A7

Internal Note 4/30/777
Certitiaple Minicomputer Project
The University of Texas at Austin

THEUOREM PROVING IN A PROGRAM VERIFICATLON CONTEXT

Mark 8. Moriconi, Mabry Tyson, Richard M, Cochen
The University of Texas at Austin

Introduction

This paper considers the symbiosls Dpetween theoren
proving and program verification and focuses on the way this
interrelationship has @affected the design of & vprogranm
veritication system currently under devejlopment,

Veritications are typically carried out in less
well=understood domains (e.d,, communications processing)
than hignly=developed areas of traditional mathematics. For
example, it 1s commonplace in verification == gs 1in the
analog ot developing new matnematical theories == to
introduce lemmas or detfinitions, vrevise tnem for any of
several reasons, then try proots again, Because of this,
several important problems arise.

Verifying a prodram may dinvolve proving hundreds ot
theorems and assuming nundreas o©of properties for use in
proofs, These properties are intended to formally
characterize the verification domain and are freguently
revised throughout & veritfication, Revisions are necessary
(1) when a proof attempt fails and (2) when proofs succeed
due to an incorrect characterization ot the problem domain.
The proof mpanagenent probhlen is to declide what proots are
atfected by revisions, and thereby avold redoling any
stillevalid proots, In order to do this, the veritication
system nas a proof manager that Keeps track o¢f proot
dependencies,

Closely scrutinizing proofs aids in discovering what
revisionsS are necessarye. AS a resylt, our theorem prover
addresses the proof presentation proplem of collecting and
displayving detailed records of proofs that make explicit

e U0 R TR W W wS D UD WD US UR W O o W w @

Part of the first authorfs work was done at USC
Information Sciences Institute,

Authors?® address: Certifiaple Minicomputer Proiect,
University of Texas at Austin, Austin, Texas 78712,

6

steps in derivations along with thelr Jjustifications,

After the user makes revisions, the proof manager
supplies t(he theorem prover with the proofs that need to be
(partially) redone and the revised properties. 7The theoren
proving Ie=proof problem is how to retain still=valid parts
0f atftecteqg proofs,

We discuss these and other issues in the context of
this veritication system and its theorem prover., kExamples
will be given.

Sysien Querview

The purpose of a program verification system 1s to
automate the task o©¢if proving the consistency between &
computer program and specifications or assertions describing
what the program is supposed to do, Program text is
supplied together with assertions describing the program.
verification involves demonstrating that programs meet their
specifications. This 1s done by proving theorems, called
verification conditions (V(s), derived trom the program
texts.

This system evolved ¢trom the verifler described in
Good, London, and Bledsoe 175}, and is discussed further in
Moriconi (77}, The theorem prover is &an extension o©f an
already highly=developed program discussed in Bledsoe anec
Tyson [7bal. Programs written in the language Gypsy
{Ambler, Good, and Burger 76)] are verified, Language
features include concurrency, data abstraction, and run=time
error recoverve.

lmpact of Iheorem Provipg on ¥Yerification System Design

Several principles emploved in the verification svstem
design are motivated in part by theorem proving
considerations, Some are outlined below,

lotorpation nanagement, verifications involve
developing an Iinterrelated collection of intormation that
includes programs, specifications, VCs, assumed properties,
and proots, storing and relating this information in a
single data base enables the theorem prover, for exanmple, Lo
access any needed information without Knowledge ©0f its
origin or of its representation agetails. For example, the
prover’s typelist mechanism handles integer=valueqg variables
~[Bledsoe and Tyson 75b}. The prover, therefore, queries the
data base tor type intormation before entering a variable
into the typelist. NO Knowledge is requlred of the prover
concerning context or symbol table representation,

Page 2

praoof mapagement, Because theorem provers deal with
individual theorems, & proof manager is needed to maintain
the integrity of a collection of proofs that arises when
verifying a large prodgram. Doing this in a verjfication
context raises several guestions discussed in Moriconi (77},
such as determining what is aftected by revisions, and
determining when and how inconsistencies c¢an bpe resolved,
We focus here on the mechanism tor keeping track of wnat
properties are used in each proof., The proot manager can
then identity which proofs need to be redone 1if any property
is changed and which proots remain valid,

The user can revise properties whenever convenient,
This flexibility 1is wuseful, for example, when the user
discovers at some point in a proof that a new property 1s
required, Wwhen he supplies ¢he needed property to the
prover, the proof manager stores it in the data base for
subsequent reference and uypdates the data base
appropriately. :

Size of ¥Cs., V(s are often gquite large and bulky,
hindering effective wuser analysis, For example, some V(s
that arise from concurrency in communications processing
examples are 50 to 100 1lines long, Limiting thelr size
significantly aids the interactive proving process. we
address this problem bpy simplifying VCs as _they are
generated and by deferring the expansion o0f specifications
from called programs in both specitications and executaple
coae until the actual proof ha&s begune. These systen
features tend to reduce the size of V(Cs, enhance
readability, and Kkeep them 1in terms of user=detined
abstractions,

Deferred expansion is an important system feature., 7The
VC generator dinserts only references to specifications of
called programs, instead of the speciftications themselves.,
Then, complete specitications, or parts of specifications,
are expanded automatically or interactively as needed during
the proof, The data base, proot manager, and prover
interact to perform expansions,

lopact of Yerification op Ibeorem Brover Design

1t an attempt to prove a VC falls, the user revises the
program, its specifications, or assumed properties before
trying the proof again, Understanding why proofs fail
suggests what to revise, See von Henke and Luckham [75] and
Katz and Manna [75) for related work., 0On the other hang,
successfully proving & VC does not necessarily imply that
the description of the domain is correct. For example,
individual properties that appear to accurately characterize
the domain may subtly interact to cause unintended
inferences; or a proved subgoal may be intuitively
incorrect in the domain, Closely scrutinizing detalled

Page 3

records ©0f proofs alds in identifyving the cause of such
anomalies,

Analysis of proots is ajided by our use ot an
interactive, natural=deduction theorem prover. - An
interactive policy is useful when attempting to_ prove &
currently unproveable VC because the user can examine the
context of the failure, Often all that is needed 1is to
supply additional properties, A naturale=deduction proot
strategy 1s important because dialogs and records of proots
are in a tormat that is natural and convenient to the user,

Broof preseptation. Since successful proofs may depend
upon properties that incorrectly describe the domain,
easily=understandable r1ecords of proofs == displaying how
properties are used == are important as documentation tor
verifications to be credible. Thus, the prover «c¢ollects a
detailed record ©0f proots that makes explicit both built=in
and user=supplied assumptions. This record is then stored
by the proof manager for subsequent reference, The user
views these proofs with a duale=mode proot display facility.
He has the option of interactively directing presentations
by reguesting the desired amount o©of detall at selected
steps, or of naving & completely automatic presentation by
speciftyving initially the amount of detail desired
tnroughout,

Be=proots. Recall that when revisions are made the
proof manager preserves stillevalid proots, then invokes t¢he
prover with the affected proots and the revised properties,
The prover is now confronted with the problem o0f retaining
stille=valid parts of these affected proofs. Altnough tnis
problem may appear unrelated to the proof presentation
problem, they are in fact highly interrelated, Proots ot
aftected subgoals must be consistent with other parts ¢f the
original proot. We, therefore, use these representations of
proocts Lo supply the necessary ¢context, FoOr example, the
prover must be aware ©of all substitutions made in proofs and
also the context in which they were made because
substitution conflicts may invalidate previous deductions,

The prover currently accepts re=proofs when the
substitutions made in a subgoal’s nhew proof subsume those
made in its previous proof. We are Ainvestigating other
parts of this problem within the logic 0f our prover.

Ackpouledgenepnts

We are indebted to W,W. Bledsoe and Donald 1. Cood for
their support and numerous contribputions to this worke.

The research described here was supported 3in part by
the National Sclence Foundation (Grant DCR 74=12866) and the
Defense Advanced Research Projects Agency {(Contract

Page 4

DAHC=15=72==0308 and Urder 3286). The views expressed are
those of the authors,

Beferences

A,L, Ampler, D,Il. Good, W,F, Burger ({76}, Report on the
Language (Gypsy, 1CSCA=CMP=1, The University of Texas at
Bustin, 1976,

W.W, Bledsoe and M, Tyson [75a), The UT Interactive Prover,
University o©of Texas at Austin Mathematics Department
Memo ATP=17, May 1975,

WeWo. Bledsoe and M, Tyson [75b]}, Typing and Proof by C(ases
in Program Verification, University of Texas at Austin
Mathematics Department Memo ATP=15, May 1975,

F.W, von Henke and D.C. Luckham ([75], A Methodology £for
Veritying Progrars, Broc. of lpternpational Lonference
on RBelliahle Softxare, April 1975, 156=164,

S, Katz and Z. Manna [75], Towards Automatic Debygging of
Programs, Eroca of lpternatipnal CLopference on
Beliable Soffware, April 1975, 143=155,

M.S5, Moriconi [77), An Interactive System for Incremental
Program Desiogn and Verification, Ph.D. thesis,
University of Texas at Austin (in preparation).

Page 5

