THE CONTROL STRUCTURE OF IMPLY

by

Peter Bruell

August 1978 ATP-45



1

This paper detalls some 0f the mechanics of the theorem
prover, IMPL Y. belng developed as part of our automatic theorenm
proving project. It is assumed that the reader has a listing of
the program available ard also a tamiliarity with LISP program=
ming., The subject 0f concern is the control structure of IMPLY:
the starting routines, the IMPLY=5TUP, the answer mechanism, the
trapping mechanism, and the protected variable mechanism. Each ot
these ¢ive components of the control structure is treated in a
separate section.

SOME PRELIMI1NARY OBSLRVATIONS

B DODRD D@ DT E D RBDD W D WD P DD

There are several preliminary observations which should be
made to assist the reader in understanding this document as well
as the program to which it refers., First and foremost, the reader
should be aware of the syntax of formulas upon which IMPLY ope=
rates. In a word, this svntax is pretix.

For example, the formula

(1) (=> (& (P B) (& (P B) (0 wJ))Y) (SOME X (& (P X) (Q X311
is the prefix formulation acceptable to IMPLY for the theorem
{2) Pa & Pb & Ob => I x(Px & 0x)

presented in ordinary mathematical notation. Notice that the arrow
is the concatenation of two symbols, the minus sign (=) and the
greater than symbol (>), Also notice that the conjunction is bi-
nary (this holds for the internal representation of disjuncts too)
and that universal guantification is implicit for A and B (see the
description of the function CYCLE).

When (1) has been skolemized, it might look something like
this internally:

{3) (=> (& (P (AS5203)) (& (P (BS204)) (0 (BS204))))
(& (P X) (Q X)),

Here the implicitly universally guantified variables A and B have
become the SKOLEM constants (ASZ203) and (BS204) respectively (the
S5 stands for SKOULEM), while the existentially quantified varie
able X in the conclusion has been skolemized as the LISP atom X.
This makes life easy for the matching routines UNIFY and INSTANCE,
for they know that atorms which are not numeric or members of the
l1ist ATOMICCONSTANTS (TRUE, FALSE, PUSINF, NEGINF, etc) are Sko=
lem variables.

1f Skeolem functions need to pe introduced, as is the case
for the tormula

(4) vx dAy Pxy => dv vu Puv ,

then an obvious convenience suggested by (3) is to let the ine
ternal representation of the skolemized form of (4) be

(5) (=> (p X (Y3205 X)) (P (US206 V) V)).

This is what IMPLY will in fact do.



2

While looking at the listing of the program, the reader will
notice many references to atoms prefixed by a 0. For eXxample, Q&,
Q=>, QEL. THe Q stands for QUOTE and the atom yeferences the sym=
pol obtained py deleting the ¢. Thus, tor example, O=> could be
replaced by (QUUTE =>). The convenience and efficiency of the
single symbol are both obvious. These variables are all initiali-
zed in the function INITIALIZE.

Finally, the reader will have noticed the freguent calls to
the LISP tunctions CADR and CADDR. This is a consequence 0f the
binary nature of many predgicates (EL, SUBSET, etc.) and connec-
tives (&, =>, etCc.). Since formulas involving these predicates and
connectives are represented in pretix, their two arguments will
be addressed by CADR and CADDR.

THE STARTING ROUTINES

WG VRGO DERBWE DD

The starting routines perform the initialization necessary
prior to calling the function 1IMPLY tO prove a theorem. This ini-
tialization includes setting some global variables to NIL (START),
requesting the theorem to be provea (PRUVEK), and removing the
quantifiers from the theorem (call to REMQ in CYCLE).

START

This function of no arguments is called to start the theo-
rTem Prover.

PROVER

PROVER expects that the name of the theorem it requests is
a LISP atom which has been SETQ’d to the pretix tormula wnich re-
presents the theorem.

CYCLE(TH,TL)

Before CYCLE calls REMQ it sets the variable REMOTH to T and
immediately after the call it sets it to NIL, The first setting
has the effect of forcing a universal interpretation on all free
variables occurring within the tormula being skolemized (by REMQJ.
Thus, witn REMQIH set to T

PXx =2 Pa
andg

Px => Va Pa
both skolemize as

Px => Pal

where x is now a skolem variable (LISP atom) and a0 is & SKeolem
constant. Wwith REMQTH set to NIL both skolemize as



Px => Pa

where poth x and a are Skolem variables, In other words,
with REMQTH set to NIL, free variables are assumed to be
Skolem veriables, The two settings of REMOTH have two useful
consequences:

1, Wwith REMQTH set to T, universal guantification need
not be specitied ftor variables whose qguantification is
universasl over an entire theorem,

2. With REMQTH set to NI1L, universal quantification need
not be specified for variables whose guantification is
universal over a lemma being added to the hvpothesis via
the USE option,

The last line of CYCLE is an incirect call to the function IMPLY.

THE IMPLY=STOP

One of the design goals of IMPLY has always been to per-
mit usage botnh as an interactive theorem prover and as an auto-
matic theorem prover. The interactive mode is especially useful
for debugging purposes. The automatic mode is, of course, the
mode in which we would like to operate exclusivelv; however, the
development of IMPLY has required extensive use of the interactive
mode as well,

We shall continue to refer to the interactive mode as the ine-
teractive mode but shall henceforth call the automatic mode the
QED=mode., The two modes are often both used in the proof of a
theorem. The interactive mode 1is used to isoclate difficult sub-
goals whose proof may require some human intervention and the QED=-
mode is used to dispose of routine subgoals whose proofs are easily
discoverd automatically.,

The IMPLY=STOP is the name we use to refer to the interactive
intertace of IMPLY, It is physically located in the two lines of
code

EVLOOP
(COND ((EQ LT (CUDTE B)) (OPTIONS)))

in the body of the function IMPLY. From this it is evident that

on any given call to the function IMPLY we will steop at the IMPLY-
STOP (i.,e. enter the function OPTIONS) only if the fifth argument,
LT, of IMPLY has the value (QUOTE B). LT acts as & control para=
meter of IMPLY. Its possible settings are tested pv the COND in
CNTRL,

CNTRL

The first tunction which IMPLY calls each time it is entered
is CNTRL. The task of CMTRL is to inspect the value o0f LT and take
the appropriate action. This may mean taking no action at all.



4

The only value of LT which will cause IMPLY to stop at the
IMPLY=STOP is (QUOTE B). Thus, the first clause of CNTRL insures
that no stops at IMPLY=STOP will be made when 1IMPLY 1is in QED-mode
(QED-LT = TJ.

when the value of LT is a member of the list of trap lights,
TRAPLTS (set in INITIALIZE), then CNTRL calls TRAP which will
immediately recall IMPLY through an ERRSET with LT = {QUOTE BJ.

This establishes a backup point. A backup point is represented by
a period in the theorer label displayed on the screen. It is use=
ful to have backup points when running in interactive mode to en-
able the user to resume a proof beginning at the appearance of an
earlier subgoal. This is called falling back to a backup point and
more will be said about this later. Uf course, in QED=mode, backup
points are not needed, and IMPLY is never called «#ith a LT value
which is a member of TRAPLTS, when QED-LT = T.

when the value of LT is (QUOTE CNTRL), CNTRL will immediately
recall IMPLY with LT = 0., Note that on this recursive call to IMPLY,
CNTRL will take no action at all,

Finally, when LT bas the value 3, CNTKL will recall IMPLY with
LT = (QUOTE CNTRL). If NIL is returned, failure will be reported and
NIL will be returned as the value of IMPLY. It a non=NIL value is re-
turned, this value will be reported, and INTERPHRET=A will be called
to decide what to do next.

TRAP(LT)

WGP W W W B

The function TRAP is the heart of the interactive packup
system of IMPLY. As mentioned under the function CNTRL, TRAP
is called to establish backup points in the proof tree when 1MPLY
is running in interactive mode. These backup points correspond
to calls on the function 1IMPLY made through ERRSET. BY "falling
back to a previously established backup point" we mean trapping
back to this ERRSET by generating a LISP error. An uynintention=
al LISP error will cause UCI=-LISP to automatically enter its
break package., But errors may be generated intentionally also,
via the LISP function ERR., Such an intentional error is generated
when the user hits the escape Key on the console while at the
IMPLY=STUP. This causes the call

(ERR (SETQ GLOBALERROR 1))

to be executed, which generates a L1SP error trapped by the ERRSET
in TRAP. The effect will have been to "peel back” the LISP stack
to the state it was in when this ERRSET was entered. TRAP will
then print the message RESTORED and reestablish the backup point
which has just been fallen back to by calling itself., Note that
the QED=LT will also be set to NIL at this time., TRAP is called
for the tirst time by the function CYCLE with LT = (QUOTE CYCLE)
to establish the initial backup point. CNTRL calls TRAP whenever
the argument LT ot IMPLY is a memer of TRAPLTS. TRAP may be called
at the IMPLY=STOP to establish a backup point by simply typing a

“BN.

INTERPRET=A(X)

Y @ R R D W up OB D W W W uR




5

X is 8 non=NIL value of IMPLY, an answer, and thus has
the form (& DB) where 5 is a substitution and DB is a data
base, It DB = NIL or the A-ynit ot DB 1s NIL then

{a) Lf the prodranm is in QED-mode, this value ot X
will be returned as the value of IMPLY ¢on the current
subgoal.

{(b) Utherwise, the parameter LT will be set to (QUOTE B)
and control will be transterred to the IMPLY-STOP by the
statement (GU EVLOOP},

If DB = NIL and the A-unit of DB is non=NIL then INTERPRET=A
will cheCk to see whether it is time to propose the value of

a set variaple which IMPLY has been tryving to solve for (see
[1lJ). It does this by searching over all the set variables
being accumulated in the A=unit slot of the data base and ask=
ing if any of them has been PROPUSED vyet. 1f the answer is ves,
then INTERPRET=A calls PROPOSE tg let the user Know this fact.

PROPOSE(S)

S is the total accumulated value 0f a set variable as
generated by the set bullding rules of [1). (See description
0of PROPOSED.} Syntacticaelly & will look, for example, like
this:

(ST AR 2 (& (P Z) (N (=27 A3))).
PROPOSE will then print
PROPOSE AA = (E Z (& (P Z) (N (= Z A}J))

and set the global variable PRUPOSAL to 8§, which will later
be detected by INTERPREI=I,

PROPOUSED(A)

when PROPUSED is called by INTERPRET=A, A is the name of
a set variable which has received some partial valuye via the
set bulilding rules of [{1}]. PROPOSED returns T 1f the set varia-
ble A does not occur in any subgoals which are at s hicher level
on the proof tree being built by IMPLY; for, if this is the case,
then no further contribution to A can be made and the accumula=
ted partial value must be the total value, The proof tree above
the current subgoal is searched by the function PCNTRLCALL which
locks pack on the LISP stack for all those calls to IMPLY which
were made with LT = (QUUTE CNTRL) to see if the set variable A
occurs in their hypothesis or conclusion,

OPTIONS



6

The function OPTIONS is called from the IMPLY-STOP only
1f the value of LT is (QUOTE B) when execution of the function
IMPLY reaches the PROG label EVLOOP. OPTIONS will immediately
print the message IMPLY=ST0P and prompt the user for input. At
this point the user may exercise any ot the following options.

NAME

= e w o

Proceed

Backup

Escape

Eval

Establish a
backup point

QED

Assunme

Fall

Reject an

answer

Print the
theoren

Print the
hypothesis

SYNTAX

line feed

escape

QED

REJECT

TP

EFFECT

@ o

Causes IMPLY to proceed as if no stop
had been made,

Causes IMPLY to fall back to the most
recently established backup point. I1f
IMPLY is currently at a backup point,
control will fall back to the backup
point prior to the current one.

Causes IMPLY to do an error exit and
return to the LISP top level.

Causes IMPLY to enter a LISP eval~-
loop. This is useful for "going behind
the scenes" to debug. The loop may be
terminated by tvping "OK", causing
control to retun to the IMPLY=STQOP.

Causes IMPLY to insert a backup point
in the proof tree,

Causes IMPLY to enter QED-mode by set=
ting QED=LT to T. 1f the proof of the
current subgoal is successfully com=
pleted, the message QED will be prin-
ted, Utherwise, the message QED? will
be printed. In either case, QED=LT will
be set to NIL (& return to interactive
mode) and contrcl will transfer to the
IMPLY=STOP.

Causes the empty substitution to be
returned as the answer for the current
subdoal.

Causes the current subgoal to fail by
returning NIL as its answer.

Causes the answer for the current sube
goal to be rejected by setting BIGX,
the variable which contains the answer,
to NIL,

Causes the theorem to be printed.

Causes the hypothesis to be printed.



Print the
concluysion

Print hypo-=

theses adaded

by forward
chaining

Print the
gata base

Print the
answer

Print the
thecren
label

Turn on/0ff
FC=LT

Claim

Define
conclusion

Define a
predicate

Reorder

Reduce con=

clusion

HFC

DB

TL

FC

CLAIM

bDC

(H => C)
where H is
a string of
numbers or
the atom H

and likewise

tor C.

R C

Causes the conclusion to be printed.

Causes the new hypotheses of this sube=
goal which were generated by forward
chaining to be printed.

Causes the data pase to be printed.

Causes the answer for the current sup=
goal to be printed. ln case the answer
is the empty substitution, & blank line
will be printed,

Causes the current theorem label to
be printed,

Causes FC=LT to be set to (NOT FC-LT).
Initially, ¥FC=LT = NIL. When FC=LT = T,
the forward chaining routines will be
called whenever the rule of promotion
is used.

Causes the fuynction CLAIM to be call-
ed, which will prompt the user by ty=
ping NEW GOAL:., The user is then expec-
ted to enter (in prefix) a formuls
which he would like to prove instead
of the current subgocal, 1f IMPLY suc=
ceeds in establishing this new goal,
the message ESTABLISHED CLAIM will be
printed. IMPLY will then be called
with this new goal being added as a
new hypothesis.
the message COULD NOT ESTABLISH CLAIM
will be printed,

Causes the definition of the main
predicate of the conclusion to be
instantiated.

Causes the definition of predicate
P to be instantiated throughout the
current subgoal,

Causes the hypothesis and/or conclu-=
sion of the current suybgoal to be
reordered according to the schene
supplied. Each number ,n, corresponds
to the nth hypothesis/concluslon as
numbered by the TP option.

Cayses the reduce ruyles to be applied
to the conclusion of the current
subgoal.

It IMPLY does not succeed



8

Reduce hye R H Causes the reduce rules to be applied

potheslis to the nhypothesis of the current
subgoal.

Use a USE Causes tne function USE to be called,

lemma which will prompt the user by print=

ing LEMMA:., At this point the user
may elither type in an atom which he
has previously SETQ0d ¢o a lemma or he
may type in a new lemma (in prefix).
The lemma thus supplied will be add-
ed to the hypothesis of the cuyurrent

subgoal.
Instanti-= PUT Causes the function MAN=SUBST to be
ate a vare called, wnich will prompt the user by
iaple printing FUOR WHAT:. The user is then

expected to tyre in the name 0f a vare
iable which occurs in the theorem, He
will then be prompted by the message
PUT WHAT:, in response to which he is
expected to enter the value which he
would like to have the variable re-
ceive.

VBEBPRCD ROV ERDR RO BT DD DR DD D o @ DD DD DD DD P D WS % W e

Many of the options request the user’s approval of their
effect before this effect is finalized by a recursive call to
IMPLY. This approval 1is sought by prompting the user with the
message UK??7?. If the user approves of the effect which has
been displayed to him, he should type OK; otherwise, he should
type NO,

TESTR

As described above;, the proceed and backup options each
reqguire a single keystroke, the line feed and the escape Key,
respectively. These Kevstrokes are read by the function TESTR,
which uses the UCI=-LISP function TYI to read a single character
from the input buffer. If it reads a line feed, it returns
(QUOTE PROCEED):; 1f it reads an escape, it returns (QUOTE BACK):
otherwise, it calls UNTYI to "unread"” the single character and
returns NIL.

INTERPRET=1(READ,BIGX)

This function is called by OPTIUNS in case either the
proceed or the backup option is used. If backing up is re=
guired, & LISP error will be generated as explained under
the description of TRAP. 1f proceeding is reguired, the
message PHOCEEDING will be printed and it will be decided
whether proceeding means returning an answer or simplv cone



Y

tinuing, by inspecting the variable BIGX, 1f BIGX is non=

NIL it will contain the answer to the current subgoal and

will be returned as the value of this call to IMPLY., If BIGX
is non=NIL and the global variable PROPOSAL is none=NlL, then
PROPOSAL will contain the total accumulated value of a set var-
iable (see PROPOSE and PROPOSED) and INTERPRET=1 will substi-
tute this acCcumulated value for occurrences of the corréespone-
ding set variable throughout the theorem., The suybstitution is
done by the function SUBST=A, The resulting subgoal is the be-
ginning ot pass two for the set variable, the subgoal whose
proof will establish that the generated value does indeed
satisty the theorem,

THE ANSWER MECHANISM

The term "answer mechanism” refers to the generation,
application, and composition of answers within IMPLY. An
answer Is the value 0f a call t¢ the function IMPLY and has
the form

(5 DB)

where S is a substitution and DB is &4 data base. The substi=
tution part of an answer 1s a set of substituiton pairs,

{ti1/x1, ... ,tn/xn}, for variables oc¢curring in the proved
subgocal. The data base part of an answer 1s an ordered n=tuple
of units. In the set variable prover the data base is a 3=tuple:
the A=ynit, the restriction list, and the tvpelist. To simplify
the description of the answer mechanism we first digress and
discuss the date base accessing functions.

Since DB is an ordered data base of units, it is possible
to write functions which will retrieve each unit without refer=
ring to that uynit by nsame, In the set variable prover the func-
tions which retrieve the three units are:

{aU (LAMBDA (DB) (CAR DBJ))

(RL (LAMBDA (DB} (CADR DRI})}

(TY (LAMBDA (DB) (CADDR DB})))
Corresponding to these are the functions AUDB, RLDB, and TYDB,
which retrieve these units from the DB part ot an answer, (S DB).
The function DB retrieves the DB part of an answer; thus, for
example, AUDB is defined as

(AUDB (LAMBDA (X) (AU (DB X33}
where X ls expected to be an answer.

We are now ready to consider the functions which belong
to the answer mechanisrm.

Generation 0f answers



10
ANS(ANSARG)

o Wy P @ W s D e 8

The function ANS is called throughout the program to return
generated answers in the canonical form, (S DB). Note that it 1is
an FEXPR and thus may take a variable number of arguments. ANS
expects that its tirst argument will be a substitution and that
its remaining arguments will be pairs of the form <U e>, where U
is the name of one of the units of the data base and e 1ls an ex-
pression whose evaluation will produce the value for the unit U.
The names 0f the units are bound to the global variable UNITS which
is set in INITIALIZE. For the set variable prover, UNITS = (AU RL TY).
ANS performs a MAPCAR over UNITS and calls ASSOC to pick off units
which are receiving new values as part of the answer, ANSARG. Any
unit wnich is not receiving a new value in ANSARG will be repre=
sented by a NIL in the result ot the MAPCAR, This insures that the
DB part of the returned answer will be ordered by UNITS. A typical
call to ANS 1is (ANS T ML), which will return

(T (NIL NIL NIL))

if the variable UNITS has length three, See, for example, the body
of IMPLY where we find the clause

((EQUAL C TRUE) (ANS T NIL)).

Application of answers

G O S UR OR uY O W Lo X - W w9 R @

There are three situations in which answers are not returned to
nigher subgoals, but rather applied to subgoals at the same level.
These three situations are an and=split in the conclusion, an or=split
in the hypothesis, and an application of the rule of back chaining,

As explained above, an answer is a pair (s DB). Corresponding to
this pair is the pair of functions APPLY=-SUB and DB=A which apply an
answer in the atorementioned situations.

APPLY-S5UB(A,B)

A is an answer and B is a formula to which the substitution part
of A is to be applied, If the supstitution part of A, (SIG A), is the
empty substitution (deroted by T), then APPLY=-SUB simply returns B.
Utherwise, APPLY=SUB* is called to apply the substitution (816G £} to Be.

APPLY-SUB*(A,B)

This function applies the substitution A to all levels of tne
formula B. It recursively decomposes B until it reaches the atomic
level and then calls SUE2 to check whether a substitution pair is
present for the given atom, Note that this makes use of our syntace
tic convention that Skolem variables in a formula are represented



11

by atoms in LISP. The function REMQV is called if B contains a guan-
tified subexpression, REMQV returns the substitution A minus the
substitution pair which gives a value to the guantifieoc variable, if
there is such a pair. This is an unlikely circumstance and could be
completely avoided by the use ot uynigue variables.

DB=A(X,DB)

- un W G W 6 O @ W W

This function returns a data base to be used in proving the
second subgoal of an andesplit in C, an or=split in H, or an app=
lication of back chaining. If (DB X) is NIL then the data base re-
turned is the result of applying the substitution part of the anse
wer X to the old data base, DB. Otherwise, the valuye is a new data
base (el el e3) where

el 1s
(a) If (AUDB X) is non=N1L then (AUDB X)

(b) Else the result of applvying the substi-
tution part ©0f X to (AU DR).

e2 Is the merge of the restriction lists of
(DB X) and DE, This merge retains the most
recent restricticns on variables if restrice
tions exist in both restriction lists. The
most recent restrictions are those found in
the restriction list of (DB X).

e3 is the typelist unit of DR.

Composition of answers

COMPOSE(X,Y)

The composition of the two answers X and Y is, of course, again
an answer and hence, if non=NIL, is generated by a call to ANS within
COMPOSE. The substitution part of this answer is computed as the com=
position of the substitution parts of X and Y with respect to the list
of protected variables, PV. 1f this composition Is inconsistent (see
CUMPOSE=S1G) then the value 0f COMPOSE will be NIL. Dtherwise, in the
set variable prover, the value of COMPOSE will be

{CLEAN (ANS Z <AU el1> <RL e2> <TY e3>))
where
Z = (COMPUSE=3IG (S1G X) (SIG Y¥1})
el = The A=unit of the composed answer is the result

ot applving the supstitution part of Y to the
A=ynit of X, 1f X has an A=unit,



12

e2 = The restriction list of the composed answer is
{a) The result of applying the substitution
part of Y to those entries in (RLDB X) which
are protected, if (DB Y) is NIL,

(b} The entries in (RLDB Y) which are protected,
it (bB X) is NI1L,

(C) The entries pf (RLDRBR Y) which are protected,
if (RLDB Y) is not NIL and neither (DB X) nor
(DB Y} 1is NIL.

(d) The result of applying the substitution part of
¥ to the entries in (RLDB X) which are protected, if
(DB X)) and (DE Y) are non=NIL and (RLDB ¥Y) is NIL,

e3 = Since the tvpelist is a hypothesis, it is not part of an
answer; hence, 3 = NIL,

CLEAN(X)

W W W W @

This function takes an answer, X, as argument and returns a
"cleaned up" answer, by removing useless units from the substitu-=
tion part of X, and by removing unneeded restrictions from (RLDB X).
The functions CLEANSIG and CLEANRL perform these tasks. (AUDB X)
and (TYDB X} are returned uyntouched,

COMPOSE=S1G(X,Y)

This function returns the composition of the substitutions
X and Y with respect to the list of protected variables, PV,
All substitution pairs trom both X and Y which are connected to
PV are first collected in XX, 1t XX, viewed as a sybstitution, is
not CONSISTENT, then COMPOSE=SIG returns NIL. Otherwise, X is set
t0o (INTERSECT X XX}, Y is set to (INTERSECT Y XX) and {(STABILIZE
({COMPUSE=S X Y)) 1is returned,

CONNECTION(S,L)

@ en @ W @ W DGR G W US O E2 W W

This function returns all substitution pairs from §, which
are connected to variables belonging to the list L.

Examples

S L CONNECTION(S,L)

TED DD ST DB @@ @

{a/x, b/v} {x) {a/x}

{a/x, tixl/v, c/z} {(x) {asx, t{x)/v}



13
{a/x, £{(x)/vy} {(v) {a/x, £(x)/v}

CONSISTENT(S)

It 5 = {ti/x1,...,tn/%xn} is a substitution, then § is
consistent provided that

P(tl’..-ltn)
and
P(Xil,00.%¥N)

are unifiable,

Examples
{a/x, b/y} consistent
{a/x, b/x} inconsistent
{y/%x, £{x)/y} inconsistent
COMPOSE=S(X,Y)

If X = {ti/xi,...,tn/xn} and Y = {ul/vi,...,um/ym} then
(COMPOSE=S X Y) = {t1Y¥/X1,...tnY¥/xn, Ul/Yi,c0e,um/vm},
where tiY, 1gign, is the result of applving the substitution
Y to the term ti.

STABILIZE(S)

This function repeatedly composes the substitution § with
itself, until the resulting substitution does not change under
self-composition.

Examples
s STABILIZE(S)
{a/x, b/vy) {a/x, b/y}
{a/7%, £{x)/v} {asx, £(al)/yi
{a/z, z/%, £(x)/v} {a/sz, a/x, £(a)/vy}

THE TRAPPING MECHANISM



14

The term "trapping mechanism” refers to the mechanism IMPLY
uses to bacKtrack and recover from substitutions which lead to
unprovable supbgoals, The simple scheme whicCh we adopt may not be
practical in domains where backtracking is & persistent problem,
However, it has been adequate for our purposes., In fact, it has
pbeen more than adeqguate: some of the examples have been contrived
to lllustrate features which may never be needed in actual prac=
tice,

Since IMPLY inspects the hypothesis of a theorem "from left
to right", it 1s susceptible to falling into traps. For example,
when proving

{Th) Pa & Pb & 0Ob => Px & 0QXx,

IMPLY will first fall into tne trap of trying the instantiation
a’/x, when it fails to prove

(Th 2) Pa & Pb & Qb => Q3,

it will backtrack, exclude the instantiation a/x, and prove (Th)
with the instantiation b/x.

The heart of the trapping mechanism is the variable EXCLUDE,
1t appears as a parameter of each of the functions AND=C, OR=H,
and TRYBACKCHAINING, the three functions of IMPLY which can ini-
tiate backtracking. EXCLUDE is simply a list of substitution pairs
which nave led to unprovable subgoals in the proof tree. The funce
tion UNIFY will pever return a unifier whicn has a substitution
pair belonging to EXCLUDE. Thus, in the example above, AND=C added
a’x to EXCLUDE, which prevented UNIFY from solving the subgoal

{Th 1) Pa & Pb & Cb => P¥

with a/x. Instead, the substitution b/x was returned, which satis-
fied (Th 2) as well,

We are now ready to discuss the implementation o¢f the trap=
ping mechanism. A few definintions along with examples which illu-
strate them are presented first. Next the definitions of AND=C,
OR=H, and TRYBACKCHAINING are presented, followed bv a descrip-
tion of the auxiliary functions which they call. Finally, a8 few
examples which exercise the built in mechanism are listed,

DEF
I1¢f 8 = {ti1/%1,..0..,tn/%XNn} is & supstitution then
S is self=-confljcting if
(UNIFY (P tl,ootn) (P Xil...Xn)} = NIL
Examples 0f selt=conflicting substitutions
{a’/x, C/y, b/x}
{e(x)/ &}
{£(x)/yv, gilv)/x}

{e(xd/yv, qlvi/sz, h{z)/x}



15

DEF
It 8 = {ti/xl,..stn/%n} is & substitution and B is
a formula then the component til/xil 0f S meets B if there
is a subset {ij,ee.iy} o©f [1..n] such that
xiloccurs in ti2

X; oCcurs in t.
i *3

and

and
;. OCCUrs in &
and&kq' &
Xj, OcCurs in B,
Examples
S B components ¢0f S which meet B
{a/%x, b/x%} P(x) {a/%x, b/x}
{a/%x, b/x, c/vy} Ply) {c/v}

{€£(x)/y, 9(v)/z, h(z)/%x, F(x)/u} P(x) {£t(x)/v, glv)iz, h(z)/x}

DEF

I£f 8§ = {ti/xil,...,tn/%Xn} is a substitution and B is
a formula then S is in conflict with B if the components
0f §& which meet B form & self=conflicting substitution.

Examples
S B S in conflict with B
{a/%, b/x} P(x) yes
{a/%, bl/y, C/V} P(x) no
{t(x)/y, 9ly)/x} P(x) ves
{£(x)/y., gly)sz, hiz)/x} P{x) yes

The functions AND=C, OP=H, and TRYBACKCHAINING.

The tunction AND=(C is called whenever the current
subgoal is of the form H => A & B, The tunction OR=H is
called whenever H contains a hypothesis of the form A B,



16
The function TRYBACKCHAINING is called whenever HOA en=

counters an arrow hypothesis. The comments refer to the
numbered examples at the end 0f the section.
(AND=C (LAMBDA (EXCLUDE)
1f [{H => A)JFix=pv(A,B) returns X then
if LH => BXIFix=rv{(A,B) returns Y then

1f COMPOSE(X,Y) = NIL then return NIL

else if COMPOSE(X,Y) N EXCLUDE = NIL
then return CUOMPUOSE(X,Y)

else (¥ EX1 *)
<TEMP <= Select=intersect(EXCLUDE,X,Y)
return AND=C(EXCLUDE U {TEMP})>
else i X = T or B = BX then return NIL
else if {(H => BlJFix=pv(A,B) returns Y then
if Y = T then (¥ EX2 *)
<TEMP <= Car(Sig=occur(Xx,B))
return AND=C(EXCLUDE U {TEMP})>
else if in=conflict=-with(X U Y,B) then (% EX3 %)
<TEMP <= Breakecontlict(XUyY,B)
return AND=C(EXCLUDE U {TEMP})>
else return NIL
else return NIL

else return NIL

(OR=H (LAMBDA (EXCLUDE)
1f [H & A => CIFix=pv(A,B) returns X then
if (H & BX => ClFix=pv{(A,B) returns Y then
3£ CUMPOSE(X,Y) = NIL then return NIL

else if COMPOSE(X,Y) N EXCLUDE = NIL
then return COMPOSE(X,Y)

glse (¥ EX4 %)
<TEMP <= Selecteintersect(EXCLUDE,X,Y)
return OF=H(EXCLUDE U {TEMP})>
else if X = T or B = BX then return NIL

else if [H & B => ClFix=-pv(A,B) returns Y then



17

if in=conflict=with(XU ¥Y,B) then (¥ EX5 ¥}
<TEMP <= Breake-contlict(XUY,B)
return OR=H{EXCLUDE U {TEMP} >
else return N1L
else return NIL

else return NIL

{TRYBACKCHAINING (LAMBDA (EXCLUDE)
It TRIB(B,C) returns (X ,H°, C°) then
if (H => H'XJFix=pv(H’,C°) returns Y then
1t COMPOSE(X,Y) = NIL then return NIL

else if COMPOSE(X,Y) N EXCLUDE = NIL
then return COMPOSE(X,Y)

else (% EX&6 *¥)
{TEMP <= Select-intersect(EXCLUDE,X,Y)
return TPYBACKCHAINING(EXCLUDE U {(TEMP})>

else if LH => H JFix=pv(H’,C’) returns Y then
if Y = T then (% EX7 %)

CTEMP <= Car(Sig=occur{(X,H?})
return TRYBACKCHAINING(EXCLUDE U {TEMP}J)>

else 1f in=conflictewith(XU Y,H’) then (* EX8 *)
<TEMP <= Break=conflict(XUY,H")
return TRYBACKCHAINING(EXCLUDE U {TEMP})>

else return NIL
else return NIL

else return NIL

The auxiliary functions called by AND=C, Ok=H, and TRYBACKCHAINING,

BREAK=CONFLICT(S,B)

When this gtunction is called by AND=C (OR=H, TRY~-
BACKCHAINING), 8§ = {ti1/%l,...,tn/xn} will be &8 substi-
tution which is in conflict with B. The value return=
ed is the first component ti/xi of & such that ““+1h“+1*
cesstn/xn} is not in conflict with B. * +



18
FIX=PV(A,B)

- R g W g O D TR e

This function returns the union of PV, the current set of
protected variables, with the variables which the two formulas
A and B have in common. The notation

[H => A}JFix-pv{A,B)
denotes & call to the function IMPLY with Fix=-Pv(A,B) as the

value of the LAMBDA=-variacle PV. See the section on protected
variables.

IN-CONFLICT=WITH(S,B)

O T D W D W W S D R GR W D @ W R W o O

This function checks to see whether the substitution
S is in conflict with B, 1f S is in conflict with B, the
value returned is the set of components ot S which meet B,
By definition the substitution tormed by these components
is selt=conflicting.

SELECT=INTERSECT(EXCLUDE,X,Y)

This function returns the first component ti/xi
of X such that (ti)Y/xi is a member of EXCLUDE. When
it is called by AND=C (OR=H, TRYBACKCHAINING), it is
Known tnat there will be such & component.

SIG=0CCUR(S,B)

This function returns {ti/xi €S :xi occurs in B}.

TRYB(B,C)
If B has one of the torms
(a) A => C°
(b) A => (P =>C"*)
(c) a => XSES
(d) B => P=Q
and, 1f in the corresponding case,

(a) U <= ANDS(C*,()



19
(b) U <= ANDS(C*, C)

(c) U <= HUA-SET(XS€S,C)
(d) U <= EQ=H2(DB, H = {A => P=0}, C, P, Q)
is not NIL, then TRYB will return a triple (X, H’, C°) where
X = CUMPOSE(U,V) where
¥V is

(i) ANS(T,NIL) if (SIG U) = T or (RL DB) = NIL
(11) If (SIG U) = T and (RL DB) = NIL, then there is a
possibility that (SI1G U) will contain instantiations for
variables which have restrictions in (RL DR). For ex=

ample, consider

{(Th) a < b € ¢ & Qb & X{(UPX => PCX)
=> Fy (@ < ¥ € b & Pybl.

(Th 1) will place the restriction (’int’ v a b) on v.
Hence, when back chaining is used in (Th 2) we must first
verify that a < ¢ < b in order to validly make the in-
stantiation ¢/y., TRYB calls TEST=DB to perform the veri=
tication., The verification is carried out by IMPLY and
the answer is placed in V., It this answer is NIL (could
not verify) then the value of TRYB will be NIL.

and

H® is
(a) &
(b} P & A
(c) A
(d} A&

and

C’ is
(a) C”’
(b) C°
(c) X eS8

(d) P=Q

EXAMPLES 0f theorems (and non=theorems) which exercise the
bullt in mechanism,



20
1, Ptx & Pfb & Qa & Rfb => (Py & 0X) & Ry

2. Px => x<6 & (P(3) & 4<x)

3. Pa & Pp & Qb => Px & Qx

4. (PYy v Qx) v Ry => Pfx v Pfb v Qa v Rfb

5. PXx v Qx => (Pav Pb)v O0Ob

6. 0a & (Ux => P£fX) & (Qx => Pftb) & Rfb => (Py & Rvy)
7o (X < 6 & 4 < x => Px) => p(3)

8. Pba & (PXy => 0xX & Qy) => Qa

9. Pfa & Pfy & Qfb => Px & ox

10, Rfa => (Ptx & 0x => Py & (Qa & Ob)) & Ry

11. Qa => (Px => Pa & Pt) & Ox

NOTE: x,y, and z are variables: a and b are constants: £ and
g are tunctions,

THE PROTECTED VARIABLE MECHANISM

BED CPETTPOODD DO RD DD oD

The term "protected variable mechanism"” refers to the me=
chanism IMPLY uses to delete substitution pairs from answers,
when these pairs contribute nothing to the solution of remaine
ing subgoals. For examrle, consider

(Th) Px & Qy => (Pa & Pb) & Ob,

(Th 1) will be solved with the substitution {a/x, b/x}. However,
sinCce x doe not occur in the conclusion of (Th 2), there is no
need to return this substitution as part of the answer of (Th 1).
This examples serves as motivation for the definition ot a pro=
tected variable.

DEF
A variable x is protected it
(a) It occurs in both conjuncts of a conjunctive subgoal

H => C1 & C2. (Recall that we think of & 48 @ binary cone

nective,)
H

or

(b) It occurs in both disjuncts of a disjunct A B in the
hypothesis of a subgoal,

or



-

21

{c) 1t cccurs in both the hypothesis and the conclusion of
an arrow hypothesis.

From the definitions of AND={C, OKR=H, and TRYBACKCHAINING, we
see that variaples are added to the list of protected variables,
PV, by the tunction Fix=pv in accordance with this definition.
Referring to the definition of COMPUSE=SIG, we see that the sub-
stitution part of an answer will contain only those substitution
palrs which have some CONNECTION to PV, The following are some
examples which exercise the protected varliable mechanisn,

i. Px => Pa & Pb

2. (Qhz => (Ptx => Pfgy & Pu) & Qy) & (Rgha => RX)
3. Rga => (Qhu => (Pfx => Pfgy & Pz) & Qv) & Rx

4. Ptac & Qb & (Qy => R(fxy,x)) => Rva & Pv

NOTE: u,v,X,¥Y, and z are variables; a and b are constants: £,
g, and h are functions,



22

APPENDIX



23
The task of maintaining IMPLY is made simpler by splite
ting up the source code into a number of separate files. These
files separate the main components ot IMPLY so that they may
be modified or replaced to suit the implementor’s needs. The
following is a brlef description of the component(s) on each
tile of the set variable prover.

INIT.LSP

This file contains the function INITIALIZE, which performs
the initialization necessary to run IMPLY. It is loaded automae
tically by UCI=LISP,

IMPLY . LSP

This 1s the main file of IMPLY. It contains most of the
tunctions which comprise the control structure of IMPLY as de=
scribed in this document, It also contains the functions which
perform detinitional instantiation and equality substitution.

UTLTY . LSP

This file contains various vutility functions which are call-
ed in all of the other files, It would be desirable to compile
these functions, since they are called so frequently. They are
very stable and most of them are apt to be useful in any theorem
prover based on IMPLY.

MATCH.LSP

The routines which IMPLY uses to do matching are contained
on this tile, It also contains the routines which will force
checking it unitication produces a value for a variable which
has an entry in the restriction list (see [2]1).

PROMOT.LSP
This file contains the routines which implement the rule of
promotion:
H => (P => ()
goes to

P & H=>» Q.
In the set variable prover the additional hypothesis, P, is ine
spected for ground inegqualities (call to SET=TYPE) which are
added to the typelist unit of the data base, The function PRO-
MOTEZ will call the forward chaining routines if FC=LT = T.

REDUCE.LSP

This file contains all o0f the reduce tables and is the most
domain dependent component of IMPLY. The function REDUCE#* is the
driver routine. It keys on the main predicate of its argument, TH,
and calls the appropriate subfunction., Note that P, the second
argument of REDUCE*, is & parity indicator (either T or NIL) and
is used as a free variable in reduce functions (eg. EL=REDUCE)
which must call REMO to perform skolemization as part of & reduce
tion.

FC.LSP



s

24

This file contains the forward chaining routines. The griver,
FC, is called by PROMOTEZ if FC=LT = T, The function PEEK imple=
ments the rule of "peek forward chaining® by calling DEFNP to
expand detinitions.,

OPTION.LSP

The function OPTIONS is on this file.

PRNT . LSP

All 0f the printing functions are on this file. Note that
unigue print names for Skolem constants are created by UNSKO*%
and placed, in dotted pair form, on the global variable USED,

PLE.LSP

This file contains the functions which are uysed to prove
inegualities, Chief among these are PROVE=LE, PROVE=LE=GROUND=
CASE, RESTRICTION=LE, and MATCH=LE (see [2]). None of the
functions on this file are needed when using IMPLY to prove
theorems which do not involve inegualities,

SUPINF,LSP

This file contains the routines SET=TYPE, to build the {ype=
list unit of the data base, and SUP and INF toc determine the
truth of ineqgualities by lnspecting the typelist. See [2]).

SETUP.LSP, XEVAL.LSP, PUBLIC.LSP, XEVALI.LSP, XEVALR.LSP

DD DTSRV O NDOEPPODREVD DR o R IR SR G U e R o

These files contain the algebralc simplifier, XEVAL, written
by Don Good at the University of Texas. SETUP.LSP is an initia-
lization tile. The last four flles are the source code for XEVAL,
which we always run in compiled form. XEVAL is called only by
SIMP in the set variable prover,

EGS.LSP

This file contains a set of bench mark examples. Thev should
be useful to anyone trving to understand the implementation ot
IMPLY.

iMPLY is run on a PDP=10 KI processor at UT Auystin using UCI-
LISP, 1t requires about 120K octal allocated as follows:

FULL WORD SPACE = default
BIN PROG SPACE = 7400

REG PDL = 2000

SPEC PDL = 2000

The 7400 words of binary program space are heeded to accomodate
the compliled version of the algebraic simplifier, XEVAL.



1.

25

References

W. W. Bledsoe.
Proving.
July 1977,

A Maximal Method for Set Variables in Automatic Theorem
The University of Texas Mathematics Department, Memo ATP-33A,

W. W. Bledsoe, Peter Bruell, and Robert Shostak.
Inequalities,

June 1978,

A Prover for General
The University of Texas Mathematics Department, Memo ATP-40,



