Unskolemizing
by

W. W. Bledsoe and A. Michael Ballantyne

July 1978 ATP-41A

(Preliminary Version)

“This work was supported by the National Science Foundation
Grant MSC77-20701.

Unskolemizing
by

W. W. Bledsoe and A. Michael Ballantyne

ABSTRACT. We give here a procedure for obtaining an equivalent,
completely quantified, form for a given skolemized formula, and

show some examples of its use. We also discuss briefly the auto-
matic generation of counterexamples, and how the unskolemization

process is related to that.

i. Introduction

Most automatic theorem provers, including ocur [1-3], remove all
quantifiers from the theorem before the actual proving takes place. This
is done by "skolemization" (See for example, App. 1 of [1].)

Sometimes it is desirable to recover the quantification by reversing
this process of skolemization. For example, when a counterexample is being
sought to a particular subgoal in a proof, it is important to obtain the
completely quantified form of that subgoal so that it can be negated and
proved.

At first glance this would seem a simple task, which can be achieved
by remembering what was done during skolemization and reversing it, and
that indeed is the case when the formula being unskolemized is the whole
original theorem. However, if we are dealing with a fragment of it, or a
subgoal gotten from it by using a lemma, then it is not obvious what the
proper quantification is, let alone how to obtain it.

The purpose of this note is to give an algorithm for such "unskolemi-
zation" (Seétion 2), and to give several examples of its use (Section 3).
In Section 4 we briefly address the question of automatically obtaining
counterexamples to a suspected theorem, and discuss how unskolemization is

involved in that, and give some examples.

2. Algorithms

Let A' be a completely quantified formula (WFF), and let A be
its skolemized form. We wish to reconstruct A' from A. We wish also
to handle cases where A was not obtained directly from such an A' by
skolemization, but has been derived from another skolemized expression by
instantiating certain of its variables, as might be done by the use of a
lemma in the proof of a theorem (See Ex. 3-7, pp. 10-13.)

It is assumed that each skolem expression in A 1is detectable. (i.e.,
we can tell which expressions are skolem expressions.) This is accomplished
during the skolemization process in our programs by including the letter
"S" (for Skolem) as the second letter of the new function name. TFor

example, the expression

(Vxidy P(&x,y)»Q

is skolemized as
(P(x,ysSx)) ~ Q).

Thus the variable y has been replaced by the skolem expression (y§x).

At a later time this can be detected as a skolem expression by examining
the second letter of yS (by the LISP function EXPLODE). (If other y's
are encountered in the formula being skolemized, then uniqueness is assured
by using yS2, yS3, etc.) Similarly, a skolem constant, such as "a", is
replaced by (AS), etc. Skolem variables are represented as atoms in LISP
and are detected that way.

In the following algorithms, which are written in LISP, parenthetical

remarks are given by (* ...).

(RECONSTRUCT-QUANTIFIERS (A(A))

(SETQ L (SKO-VARIABLES-EXPRESSIONS A))
(SETQ LL (SKO-FRONT L NIL))

(SETQ 1' (SUBLISS-NIL LL L))

(QUANTIFY LL T NIL (RECON-SKO A T L"))

This routine accepts a skolemized expression (WFF) A and returns
a fully quantified equivalent expression A'.

It first selects a list L of all the skolem variables and skolem
expressions in A, and then collects into LL the first of each of those
expressions in L, which are repeated with the same header (e.g., (xS17 vy)
and (xS17 (AS))), and replaces them in L by WNIL. It then uses the
routine RECON-SKO to insert quantifiers in A corresponding to the list
L, and finally places quantifiers on the "outside" of A corresponding

. to the list LL. For example if A is

[P(X, (¥S X)) A Q((ZS X)) > R(0, (25 (c&H)NI*

then
L=(X (¥S X) (Zs X} (Z8 (C8)) «(Cs))
LL = ((Z5 X))
L' = (X (¥S X)NIL NIL (CS))

and A' is

VZS VC IV XEY®(XKY) A Q((ZS X))) - R0, (Zs CNI.

%
Actually the program uses a prenex notation

& (~ (PX (S X)) (Q(28X))) RO (Zs (CS)))

etc.

(SUBLISS-NILL (A(LL 1) (COND
[(NULL LL) L]

[(ATOM (CAR L)) (SUBLISS-NIL (CDR LL)L)]

[T (SUBLISS-NIL(CDR LL) (SUBST-CAR NIL (CAAR LL) 1))} M)

This replaces by NIL those units in L of the form (X8.. ...) if there is

an expression of this form in LL.

(SUBST-CAR (A(X Y A) (COND
[(ATOM A) A]

[(EQ (CAR &) V) X]

[T(CONS (SUBST-CAR X Y (CAR A))

(SUBST-CAR X Y (CDR A)) Y1)

This replaces all sub-expressions in A of the form (Y ...) by X. For

example 1f A is (P({(XS13 A)) - Q((XS13 Y),Z)) then (SUBST-CAR XS13 X813 A)

returns (P(XS13) - Q(X813,2)).

(OCCUR-CAR (A(X 1) (COND

[(NULL L) NIL]

[(AND (NOT (ATOM (CAR L))) (EQ X (CAAR L)) T]

[T (OCCUR-CAR X (CDR L)))))

This determines whether L has any units of the form (X

o

(QUANTIFY (A (L P PS A)
(PROG (QA QS SYM)
(SETQ QA (COND [P 'ALL] [T 'SOMED))
(SETQ QS (COND [P 'SOME] [T 'ALLI))
(SETQ L (SORT-SKO L T))
(RETURN (COND
[(NULL 1) Al
[(NULL (CAR 1)) (QUANTIFY (CDR 1) P PS A)]
[(ATOM (CAR L)) (LIST QS (CAR L) (QUANTIFY (CDR L) P PS A)]
[T (SETQ SYM (CAAR L))
(LIST QA SYM (QUANTIFY (CDR L) P PBS (COND -[PS (SUBST-CAR SYM SYM A)]
M)

[T AN

“This accepts a list L of skolem variables and skolem expressions, orders
them according to membership and inclusion (see ORDER-SKO), and constructs around

A the quantifiers corresponding to the entries in list L.

(SORT-SKO (A(L LT) (COND
[(OR (NULL L) (NULL (CDR L))) L]
[(NULL (CAR 1)) (SORT-SKO (CDR L) LD) |
[(AND LT (SETQ L (CONS (CAR L) (SORT-SKO (CDR L) T))) NIL)]
(*1f LT is "on", sort (Cdr L))
[(ATOM (CAR L)) (COND
[(ATOM (CADR L)) (FLIP)]
[(MEMBER (CAR L) (CDADR L)) L]
[T (FLIP)])]
[(ATOM (CADR L)) (COND
[(MEMBER (CADR L) (CAR L)) (FLIP)]
[T L)]
[(SUBSET (CAR L) (CADR L)) L]

[T (FLIP)])

‘This orders the list 1. of skolem variables (atoms) and skolem expressions
according to membership and inclusion. Note that if A is an atomic formula and

Fl and F2 are two skolem expressions in A then'(cdr Fl) < (edr FQ) or vice versa.

(FLIP (A ()
(CONS (CADR L)

(SORT-SKO (CONS (CAR L) (CDDR L)) NIL)))

This interchanges the first and second members of L and resorts.

3. Examples

Example 1. L= ((fxyz)yztkx) (B) (gxvyz) (§xy)x

(SORT-SKO L T)

= (W) x(kx)y Gxrxy)z Exyz) (gxyz))

Even though we said in the introduction, p. 1, that skolem functions
such as "f" would be atoms where the second letter is an "S", such as
fs17, we have suppressed that in some of these examples for brevity of
presentation. Thus we have written here k instead of kS-.., % instead

of 4S--, g instead of gS--, etc.

Example 2. 4x Vy (P(y) A Q) » P(x))
Skolemized form: A = P((yS x)) A Qx) > P(x)).
L = ({(yS x) x), LL=NIL
SORT-SKO L) = (x (yS %))
(RECONSTRUCT-QUANTIFIERS A) =

4x (I v P{y) A Q(x) - P(x))

Notice that our reconstructed formula is not exactly equal to the
original but it is equivalent to it and in mini-scope form.
(In Examples 2 and 3, the letters P and Q should also be univer-

sally quantified in front of the formula. We have omitted that here to

avoid irrelevant clutter.)

16

Example 3. Va (Vs dt (Q(s,t) > P(s,t) > dx P(a,x))
The skolemized form is

a
N

(TGs,t) > P(s,t)] =% P (ay,%))

We are using shorthand ts for the skolem expression (ts s), and

ag for (a8).

1f we attempt to prove P(ao,x) by backchaining omn o with a

£ /x, we get the subgoal
0

A: ([Q(s,ts) > P(s,ts)] =5 Q(ao,ta »
0

and it is A that we wish to unskolemize.

L = (s (tS s) (aS) (tS (as)))
LL = ((tS s))
L' = (s (a8))

(SORT-SKO L') = ((aS) s)
(RECON-SKO A T L")
= va(vs [Q(s, (tSs)) =+ P(s, (8 s))] » Q(a, (£S5 a))),
and
(RECONSTRUCT-QUANTIFIERS A)

= VtS V a().

Notice that now we have universally quantified the function variable
tS, out in front of the whole formula. This was required because t8 takes

on different arguments, s and a, at different places in the formula.

11
Example 4. VaVb (H (a,b) AVs dt [Q (s,t) » P(s,t)] > Hx pla,x)).
skolemized:

64
N

(H(ao’bo) A [Q(s,ts) - P(s,ts)] ==» P(a,x))

Again we want to unskolemize the subgoal A acquired by backchaining

on O @ ao/s, t [/x.
20

A (lagibg) o [0t > Pls,e] = Qagyt,)
(RECONSTRUCT-QUANTIFIERS A)

=VtS Va Vb (H(a,b) A [Q(s, (tS s)) > P(s,(tS s8))I> P(a, (tS a))).

Example 5. Va 3y (Vs 3t [Q(s,t,y) + P(s,t,y)] > Ex pla,x,y)).

skolemized

(st 5¥) > Bls,t o)) => Plagx,y)).

Again we want to unskolemize the subgoal A acquired by backchaining

on O ao/s, £ /x.
20

A
([Q(s,tsy,y) - P(s,tsyay)] i 4 P(ao,tagy,y))
(RECONSTRUCT-QUANTIFIERS A)

= vtS va Fy(lQ(s, (tS s y),y) > P(s,(tS s y),y)] = P(a, (tS a y),y)).

12
The next example, Example 6, is acquired from Example 7 of [3], p. 45,

subgoal (P~-1 L, 2 0 P27).

1 It is in skolemized form.

Example 6. (aSb A f(a)S0A 05f(b) A LUB A L1 A L2

/\(sftxv x<s ¥ 0 < f(g)) =% xftx)

Where LUB, L1, L2 are given on pp. 33 of [3].

In particular the tx of
o came from the use of lemma L1, which is

Vx(a S xSb A 0< £(x) » Tt(t<xA V¥ s(t<sSx » 0< £(s))))

which skolemizes as

(a £x15b A 0<f(xl)~> (tXl < x1 A (txl <s A 8% x; 70 < £(s)))).

Since in Example 6, ¢t appears in O and in the conclusion, and t 1

appears in L1, it will be necessary to universally quantify t8 outside
the whole formula before the quantification of x and x1, instead of

quantifying t after x and after xI1.

(RECONSTRUCT—QUANTIFIERS EX6) =
Vts Vf Va Vb VR dx

[asb A f(a) s

0 A 0<% £(b) A LUBg A L2g

A Vxl(a < x1 <

b A 0< £(x1) - (tS x1) < x1 A Vs((tS x1) < s Sxl > 0< £(s)))

L1q -
AaVs(s S (t5 x) v (x<s8) v 0< £(s))
N ~ P
—> x £ (€S x)1,

where LUBq and L2q

are the fully quantified form of LUB and 1LZ2.

(See
page 33 of [3].)

13

The next example, Example 7, is a continuation of the last. Instead
of backchaining on LUB2 as was (properly) done on page 45 of [3], if we

try to backchain on LUBL: b/x, tb/xL, we obtain the subgoal

(P~>1 L1 2 6 P2» LUBL)

Example 7. (alb a f(a)S 0 A 05 £(b) A LUB A L1 A L2

A(sﬁtxv x <5 v 0< £(s))

— f(tb) <0 A Q,<tb)

This is similar to the last example except that x no longer occurs

in the conclusion so the ™"dx" in front of the whole formula is changed to

a "Vx'" in front of ¢ only, and we get

(RECONSTRUCT-QUANTIFIERS EX7) =
VtS VI Va Vb V&

[as<b A f(a)S£0 A 0 S £(b) A LUBq A L2g

AVx1(a<x1Sb A O<E(xl) » (£S x1)<xl A Vs(tS x1)<s<xl = 0<£(s)))

Llqg
AVxVs(sS (S x) v (x<s) v O0<f{(s))

— £((tS b)) S0 A & <(tS DB)I.

14

4. Counterexamples

In proving theorems it is often valuable to show that a certain
proposal subgoal is invalid, as, for example, when one tries to use an
inappropriate lemma, and a counterexample can often be used to show this
invalidity. Such a process was used by Gelernter in his geometry prover
[4] and has been proposed and used in a limited way by others. (See [5]).

In actuality what we do when we "give a counterexample", is to prove

the negation of the fully quantified theorem. (Thus the motivation for the

unskolemization process given in Section 2.) TFor example, if we want to

give a counterexample to the formula
@) (Continuous f [a,b] » dx(@a<lx<b A £(x)=0))

we first quantify (1)

(2) vif va vb (Continuous f {a,b] » Tx@ixSb A f(x)=0)

and prove its mnegation,

3 df da db {(Continuous f [a,b] A Vx (aixip A f(x)=0))

So finding a counterexample of (1) will, in this case, require finding an
instantiation for the variables f, a, and b, in (3). Here, any func-
tion f which is continuous but never 0 will suffice, if we give a
and b values so that a<b. (e.g., a=0, b=1, f=xx1).

Notice that (3) is a "higher order" theorem, whereas (1) is first
order (because f <can be treated as a constant function in (1)). 1t is
often the case that the "counterexample theorem" requires the instantiation
of a higher order variable (such as £ in the above example), but it also

seems to be the case that such a higher order variable is often easy to obtain.

1t is this last thought that gives us optimism for automatically generating
counterexamples, though we do not address the generation of counterexamples
in this paper.

Here we want only to point out the need for unskolemizing a formula
before we can look for a counterexample to it. Especially is this essential
in cases where the formula, for which we want a counterexample, is a fragment
of a suspected theorem or (as was the case in Ex.'s 3-7 of Section 3) a sub-

goal gotten from a suspected theorem, by using a lemma. Because in these

cases {see Ex.'s 3-7) a skolem function can appear with different arguments
in different parts of the subgoal, and then universal quantification of that

skolem function is required (e.g., tS in Ex.'s 6,7).

Example 7, page 13 is false. To find a counterexample, we first negate

its fully quantified form, getting

4tS Zf da db dL
(5) [a<b A f(a) <0 A 0 <f(b) A LUBq A L2q
Vxl(a<xl<b A 0<f(xl) » (£Sx1) < x1 A ¥s((tS x1) <s<x1 + 0<£(s)))
A [0<£((eSB)) v (£5D) < L1],
and prove (5) by giving values to the variables a,b,?, and the variable
functions tS and f. For example, the following values will satisfy (5):
a=0, b=1, £=0,

£

!
-4
x

ke
o
|75}

I
>
b

|

Because, then (3) becomes
% 3
[0<1 AO<OA 0<1a TRUE 5 TRUE"

AVI(0<x1<1 A 0<xl+§2£< xlAVs(}—{zi< s<xl ~0<s))

1 b
A [O<§v ESO}}a

which is true.

These are automatically true for continuocus functions.

16

A "higher order prover" such as those of Huet [6], Andrews [7], and
Darlington [8], can, in theory, prove such theorems but as yet their power
is limited. We believe that special automatic procedures can be developed
to efficiently handle a sizable fraction of these higher-order theorems that

arise as "counterexample theorems'. Our efforts on this will be the subject

of another paper.

References

W. W. Bledsoe and Mabry Tyson. The UT Interactive Theorem Prover. The
Univ. of Texas Math. Dept. Memo ATP-17A, June 1978.

W. W. Bledsoe. A Maximal Method for Set Variables in Automatic Theorem
Proving. The Univ. of Texas Math. Dept. Memo ATP-33A, July 1977. Proc.
1JCAI-77, MIT, Aug. 1977, pp. 501-510. To appear in MI-9.

W. W. Bledsoe, Peter Bruell, and Robert Shostak. A Prover for General
Inequalities. The Univ. of Texas Math. Dept. Memo ATP-40, June 1978.

H. Celernter. Realization of a Geometry Theorem-proving Machine. Proc.
Int. Conf. Information Processing, Paris UNESCO House (1959) 273-282.

A. Reiter, A Semantically Guided Deductive System for Automatic Theorem
Proving. Proc. Third Int. Joint Conf. Artificial Intelligence (1973)
41-46; IEEE Trans. on Elec. Computing C-25 (1976) 328-334.

G. P. Huet. Experiments with an Interactive Prover for Logic with
Equality, Report 1106. Jennings Computing Center, Case Western Reserve
University

Peter Andrews. Theorem Proving in Type Theory. Proc. IJCAI-77, p.566.

Jared Darlington. Deductive Plan Formation in Higher Order Logic.
Machine Intelligence 7, pp. 129-137.

