his final
input. Bar G, 1s the set of closures

of members of GO.

PUT G = Bar G0

(Reg ~ Cover GO ~ Ref GOF ~ LE GD A’Oc FO
> Cover (Bar GO))

TRY PAIRS (cover)

(Reg ~ Ref GOF ~ Lf GO - Oc‘FD

» Ref Go(Bar GO))

When PAIRS {s presented with (COVER G, =+
Cover G,) it suggests trying Ref § Gz%
Ref GIGZ means that G is a refinément
of G {.e., each membér of Gl is a

»
subse% of a member of Gz.

(111 P) {is proved by REDUCE which has m
its table that Ref ¥(Bar F) for any F.

83

(111

112)

Ed

Ed

a1

a 25

. Ed

a3
.Ed

(L3p)

Ed

13y

¢S
£a

Ed

auw

(Reg ~ Cover G, ~ Ref G F' ~Lf G

o 0 o] 0
» Cover (Bar GO))
PROVED ..
m .
-~ ~ 1 -~ ~
(Reg ~ Cover GO Ref GOF LEf G0 Oc FO

> (Bar Go) < Closed)

PROVED ..

Note that the new value (Bar G.) is
given for G, and also the thred new hy -

potheses obtained for the proof of
(1 1 1) are retained in (1 1 2).

Again REDUCE proves (1 1 2) since it
knows that Bar F © Closed for any F.

0
(Reg ~ Cover 'Go“ Ref GF' ~Lf G. ~ Oc F

0 0 0
> cc(Bar GO))
PROVED ..

GO

(Reg ~ Cover G ~ Ref G.F' «~ Lf G

0 0
+ Ref ('Bar‘ GO)FO)

OAOCFO

TRY PAIRS (Ref)

The machine uses PAIRS as before to easily
complete the proof of (1 2).

(Reg ~ Cover Gy ~ Ref GF' ~ Lf Gy ~ Oc F
* LE@ar Gy))

0

This is the last subgoal of (). LfF
means the family F is locally finite

TRY PATRS (Lf)

(‘ " +> (Bar G, = Bar GO’))

When PAIRS tries (Lf F > Lf G) it suggests
trying to prove that (G = Bar F) because
it knows that (Lf F > Lf Bar Fy. 1I1f

such an entry had not been on the PAIRS
table then the user might have inter-
vened with the command (USE LEF >
Lf(Bar F)) which.would have produced the
game result. The PAIRS table is a con-

venient way to store such Lemmas.
(Reg ~ ™ » Lf(Bar GO))

PROVED ..

[ea]

(Reg ~ Oclfr > Qcclfr)
PROVED ..

Q.E.D.

We now list some (but not all) detailsg of

the proof of (111 H). Recall the value
of F'.

(Reg ~ Oc F.

1]
o’*OCF)

© (111 HL) (Reg ~ Oc FO ¥ Cover F')
(Reg ~ Oc FO > X CoF')

of' = L) A
AcT!

r~(3<:f‘07'3> (xcex—)-x
~ 0c¢ F

Ed Recall that

(Reg
(Reg

When
over

€ gF'))
€ gF')

) 0
)

o " XO € X > xO

the expression x. € X 1is switched
to the hypothesis, forward chaining

Ed

is performed by the machine (see Section 3).

It PEEKS into the definition

of Q¢ F
and finds

0!

i

Ed Oc Fy = Cover F, ~ Fo S T
xchOAFog T

(x€X > B(x) € F, ~ x g B(x))
~ D e FO > Opeg D)

0

1]

m

(%)

Ed It therefore substitutes x_ for x and

obtains the additional hypgthesis
(B(xo) € FO ~ xo e»B(xO)). Thus (*) be-

comes (Reg ~ Oc F
€ B

0" xo e X A B1 € FO

~ X » Xy € oF'")

-~ 0 1)
Where Bl is the skolem expression B(xo).

The addition of B, ¢ F_ to the hypothesis
causes further forward chaining into

(D e F > open D) of (¥%) to yield open
B., whgch in turn, with x_ e B,, is
f%ruard chained into 0 =

Ed

Reg = (x € A ~ open A>x € B(x,4)
~ Open B(x,A) ~ Clsr B(x,4) < A)

to yleld three more hypotheses. Thus
. writing Bz for B(XD’BI)’ (111 H1) becomes
(111 1) (Reg . Oc F

~ Open B

o " XO € X . B1

1" xo € B2 ~ Open B

€ gF'")

€ FO ~ xo € Bl

~ Clsr B < B

2 2~ "1

>

Ed Which is now easily prcved by the program

The following example is given to show the use of
‘s ADD-DEF, ADD-REDUCE, REDUCE, and the PEEX feature
REDUCE. Many (most) steps of the dialogue are omitted
the writeup.

MPLE 3. (Th. 15, P. 49 of [8]). Suppose the topo-
¥y T has a countable base. Then each open cover
24 get has a countable subcover.

(cbl F ~ Bagse F) ~ACX ~G CTa~ACdC
+3B (HCSG . cbl H ~ A C gH)
- ~ <8 SN < TA
(cbl Fo Basge Fo Ao <X G0 < T
A < oG
o= o
*HCG ~c¢bl H ~A <gH)
=Y o =
DETATL
P
(cbl Fo - HC Go)
DETAIL . o
HC G
- o
FAILED

1)

h (?t.FrFl,n[A’eFozﬁB'eGD A' ©B'))
h) (PUTfﬂO\AeFl choice{BeGoiAEB})
h (PUT H = Range f)
(11 {* -« « > Range f < Go)
FATLED
At this point the user realizes that the
computer does not have the definition of
Range.
h (ADD-DEF (Range g) (y: J x ¢ domain g
¥y = 8(x)})
m Coer ys s) ea)
G+ » 5
(Boe {y: - - -)->B°e Go))
Reduce

(* <« AA e domain f ~ B =
1 0
+>B € G).
o o

f(Al)

Here the machine knows nothing about A expressions

so it can reduce neither domain f nor f(Al)' So the
user gives the following information.
(ADD-REDUCE ((Ax € A B) x) B),

A-conversion
(ADD-REDUCE . (domain (xe A B)) A).

Row the machine in trying to reduce (domain £)
"peeks" at the definition of £, finds it to be a
A-expression, and reduces (domain f) to F..

In converting £(A,) it again "peeks”lat the
definition of f to rediice f(Al) to (Choice (3B ¢ GQ:

Ay <B]). ‘ :
m

[GERERN Al e‘Fl -~ Bo A ,

= Choice (B ¢ G: 4, < B} > B e Go)

Sub =

+-Choice»{8 € Go: Al c B}»e Go) etec.

etc.
m F%JIED)

- (ADD-REDUCE (choice A € B) (A= B))
m G LN Al € Fl ~on

+ {B ¢ co': Al_r_:_ B} ¢ co)
- (- em > (B,e 6 ~A c3,

> 32 € Go))
m PROVED
h GO .
'(1 2) (* « +«» bl Rénge £~ AQ_C_ ¢ Range ‘f) k
h LETATL . ’ ~
12 (- * + > cbl Range £)
m FATLED
h . (USE Y £' (function f' . cbl domain £'

¥ cbl Range f')

Chain

(cbl Range £' > cbl Range f£) f/f'
>(121 H) (; * * 3 function £ ~ ¢bl domain £f)
{121 H1) (¢ e « > fﬁnction £)
(- « - > function N e Fy
choice {B € Go: AcC3B))
(USE (functi@n Ax e A P))
mo (+ » » » function MA ¢ Fl.
choice [B ¢ Go: ACB))
m PROVED
(121 H2) (+ + » > cbl domain f)
{+ + » & cbl domain QA\A e Fl choice { }))i
(cbl Fo A . .‘. > cbl Fl)
'h (ADD-PAIRS (cbl F) (ebl G) (G & F))
(121 H2P) (« = - +_£1 S'FO)
Ed This 1s easily proved and finishes thé
proof of (1 2 1).
(122) (cbl Fo ~ Base Fo A e > Ao C ¢ Range f)

PROVED..

QED

S. _Remarks.

Many of the abilities which are built into this
man~machine facility have been developed only after a
period of trial and error. In fact the reason for
many of these is to provide for more ease in checking
out and changing the program. We expect the program
to continue to change as it is tried on more and
more examples, hopefully evolving into a system which
will be useful to the researcher in topology. So far
this is not the case, we have handled only well known
theorems. Our next step involves work on the system
by some practicing topologist. This should help
determine whether such a system might have any practical
value In the near future. R

An Interesting point is this. Even though the
mathematician is able to intervene at any point in the
proof, he is nevertheless very amnoyed when he has to
do 85 in a trivial way. When, for example, he PUTS
the values for F' and G in Example 2, he feels he
has done encugh and rightfully expects the computer
to do the rest. Thus even in a man-machine system,
theorems that the machine alone is required to prove
are far from trivial. In fact experience so far shows
that they are on a par with the hardest theorems being
proved today by automatic theorem provers.

Therefore, it is felt that any improvement in.
machine~alone programs is truly worthwhile to the
‘man-machine effort.

the

- Acknowledgment.
Various people both at U.T. and elsewhere have

greatly influenced our thinking about automatic theorem
proving and interactive systems. We want to especially
thank BL{ll Henneman, Robert Anderson, Dave Luckham,
‘Vesko Marinov, Bill Bennett, Mike Ballentyne, and

-~ Howard Ludwig. .

€5

This work was supported in part by NSF Graunt

GJ=-32269 and NIH Grant 5801 &1 157-69-0S.

References

1.

9.

10.

11.

12.

13.

14,

15.

16.

17.

W. W. Bledsoe, R. S. Boyer, and W. H. Henneman,
Computer Proofs of Limit Theorems,
Artificial Intelligence 3 (1972), 27-60.

Bledsoe, Splitting and Reduction Heuristics
in Automatic Theorem Proving, Artificial
Intelligence 2 (1971), S55-77.

Guard, F. C. Oglesby, J. H. Bennett, and
L. G. Settle, Semi-automated Mathematics,
JAQL 16 (1969), 49-62.

John Allen and David Luckham, An Interactive

Theorem~Proving Program, Machine Intelligence
5 (1570), 321-336.

G. P, Huet, Experiments with an Interactive Prover
for Logic with Equality, Report 1106,
Jemings Computing Center, Case Western
Reserve University.

John McCarthy, Computer Programs for Checking
Mathematical Proofs, Proc. dmer. Math. Scc.
on Recursive function Theorv, held in
Ney York, April, 1961.

Paul W. Abrahams, Machine Verification of Mathe-
matical Proof, Doctoral Dissertation in
Mathematics, MIT, May, 1963.

W. W. Bledsoe and E.J . Gilbert, Automatic Theorem
Proof-Checking in Set Theory: A Preliminary
Report, Sandia Corp. Report SC-RR-67-525,
July, 1967.

Arthur J. Nevims, A Human Oriented Logic for
Avtomatic Theorem Proving, MIT Al Memo No.
268, October, 1972.° :

Raymond Reiter, The Use of Models in Automatic
Theorem Proving, Dept. of Computer Science,
University of British Columbia, September,
1972.)

TAURUS, described in Users Manual, Computation
Center, University of Texas, Austin.

‘Peter Bruell, A Description of the Functions of

The Man-Machine Topology Theorem Prover,
(under preparvation).

John L. KRelley, General Topology, van Nostrand,
1955. -

James R, Slagle, Automatic Theorem Proving with

Built-in Theories Including Equality, Partial

Ordering, and Sets, JACM 19 (1972),
120-135.

Robert Boyer, Locking: A Restriction on Resolution,
Ph.D. Dissertation, Mathematics Dept.,
University of Texas, Austin, L1971.

Dallas §. Lankford, Equality Atom Term Locking,A
Ph.D. Disgertation, Mathematics Dept.,
University of Texas, Austin, 1972,

George Ernst, -The Utility of independent subgoals
in Theorem Proving, Information and Control,
vol. 18, 3, 1971.

