(CHOOSE a b A)

IF RETURN
a=> T
Neither a w=nor b occurs in A T
a and b are numbers T
a is a number a/b
b is a number b/a
a occurs in b a/b
b occurs in a b/a
(ATOM a) a/b
(ATOM b) b/a
ELSE a/b

(SUB=LE EQ)

EQ is a list of equality units, {(a b).

DB, H, and C are from DMPLY

ALGORITHM:

For each element (& b) of EQ

1. Put ©:=(CHOOSE a b (DB A HA C))

2. Put DB:=DBO, H:=HO, C:=C0
Repeat steps 1-2 for all elements of EQ

If two elements (‘int' x a b) and ('int' x a' b') have the same second

member x, after the above substitutions, then they are combined into one

("int’ x (max a 2') (min b B")).
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(NOTL A)
A= (BAC) ((NOTL B) V (NOTL C))
A= BV ((NOTL B) A (NOTL C))
A= ~B B
A= (B8 >0 (B A (NOTL C))
A= (< ab) (<D a)
A= (< ab) (<ba)
ELSE (~A)

NOTL pushes the ~ to the inside as far as it will go, so that only
atomic formulas contain '~', 1In the case of pure inequalities, if A has

7 ¥

no ~ ', then (NOTL A) has none. For example if A is

(B/\D~>(E->(a<b)))

then (NOTL A) is

BADAEADBC< a)

(GROUND A)

Variables, to be instantiated by the prover, are represented as atoms.
Thus in any expression, an atom, which is not a number and which does not
occupy the initial position of a list, is considered to be a variable. Thus x

and y are variables in (+ xy) and (- %), but not in (x a).

An expression A 1is said to be "Ground" if it has no such variables.
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3. Examples
In the following examples we will depict a call to
(IMPLY DB H C TL LT PV)
as follows: where DB = (A-UNIT RL TY),
(TL) (ITY]1 A H=0C) {rRu} .

Thus: the theorem label TL is at the left; the TYPELIST TY, being part of
the hypothesis is shown with H in implying C; the restrictionm list RL 1isg
shown at the right. A-UNIT will be omitted here. PV is explained below.

In the descriptions of proofs of the examples we will often leave out some of
the steps when clarity is not impaired, anéaofien, the components TL, T¥, H, C,
and RL, will not all be written at each step.
| The theorem label TL starts as an empty list () end grows, as the depth

of the proofs increases. It consists of a sequence of symbols representing the

actions that have been taken. Some of the symbols used in TL are

i first branch of an And-Split, Rule 4 of IMPLY
2 second branch of an And-Split, Rule 4 of IMPLY
P> Promote; Rule 6 of IMPLY

PZ» Reverse Promote; Rule 6.1 of TMPLY

L L is the leﬁma name of a hypothesis used

to obtain the current subgoal from the last
8= Equal substitution Rule 5
0 Or-split, Rule &

CHECK Check that a proposed binding is consistent with RL
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Even though the prover obtains a substitution

8 = (tiix t./x

1 Spf%y et X))

from a call to IMPLY, in actuality it returns only the part of @ which will

affect a later part of the proof. TFor example, in proving a theorem of the form
(H> A A B),

if ©=(a/x b/y) is obtained for the proof of the subgoal (H +» A), and if x

does not occur in B and y does, then the prover will returnm only
8= (b/y)

for the subgoal (H > A). This prevents the proliferation ofksubstitution units
which will have no further use in the proof. (See the Examples below, especially
Example 7.) This feature is implemented by the use of the parameter, PV, which
is a list of variables ('protected variables"). If a substitutionm unit (t/x)
from IMPLY has nothing in common with PV (and no conmnectiom to it) then (t/x)
is dropped from the answer. PV starts as NIL and has variables added to it by
AND=C (see p. 9, footmote *). (In AND-C, when proving the first half of a con-
jumction (A A B), the variables common to both A and B are added to PV.)

This PV feature was not present in our earlier provers [4,3,1].

In the following examples all symbols a,b,c,f,8,4, etc., that are not
quantified by V¥ or :3 will be treated as comstants ("skolem" constants).

These examples were proved automatically.
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Ex. 1. (a<b> Fx (x < b))

H C

(NIL=> {a < b > x < b))

This shows the theorem as it is first called by IMPLY. It has been
skolemized and sits wholly in €. TY and RL (being WIL) are omitted.

The theorem label TL is at this point the empty list (.
Rule 6 ("Promote) of IMPLY 1is now applied to obtain

TY C

(Ta<b]l=x<b)

Notice that the ground formula a < b, when promoted, was inserted

into the TYPELIST TY. The hypothesis H, being NIL is not shown.

Rule 7 of IMPLY is now triggered which calls {PROVE-LE x b <.

-

PROVE-LE first calls LESS=, but that fails, and then (RESTRICTION-LE % b <« 3

which "solves" the theorem by placing
("int' x (<-») (< b))
in the data base; and
(T (IL (("int' x (<-=) (< b))) NIL))
is gotten as the answer to complete the proof. Q.E.D.

We will now rewrite the abowve description of Ex. 1 in a more abbreviated

form.
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Ex. 1. (a < b+ f?x (x < b))

‘{iag?n}:éxg_b)

Use RLE (RESTRICTION-LE) {x: -=<x<b)
.EJD.

Notice that we have written {x: -w < x < b} in place

("int' x (<-®) ( < b)) .
In the sequel we will use the following abbreviations:

PLE for PROVE-LE

RLE  for  RESTRICTION-LE

GLE  for PROVE-LE-GROUND-CASE
MTY  for MATCH-IN-TYPELIST

MLE for MATCH-LE

In Ex. 1, we did not use the hypothesis a < b in the proof because RLE
solved x < b without any help. Also we note that we never actually bound x
to any particular value (such as a), but only restricted it to an interval of
values; any value in that interval would satisfy the theorem.

If in Ex. 1, we had not used RLE then PROVE-LE would have next tried the
ground prover GLE but that does not apply since x < b 1is not ground, and then
tried MTY which succeeds with the substitution a/x. In this last case we

would have written

(la < b] »x < b)

Use MTY: a<b: a/x. Q.E.D.

=



()

Ex. 2. (EQ@) <OANOLEBG)AD<L>b < 2)

Proof.
(£ <OAOSEB)ADBLCL>b< 2)
({f(z)<0/\0§_f(’n)Abgz}:—>b<z)

PROVE-LE is called, which calls LESS= and RLE, which fail.

PROVE-LE then calls the Ground prover GLE which succeeds

as follows:

The ~(b < £) = (£ <b) is inserted into TY which becomes
[E(Z) <ONO<E(BYADL L AL < b]

CONTRADICTION is called but it finds no contradiction in TY:
however, it does find and return the equality unit (b=4),

which is then applied to TY to obtain
[£(2) < 0 A 0 < £(8)]

which has a contradiction. @Q.E.D.

In our description of Ex.'s 3,4, ... below, we will omit much of this
explanation, giving mainly the resulting formulas and an indication of the
agent causing the changes. In particular, we will usually not mention a

routine that has been called by failed (such as LESS= and RLE in the

above) .

30.
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Ex. 3 () < 0OANC<<E®IAN LE<cA Db
gysz(ng/\ f(2) < 0> z2<yIAN y< LD
() (e <OAN O < E(®BIA 2 < cA b < L]

= Ly <bA EZy)<0>Zy<y)Ay <L)

Note: vy 1s a variable, Zy 1is a skolem function of y, and the other

letters represent constants.

P+ 1) ({f) < OAN O EM®IAN L < e b< 4]

= (Zy <bA £(2y) < 0> 2y < y))

(P 1 B¥) ({EE) < OAN O EBIA L<cADbBS<LIAZY<DBA fiZyy < 0

= Zy < v¥y)

LESS=, RLE, GLE, and MTY {fail.

MLE: Zy < b: bfy

Note: the substitution b/y has succeeded on subgoal (P+ 1), and then

prover will now proceed to subgoal (P+ 2) with y replaced by b.

(B> 2} (IfU) < O0OAN O CEMINL<ecADBLL]=Db< 8

GLE dimgerts ~(b < £} into TV which becomes

[f(8) <OAOCI®) A L<cAD<LALLD]

CONTRADICTION discovers the equality (b=4) in TY, getting
[£E8) <OANO < EU) N L < c]

which holds a contradiction. Q.E.D.

ot



(P> 1 2)

@+ 2)

(P» 2 CHECK)

Ex. 4. (a<2<b) > Fx B<x<5Aa<x)

(@< 2ZA2<br (0<CxA XS Aa<x)
fa<2A2<B]=(0<xAX<S5) A ac<x)
{ I= (0 <xnx<5))

({ I=>0<x)

PROVE-LE is called which calls ©L1LESS= which fails.

PROVE-LE then calls RLE which succeeds

with {x: 0 < x <}

( 1= %< 5)

RLE {x: 0<x<5}
(la<2A2<bl=a<x)

RLE {x! (max 0 8) < x < 5}
Here RLE has intersected the interval {x: a < x < o} with

{x: 0< x< 5} to obtain the desired result. However,

before it can return this answer it must verify that it

is not empty' i.e., that a < 5.

(la<ZA2<b]l=a<s)

PROVE-LE calls GLE, which inserts ~(a <5)= (5< a) into TY
to get

[5<a<2A2Z<b]

which has a contradiction (by routine CONTRADICTION). CE.D.
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The following lemmas will be used in Examples 5,6,7,...

= -

LUB: ((Zuve(t<bA£(E) CO>t<u) A Fr(r < b A £(x) < 0)]

T2V xx<bAEX) <0+ x< L) 5

%
AN VY y(VY z(z<b A f(2) < 0>z<y)+»2<D).

In its skolemized form this becomes

LUB: (B A NE + LUBL A LUB2)
where,
B: (t, <BAE(E) <O>t < u) BOUNDED
NE: (r <b A £(x) <0 NOT EMPTY
LUBL: (ng_bx\f(xL)g_O-}»xL{._;Z)
LUBZ: {<zyi-<-b/\ f(zyL) ~_<_G->zyL_<_yL) > 4 < yL)

Note that zy? is a skolem function of the variable yL
L .

o
-
Pt

Vr(@<x<bAO<ER > He(t<xAvs(t<s <x>0< £(s))))

Skolemized: (a<xl <bAO<£(x1l) > (x:}{§ < %l A (txi <8sAs<xl>0< £(2))))
L2: Vx(a<x<bAEX 0> Ftx<tAVsx<s<t> £(e) < 0)))
Skolemized: (@< 22 <bA£(x2) <0+ (x2 < Eoo N (%2 < 82 A 82 < to ¥ .

£(s2) < 0))).

*
LUB is the result of substituting the set {z: = < b A £(z) € 0] for the set

variable A, in the least upper bound axioms Any set A which is bounded
above and non~empty has a least upper bound.
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A O < £(b)

o

“~

{(LUBL A LUB2Z A £(&)

5.
—p (¥ s(0 < £(s) AN < s> < s) > <))

£, b and t are constants,

({£(8) < 0N 0< £(b)] A LUBL A LUB2

where
(O<EGE)A L <s >t <) »tE< i)

e
(Rule 3 of IMPLY)

Ysromotes'

({£(8) <O AN 0K £(b)] AN LUBL A LUB2

1t now
O<CEE)NL<s >t <)==t < 4)

(P> P>)
AN
This eventually fails, so it "reverse promotes" (Rule 6.1 of PLY)

([£(2) < G A O< £(b)] A LUBL A LUBZ
2<t=(0< ()N L<8)AN s <t)

(P» P2
A
([E#) < OANOLEM®Y AL < t] ALUBL A LUB2

AN L < 8}

=3 (O<E() AN L <) A s <)
I A LUBL A LUBZ=> 0 < £(s

R

BN
P

g
5
v
v
o)
—r’

([£(2) < OA O < £(b) A £ < t] ALUBL A LUBZ = 0 < £(3))

(P>
0 < £(b): b/s

MTY .
This eventually fails. (See note at the end of the proof.)
0 < £(xL): s/xL. (See MATCH-LE 4.1.)

MLE uses LUBL:
] ALUBL A LUBZ = 5 <bA L <s)

(P> P2» 1 1 LUBL) (]

Lo
R
A
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(A1) (l [AN > s < b)

RLE {s: ~» < 8 < b)
2y (I TA " = < s)

RLE

{s: £ <8 <b)}

The goal (£ < s) has the solution {s: 4 < s < ®}, and this is intersected
with the existing restriction on s, namely {g: -« < g < b} to ob-
tain the desired {s: £ < s < b}. However, this is valid only if this

latter interval is not empty, so it must check (4 < b).

(A 2 CHECK) {1 VA = £ <b)
MLE wuses LUB2: £ < yL: b/yL. (See MATCH-LE, Rule 8.)
(A 2 CHECK LUB2) (] FAT = (g, <bAE(E) 0>z <b)ALFD)
(A 2 CHECK LUBZ 1) (| E/\”z;-(zbgbf\f(zb)gﬁ-*zbg_b))
(A 2 CHECK LUB2 1?->><§f(£><@/\0§_f{b}/\ﬁ<t/\zbg_b/\ f(zb){;i)}zézbsb)

Proved by GL.E.

(A 2 CHECK LUBZ 2) ([£(£) < OA O £(b) A £ < t] A LUBL A LUB2Z = 2#b)

Use DMPLY Rule 8

(M ZCHECKLUB225S=) ({f{(4) < OA O (L) A £ < t] ALUBL A LUBZ = £ < b)
GLE returns TRUE (contradiction in TY)
So goal (A 2 CHECK) is proved, with the substitution b/yL, and

hence the interval {s: £ < s < b} is valid for goal (A 2),
and for (A)=(P» P2» 1 1 LUBL).

(R4
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Note that IMPLY has obtained the bindings
((s/xL,b/yL) WiL{s: 2 <8< Db, s <t]NIL)) in proving the subgoal
(M) = (P> P2» 1 1). However, it returns only (T (NIL{s: £<s<b, s< tINILY ),
dropping the bindings s/xL and b/yL because the varisbles W and yL do
not occur in the remaining subgoals to be proved. See explanation at the begin-

ning of this section, page /.

(P»P2»1 2) ({ I'n " = 2<s)

RLE vreturns TRUE, because s already has the restriction {s: 1< s < b}
which implies the desired goal £ < s. Or, said another way, the inter-

section of {s: £ < s <b) and {s: 4 <8 <w}] is again {s:,@<sg_b}.

(PrP2% 2) {{ IA " =5 s<t)
RLE returns {s: £ < s S bAs<t}. But it must check that £ < t.
(P> P2+ 2 CHECK) {([£(4y < OAN D < () AL < t] ALUBL A LUB2 = 2 < )
GLE iﬁsertsv ~(£ < t) into TY and detects & contradiction. Q.E.D.
] NOTE: 1In the above proof of Ex. 5, at Step (P> P23)
(B> P2+)

({f(z)<s/\o§fib)/\z<t}ALUM/\LU32=><OS§(5)A3<_:3)/\s<z>

it was necessary to use "backtracking”. (See algorithm AND-C, and the
explanation thereafter.)

This was accomplished by AND-C as follows:

AND-C called the first subgoal
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which returned the substitution ©=(b/s), and this was applied

A2

to the second subgosl

PrEIy 2 {

]

] ANLUBL A LUB 2= (5 < ty &)

{1 T ALUBLALUB 2= (b < £y

which failed.

At this point AND-C again called the second subgoal but without applying
ZELAPEL

the substitution 6.

o
vy
fo—

ANLUBL A LUBZ = 5 « £
This succeeded using RLE with A={s: -» < g < t}.

€ and A are not compatible and CONFLICT is called, which returns the
unit b/s. Then the proof of (P> P2%) is restarted, with the set,
EXCLUDE, now containing the unit b/s, which prevented = froembeing
bound to b in the sequel, and the srocf continued succesafully as

shown above.



Ex. 6. (@a<bAf(a) <O0ANO0LE(D) ALUBALLALZ > 0 < £(2))

where a, b, £, and £ are constants.

(P (la<bAf(a)<0AO0<ED)] ALUBALLAL2ZS 0 £(8))

- ; H
GLE tries and fails but the TYPELIST TY is changed,

({a<bAf(@<OANOLSED)AEU) <0 AHE= 0 < £(8))

MLE tries LUBLl: £fails.

MLE uses LZ: 0 < £(x2): 24/x2

(B> Ly) ( I1AH =
(a< 8L <DbA (tzgzv (z§s2A32<t£AG_<_f(s2)}})

{%LZE) (I I ANH=>a< LA L<Db)
(P> L, 1 1) a I AHE=a< 8)

Tries GLE; fails.

({a<bAE@ CONOLEB) AEU) <O0AL<a]l AH=>a < §)

MLE wuses LUBL: xL < £: a/xL
(P>1,11LUB1) (I TAH= (a<bA £(a) <0 A (BANE))
- v

A

D ( IANHE=a<bA f(a) <0)
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A 22 2 CHECK)

{In the sequel when the concl

just state "'True by GLE

[

usion C appears explicitly in TV

fobe

wWe w

2 a.

", without saying how it is domne.)

(fa<bAfla)y <OA ...] ANHE=> £{a) < 0)
True by GLE.
(l 1A E=B A NE)
{I E/\?2@{%533%/\f(ig}gé%ééga@}}
L.
B
(1 E/\H/\:‘<‘sz\f{t9)<§=>tg<m}
u - u’ = FERR
MLE wuses é:ég_%: b/u
(1 I A H= NE)
¢ INHE=1 <bA £(x) < 0)
{ I ANH=1 <b)
RLE {r: ~» < r < b}
(la<dAZE)SOADCED A L..] AHE= £(x) < 0)
MTY: f{a) € 0: a/r
But it must check that a < b since r is restricted by {r: ~» < r

(flagbA ...] AHE=a<b)
Proved previously (im (A 11)). Rule 1 of IMPLY. Thus subgoals
Ay = (P> 12 1 1 LUBL) and (P> L, 1 1} are proved.

(S
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{:@»-;»Lg 123 {{ I NHEH=2<Db)
MLE wuses LUB2: £ < yL: b/yL

"(P+L, 1 2LUB2) (l TAHE= (7, <bA(g) <0z <b)A BANE))

Z

(prL,121UB21) (] PAH= (2 <D AE(2) 0> 2 <B))

(?«}»LZLZLUM 19y ({... A zb

<PAE(z) <0l AHES 2z <b)
TRUE by GLE.

{?~&L2 1 2LUBZ 2) (i ] AN H=B A NE)

Proved previously (A 2).

Thus (P> L, 1 2) and (@> L, 1) are proved.

(P—>~L2 2) (la<bA£@ <OANOLSEM)AEU)<OIAH
:>tg§_£\/(2352/\32<t5/\0§_f{52}}
Rule 5 of IMPLY.

{?->»122 0y {{ TAHE= U< tg > {8 < sZ A L))
LZZOP—aﬂ {agb/\f(a)gﬁ/\{)g_f{’o}/\f(ﬁ}<6/\2<tz]AH
) ?\E @(zgsz/\sz<t2)/\65f(92))

Gy B (l 3AH2>(2582/\52<?:2))

(hy 1 1) (1 T AHE= L < s2)

RLE {s2: £ < 82 < =)



Ay B2 ¢
RLE

{}\EEZCHECK}% ({la<bA...A L
True by GLE.

(A,

ot
B3
S
£y
s

(\; 2LUBL) (1

(A, 2LUBL 1) (1

(\, 2LUB111) (0
RLE
But it

(\, 2LUB1 11

LUBZ: &

?\1 2LUB 11 CHECRLUBZ 1)

(1

True.

A

Promote and use

>

A

[

T AHE= (2, <1
b =

GLE.

He»s2 < £}
&
{s2: £ <
H= 4 < é:g}
H= 0 < £(a2)
82 /%L
H= (82 < b A £ < s82) A (B A NE))

H= (82 < b A £ < 82))

H= 82 < b)

i,
@
Bd
Y

AH= 4 <b)

H= (z. <1
@m

A

A
o

[
i
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f?\} 2LUB1 11 CHECKLUBZ 2}

( ] AH >B A NE)

§ Proved previously (O 2).
Thus ()\1 2LUB1L 11 CHECKLUBZ) and 0\1 2ZLUBL11) are proved and

(T (NIL{s2: 2 s2 z-tb} NIL)) 1is returned.

/)
(A, 2LUBL 1 2) (i 1 AH= 2 < s2)
<b
RLE {s2: 5 < 82 }
<t
Must check £ < b.
(A 21LUB1 1 2 CHECK)
( ] AH= £ <b)
MLE uses LUB2: £ < yL: b/yL
(A, 2LUB11 2 CHECK LUB2)
V 3
A ( ANH (2, <DAE(Z) 0>z <B)A L#D) A (BA NE))
D (1 3/\H:>(Z-bg'b/\f(zb)g(}-*zbgb))/\ﬁ#b)
§ . -
1D (l IAHE=S (2 <D AE(z) <0+ z D))
Proved previously O\l 2LUB111CHECKLUBZ 1).
o\‘ilz) (la<bdA £@) SONOSE@® AEU) <OAL<E]AHSLSD)
’ Use Rule 8 of IMPLY, replacing £ by b.
(A 125=) (la<bA f(a) SOAOLE£(®) A () <OAD<E]IAH=L < D)

GLE detects a contradiction in TY.
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A,
i

2

<

I A H=3 A NE)

Proved previously Q\ 2).

Thus (A\]) is proved, and (7\}23%53332} and {7\321%2 1)  are

<1

proved and (T (NIL {82: 4 < s2 z? } WIL)) is returmed.
"8

{1 I AH=3 A NE)

Proved previously (A 2).

Thus {7\té 7 and (P L, 2) are proved, and hence the theorem itself

proved. Q.E.D.

foa
[



Ex. 7.

(a <bAf(a)<OAO<E(b) ALUBALLALZ

— = x(£(x) < OA 0 < £(x))).

LY AN

This is the intermediate value theorem, where LUB is the rvesult of substituting

the set

for the set variable in the least upper bound axiom. L

that follow from the continuity of f.

&)

{(B» 1)

{P» 1%}
(P+1 LE 1)

P>1L, 11}

1

-

-

(P>r1L.12)

1

{z: 2<b A £(2) <0}

1

and L

2 &re two lemmas

(See page 33, just before Example 5.)

(la<bA f(a)gO/\Og_f(b)}/\LUB/\LlALzﬁf(x)SO/\ng(x)}.

SPLIT.

MTY

{ TAHE= £(x) < 0)
uses £(a) < 0: a/x. Fails (eventually).

uses 21: £(x1) < 0: x/x1

{1 INE=a<x<bA x<t V(tx<sAs§fo(s}£O}}
¢ INHE=a<x<b)
{{ IANHEH=a<x)
{x: 2 < x < »}
(1 I AH=x < b)
{%: a< x < b}

]
/
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da<bn ... A H=>a < b)

TRUE by GLE.
(B> 1L, 2) { I NE= x< ¢t VI <sAs<xAE(s)<0)))
(P» 1L, 20) d PAES (£ <x > ( 33
1 5
(P> 1L, 20P%) {a I AHEA <= (t, <8sAs<x) A £(s) <0)
Fail (eventually).
Reverse PROMOTE (Rule 6.1 of IMPLY).
Py E‘LE 20 P2y
( EA§A~{tx<%z\s§x/\f{s)<@}r—>x<tx§}
B ELE 20P2%)
A {1 };‘\E%A(sg_tx\/x<sv%<f(§}}=§z«§gfﬁﬁ§
[
MLE uses LUBZ: £ < yL: 4/x, t /yL
A LUB2) {1 E/\ﬁ%/&&@izi_ <SbAf(z ) <O» 2z <t§};
Before it cam proceed, it must check that this substitution, 4/x,
ig consistent with the current restriction on x
{x: a < x < ¥l
I.e., it must check that a < < b,
h CHECK) (i EAHAaréagéfxég?:z}



(\ CHECK 1)

Trys

MLE

(A CHECK 1 LUB1)

?\?
AL

ATLIL)

A 12)

AL 2 02)

' 22 1)

TRUE

TRUE

(1

GLE; fails.

INHA

@ >a < b))

({.../\Z<a]/\H/\a:‘—>a_<_E)

uses LUBLl: xL < £:

(fla<bAf(ay<OA ..

by GLE.

(la<bAf@<OA ...

by GLE.

(1

¢

(1

uses t;l < b: b/u

a/xL

TAHRA

ITAHA

A

>

INHA

I AHEA

ITAHA

IANHA

1A HA

I AHA

a=>(a<bA £(a) <O A (BANE))

a=a< bA £(a) < 0)

HA a=a<b)

HA a=f(a) < 0)

a= B8 A NE)

e

m@(tggb/\ f(t;}§§+t*<a)

a Nt <bAE(t

:
u

o => NE)

=1t <bA f(r) <0)

a=>r < b)

46,

{r: -o < r< b}



N 222) ((a<bA£@ <O0A...IAHAGS £(r) < 0)

MTY wuses £(a) < 0: a/r

But it must check that =2 < b,
(A" 22 2 CHECK) {a<bA...] AHAa= a<b)

Proved previocusly Q(\'11).

Thus (A') = (\ CHECK 1 LUBL) and (A CHECK 1) are proved.
(A CHECE 23 {1 }!\%E;’\ccr—é,igfb}
Trys GRE; feils.
(.. AD<SI AHA = £ < b)

ML

tzl

uses LUBZ: 4 < yL: b/yL

({ }/\HAQ:‘;@%S?@/\f{%}S_G—}»%gMA(%/\
¢l }/\H/\a:ﬁiz.bg%/\f{bﬁg%»}%g%}}
TRUE (promote and use GLE).
a2 (I I AHEA =B A NE)
Proved previously (A’ 2).
Thus (A CHECK) is proved, and it can now proceed with
A LUB2) {1 IANHEAa=(z, <bAf(z )< O+s < £.3)
£, = L, = t, = %

PROMOTE

(We will now recall the definition of )

NE))



ANLUBZ P») {i... z, < b A f(z‘t ) O A TEA (sgtxvx\' s VG < £(8)) >z&_

A £ A

MLE uses «: 8 < t : f/x, z /s

But it must first check that (a < £ < b).

"A LUB2 P> CHECK) (I

Proved previously (A CHECK).

Now it can proceed with the use of o on

(ANLUBZ2 Pra) {1 3/\H/\cc=>zt
£

INHEAa=a< b AL <)

e
.

O, LUBZ P»)

<EANEz. )< O

(Note: We have backchained on «, getting the subgoal ~(x< sV 0 < £(8))

with the substitution (4/x, z, /8) applied to it.)
z .

(ALUBZ B> 1) ([ }/\H/\ajz—ézt

MLE uses LUBL: =xL < £: 1z, /xL
£

{h LUBRZ P+a 1 LUBL)

.=

(l... =z gb/\f(zt)gG/\ ol AHA@=z2 <bA f(zt)<0}
P [ -

tﬁ )

TRUE (Split, and use GLE).

(ANLUB2 P 2) {({... f(zt)_<_0/\,..}/\H/\ou:;»f{zt)g_e)

£

. TRUE by GLE.

Thus (A LUBZ) and (A) are proved and ©= (4/x)

Since M\ =({@>1L

P+ 2) (la<bAf(E)<COANOCEGB)]ALIBAL

This is exactly Ex. 6. Q.E.D.

1 20P2»), 8 = (2/x) is also returned for

L £

is returaed for

=0 < £(8))

(B> 1)

Ay



Remark

In the proof of Example 7, the following substitution units were obtained

for various subgoals

(8/x,a/x,2_ [xL,bfyL,t /yL,b/u,alx,2_ /s),
e £ )

and this list contains some apparent inconsistencies such as a/xl and 2_ /xL.

G

£
But there was never such zn inconsistency in the proof because, as was explained
at the beginning of this section, page 27, IMPLY vreturns only those substitution

units that will be used later inm the proof. Thus for example when it proved
> 1)  (£(x) < 0)

it returned only (£/x) because x 1is the only variable which occugs inm the

final subgoal

(B 2)  (0< £(x)).

In fact, for this reason, throughout the proof of Example 7, the substitutions
actually returned for the various subgoals were usually the "empty' substitution
"T"., Exceptioms to this were in subgoals like (P 1 iz L, 11, 12),

&

and (M) where only a binding for =x is returned.

In Example 6, a binding for s2 was returned for subgoal (A, 2 LUBL 1 1)

4
e

(because subgoal (Al 2 LUBL 1 2) contains the variable s2), but this too is

dropped from the return from subgoal {Al 2 LUBL 1) because g2 does not occur

in subgoal {%1 2 LUBL 2).



{F» 1)

(P> 23

P+ 1)

Backtracking

In Ex. 7 the prover returns the binding a/x for the first subgosl

(E(x) < 0),

and then (in accordance with AND-C) tries to use that value of = in proving the

second subgoal 0 < f£{x). That is, it tries to prove

(0 < £(a)).

This eventually fails and the prover must "backtrack" to select another value of x.

it first verifies that there is a value of =x which will satisfy 0 < £(x) and finds

that b/x will do so. These two substitutions, a/x and b/x, are in conflict, so

a/x is placed in the EXCLUDE 1ist (which prevents it from being used again as a

binding), and IMPLY 1is again called on the first subgoal
(f(x) < 0).

This time it returns £/x and the proof continues successfully.



Ln

ek

4. Remarks

The authors would be interested in hearing how well other provers are
able to handle these examples.

One of the reasons for our success here was our use of devices such as
an algebraic simplifier, to avoid the explicit use of the axioms of the real

number system. Our special handling of inequalities also attempted such a

saving by avoiliding such axioms as the transitivity of <,
(xg_y/\ygz—?—xviz),

but much more needs to be done if we are to smoothly and economically handle
the "low level” calculations associated with proofs in analysis. For example,

special techniques are needed for absolute values, especially when they occur

in conmnection with inequalities.

We don't think of this prover as ultimate in any sense. At best it will

become a part of a more powerful prover we are now trying to build, which wiil

include many of the features mentioned in [;;]. For instance, recent work

indicates that the use of automatically generated couterexamples can greatly

speed up the proofs of these examples and others like them.
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