ON AUTOMATIC GENERATION OF COUNTEREXAMPLES

by

W. W. Bledsoe, A. Michael Ballantyne

July 1979 ATP-44A
(Revised ATP-44)

This work was supported in part by NSF Grant

MCS77-20701 at The University of Texas at Austin

-

On Automatic Genmeration of Counterexamples

W. W. Bledsoe, A. Michael Ballantyne

Abstract

In this paper we discuss the counterexample problem, point out the need
for an unskolemization procedure, describe some methods for the automatic

generation of counterexamples for real function variables, and give the results

of some experiments.

Extended Abstract

In proving theorems it is often valuable to show that a certain proposed
subgoal ié invalid, as, for example, when one tries to use an inappropriate
lemma, and a counterexample can often be used to show this invalidity. Such
a process was useq by Gelernter in his geometry prover [5] and has been pro-
posed and used in a limited way by others. (See [111.)

In actuality,what we do when we ''give a counterexample" 1is to prove the

negation of the fully qualified theorem. For example, if we want to give a

counterexample to the formula

(1) (Continuocus fla,b] = BX(a‘SVX < ba f(x) = 0))
we first quantify (1)
(2) Vi Va ¥b (Continuous £la,b] -~ 3x(a<x <b A £(x) = 0)

and prove its negation,
3f 3a B (Continuous f£la,bla¥x ~ (@a<x<baf® =0))

So finding a counterexample of (1) will, in this case, require finding an

instantiation for the variables f, a, and b, in (3). Here, any function f

which is continuous but never 0 will suffice, if we give a and b wvalues
so that a <b. (e.g., a=0,b =1, f=>xrx1).

Notice that (3) is a "higher-order" theorem, whereas (1) is first order
(beéause f can be treated as a constant function in (1). It is often the
case that the "counterexample theorem"” requires the instantiation of a higher-
order variaEle (such as f 1in the above example), but it also seems to be the
case that such a higher-order variable is often easy to obtain.

In this paper we will discuss the counterexample problem and show (by
examples) that an efficient counterexample generator can save much time in
automatic theorem proving. We will describe an "unskolemization" process
and why it is desirable to obtain a fully quantified form from a skolemized
formula. And finally, we will discuss several approaches for generating
counterexamples. In this we will emphasize "function" counterexamples for the
real line; i.e., the automatic proof of theorems of the type (3) above where

the existence of one or more functions of a real variable is required.

Unskolemization

The reason for finding a counterexample to a formula F is to show that
it is invalid, i.e., that some interpretation of its symbols is false. 1t is
not enough to try to show that F is false since many such F's are neither
true nor false. But, as was indicated in example (1) above, if we first fully
quantify F, we can achieve the desired result by proving the negation of F,.

Since most automatic provers employ a skolemized (quantifier-free) form,
it is often necessary to "unskolemize' F, to regain its full quantification
before attempting to prove its negation. Unskolemization seems to be a simple
task, and indeed it is when the formula F being unskolemized is the whole

original theorem. But when F 1is ouvtained from all or part of the original

3
theorem by using a lemma, it sometimes contains a skolem function with different
arguments in different parts of it, and in such a case the original quantifica-

tion cannmot be recaptured. For example, the skolemized formula,

[a<baf(a <0~ 0< £(b)

&) A (s < tx v x < s v 0 <£f(s))

- f(tb) <0~ £ < tb].
which is part of a formula derived from Example 7 or [3], has the skolem

function t occurring with both arguments x and b. (a, b, £, and % are

constants.) It is unskolemized to

Vg VE Ya¥b Vs

[a<bafla <0, 0< £(b)

(5) .
A¥x Vs (s <g® ¢«x<sv0<I£(s))

- £(g(b)) <0 ~ £ < g®)].
To find a counterexample to (4), we prove the negation of (5), namely,

g 3f 3b 34
[a<bAf@ <0 ~0< £(b)

(6) AYx Vs (s < g(x) vi<sv(0<Ii(s))
A0 < £(g(d) v g < HI.

For example, the following values will satisfy (6):

a=0,b=1, £ =20

Hh
il

AKX, g = AX

B X

Methods for Generating Counterexamples

Once the formula F has fully quantified and negated, we still have the
task of proving the resulting formula. As was mentioned earlier, that is
often a theorem in higher -order logic. We will consider here only those
theorems where one or more functions of a real variable are required.

There are several approaches one could take in proving these higher-
order theorems.

One could use a higher-order prover such as those proposed by Huet [7].
Andrews [1], Darlington [4], Pietrzykowski [10], and Haynes and Henschen [6],
and this seems to offer great hope in the long run, especially as more powerful
methods are developed and special heuristics are used.

Another approach is to use the reduction method of Minor [9], which is
an extension of methods of Behmann and Ackermann, to reduce the higher-order
theorems to first order, and use existing first-order provers. This seems
to be promising for an interesting class of examples.

Still another approach is a "finite specification” method, which uses
thé-fact that a function f (even a continuous function) can always be found
whenever its values are specified at only a finite number of points. For
example, there is a (continuous) function satisfying the specifications
£(0) = 1 and £(2) = 0. These specifications can be generalized (to some
extent) to include inequalities (e.g., f(0) < 0, £(2) > 0), variables (e.g.,
f(a) < 0, £(b) > ¢}, and intervals (e.g., V¥x(0 < x <1 4 £(x) <0), £(2) > 0).
In the case of continuous functions, ;pecifications on intervals must satisfy
compatible end conditions (for example, \fx(O_i x < 1= £f(x) <0) is not
compatible with f£(1) > 0).

And finally, another approach is to employ a ''data base of examples’ and

a mechanism for selecting out of it a counterexample suitable for the purpose

5

at hand. Michener's ideas [8] should be useful in this approach. We believe
that a mixture of these will prove useful in the near future.

These approaches can be divided into two classes: those that produce
acfual examples for the function in question (e.g., Axx for £, or
Ax(-1+2x) for f); and those that require an auxiliary (first-order) theorem
to be proved. When an actual example can be found, it greatly simplifies the
process, but it is not always easy to find an example satisfying the given
restraints.

For example, if in the theorem
(N (a #b~>3f(f@) =0 ~ £(b) # 0))
we put f = (if x = a then 0, else 1), then (7) becomes

(8) (a#b »0=0a[(b=a->0%#0)~ (b#a-=1%#00D

or

(a#b >b# a).

And, if in (6) we put f = Axx, and g

il

AX %3 then (6) becomes

3a 3b 32 [a<bra<0ar0<bh

) AV x Vx (s_<_3{?:«\x<s,\0<s)

which is considerably easier than (6). But how is the program to know to choose
these particular values of f and g? Minor's method does not experience this
difficulty in finding f and g, but it does have the difficulty that its

resulting first-order theorems (see (10) and (11) below) are harder than (8)

and (9).

Minor's method converts (7) to

(10) (a # b>¥x Ju (u=0vx=a)A@#Fvx#b)),

and converts (6) to
Ja3b 3£ ¥s Yx 3u 3dvia<b
Aau<O0vsf£a)n©@<uvst#b
(1D A(s<vvx<sv0<u |

A0<uvsfvexrfbvv<y)

A D(u,8) ~ D(v,x)],

where D 1is Minor's "dependency" relation, which is characterized by a set of
axioms. (See [9]1.)

The finite restrictions method converts (7) to

(a# b~ (TRUE ~ a # b))

or
(a#b~>a#b).

It converts (6) to (12) by eliminating £,
3g 3a 3b 34
[a < b A TRUE o TRUE

(12) ,
AVs Yx (s <g® v x<s vads)

nia # g v gh < Hl.

If (12) is simplified to the equivalent form,

dg Hda 3Ib 32

(13) [a<ba¥x (a< g\ x<a)

~(a < g() vgh <avgh <l

then the finite restrictions method can further convert it to (14) by elimina-

ting g,
da 3Ib 34
(a<ba [(TRUE ~¥x (x < a))

(TRUE A ¥x (b £#x v a<avx<a))

i
>
<,
[
AN
IS
<

(TRUE ~ ¥x (b - 'x < a))l,

which can be further simplified to

"3Ja 3b 3L (a<ba [FALSEv b<av a<gvb<al

or

Ja 3b 34 (@a<ba(b<avacx<yp).

Implementation

Programs for unskolemizing and for Minor's first-order conversion have
been implemented in LISP on the DEC-10. A version of the finite specification

method has been implemented and used for the examples given in [12].

References

1. Peter Andrews and Eve Cohen. Theorem Proving in Type Theory. Proc. 1JCAI-T77,
Cambridge, Mass., August 1977, p. 566.

2. A. Michael Ballantyne. Some Notes on Computer Generation of Counterexampiles
in Topology. University of Texas, Mathematics Department Memo ATP-24, 1975,

3. W. W. Bledsoe, Peter Bruell, and Robert Shostak. A Prover for General
Inequalities. University of Texas, Mathematics Department Memo ATP-40, 1978.

4. Jared Darlington. Improving the Efficiency of High Order Unification.

Proc. I1JCAI-77, Cambridge, Mass., August 1977, pp. 520-525.

5. H. Gelernter. Realization of a Geometry Theorem-Proving Machine. Proc.
Int. Conf. Information Processing, Paris UNESCO House, 1959, pp. 273-282.

6. L. J. Henschen and G. Haynes. Splitting in Unification in Higher Order
Theorem Provers, Department of Computer Sciences, Northwestern University
Evanston, Illinois, 1978.

7. G. P. Huet. Experiments with an Interactive Prover for Logic with Equality.
Report 1106, Jennings Computing Center, Case Western Reserve University.

8. Edwina R. Michener. The Structure of Mathematical Knowledge. MIT-AI Tech
Report 472, August 1978.

9. John T. Minor, III. Proving a Subset of Second-order Logic with First-order
Proof Procedures. Ph.D. dissertation, Department of Computer Sciences, Universi-
ty of Texas, Austin, July 1979.

10. T. Pietrzykowski. A Complete Mechanization of Second Order Type Theory.

J. ACM, 1973, pp. 333-364,

11. R. Reiter. A Semantically Guided Deductive System for Automatic Theorem
Proving. Proc. Third International Joint Conference Artificial Intelligence,
1973, pp. 41-46; IEEE Trans. on Elec. Computing C-25, 1976, pp. 328-334.

12.

W. W. Bledsoe. Some Results with Using Counterexamples to Shorten Proofs.
University of Texas, Mathematics Department Memo ATP 51, July 1979.

