Conflicting Bindings and Generalized Substitutions

Mabry Tyson
W. W. Bledsoe

Problems arise combining conjuncti&e subgoals whose solutions
require conflicting bindings. Using a generalization of

substitution, a method is given that allows the combination of
the solutions.

One of the most productive methods of problem solving is problem
reduction. If a problem can be split into two independent parts
each of which may be solved separately, finding solutions to the
smaller problems is a much simpler task (1). While
problem reduction is very basic to human problem solving, it is
perhaps more important to problem solving by machines (2,3).

The recursion of algorithms that solve problems by reducing them
to subproblems (to which the algorithm is reapplied) contributes
to the clarity and conciseness of the algorithm. Also, present
computer programs are not as adept at separating out the chatf

as humans are and are therefore more susceptible to
combinatorial explosions.

Solutions to independent problems are orthogonal and can be
combined without interference. This is not so if the problems
are not completely independent. 1If two parts of a problem are
somewhat interdependent, it is necessary to confirm that their
two solutions can be combined to return a single solution for
the whole problem. Actually it is not the two parts that must
be independent, it is their solutions. Since any problem may
have a number of different solutions, for two problems, one pair
of solutions may be independent while another pair may be
mutually exclusive. (Example - If you need a number that is
both odd and prime you would lose if you picked the £first odd

number for one subgoal and the first prime number for the other
subgoal.)

The divide and conquer methodology is central to the method of
theorem proving often referred to as "natural deduction”
(2,4,5,6). One of its principal proof techniques is splitting a
single goal into multiple goals and later combining the results.
Thus to prove

H=>A&B

the two subgoals

H => A and H => B

are proved. Unfortunately it is not quite as simple as this due
to the presence of variables that may occur in H, A, B, or even
in higher subgoals. This paper will examine the ©problems of
independence of subgoals and their solutions within the context
of a particular methodology of theorem proving. We will also
show how the solutions must be combined to provide a solution of
thé higher level goal. Most of the time two subgoals may be
combined rather simply. We present a theorem that defines the
necessary conditions for this. We also present a theorem that
covers the situations where the two solutions interfere with

each other. 1In order to do this we will generalize the concept
of substitutions.

I.J.

The UT interactive theorem prover is a natural deduction system
developed by Bledsoe's group at the University of Texas which
has been used over a number of years to prove theorems in such
areas as set theory, topology, program verification, and limit

theorems of calculus and analysis. The following discussion
will be presented in terms of this implementation although the
ideas and techniques extend much further. For a complete

discussion of this prover see (7).

When a closed formula, E, is given to the prover, it skolemizes
the formula into an open formula, S. By the nature of the
skolemization, if there exists some substitution, ©, such that

s is ground and true then the original formula E is true.
Likewise if there is some set of substitutions 6

l’ 62’ 0“, e
such that

m

Sel v 862 v’... v Sem

is both ground and true then E is true.

Although an open formula which is true for every interpretation
of its free variables could be called true, we will call such a
formula ground-true. The name derives from the fact that a

proof of that formula would treat the variables as ground terms.
An example would be the tautology

X v —X.

The similar closed formula

FX (X v =X) g
is true while the previous open formula is only ground-true. A
formula that is true will also be considered to be ground-true.
The reason for this distinction is that in the prover a goal
will typically contain free variables that may be bound in the
proof. We will refer to such a goal as provable if there is
some substitution that will make the goal ground-true.

Consider what happens when the prover is given the formula
(VX P(X)) => P(A) & P(B)).
The skolemized form is
P(X) -> P(A) & P(B)
which is given to the routine IMPLY. IMPLY 1is the recursive
routine that has the task of determining a substitution (which
IMPLY returns as its value) which makes its input ground-true.

For this example IMPLY will recur on the two subgoals

P(X) => P(A) and P(X) -> P(B)e

The two subgoals are proved with a substitution {A/X} for the
first and {B/X} for the second.

But is this enough for IMPLY (as opposed to the full prover) to
report it has proved its original input? The two subgoals were
not independent as they both contained the variable X so their
solutions cannot be easily combined. In- fact, no ordinary
substitution exists which makes the original input to IMPLY
ground-true. As we shall see, 1in this particular case the
conflict in the substitutions for X does not lead to problems
that prevent the original input from being proved true but there

are non-theorems whose downfall is due to a similar step in
attempted proofs.

Remember that interdependent goals require some special
" manipulations in order for their separate solutions to be
combined to provide a solution for the combined goal. The
-»prover does check to see that solutions returned from subgoals

are such that they may be combined.
'In doing an 'AND-SPLIT such as above, the prover does not
actually prove the two subgoals independently. Instead, it
waits until the first subgoal succeeds and then uses the result
of that in setting up the second subgoal. This significantly
reduces the chance that the second subgoal would be proved
inconsistently with the first, If IMPLY is given the goal

H => (A & B)
it will first prove

H => A

using some substitution €. Then it will form the second subgoal

H => (B9)
and attempt to prove it. Consider the proof of

X (P(A) & Q(B) & Q(A) => (P(X) & Q(X)))

and it should be clear why the © needs to be applied to the
conclusion of the second subgoal.

When the second subgoal returns a substitution of A, the prover

will return the composition of the two substitutions, ex, as the
substitution that proves

H=> (A & B).
To prove that our proof method is sound we need to prove that if

IMPLY returns a substitution then that substitution will make
the 1input formula groiad-true. We will only prove this for the

(j

AND-SPLIT rule but the other rules used by IMPLY are proved
similarly. 1In order to prove it we need to show that if

(H =>’A)G

and

(H => Be)a
are both ground-true (inductive hypothesis) then

(H = A & B)ax

is also ground-true.

Difficulties arise when the two substitutions contain a conflict
such as the ones above ({A/X} and {B/X}). Two substitutions are
in conflict if they substitute different terms for the same
variable. Problems are also encountered if a substitution is
such that some element of its domain occurs in its range, that
is,.%£f. the composition of the substitution with itself differs
from,original substitution. So we will put conditions on the

solutions returned by the subgoals in order to make the theorem
provable.

Definition. A substitution 6 is called normal if the
composition of © with itself is ® again.

Definition. Two substitutions 6 and x» are said to conflict if
their domains are not disjoint.

Theorem: If e, A, and ©x are all normal and & and % do not
conflict, then if _

(H -> A)8

is ground-true and

(H -> Be)a

is ground-true, then

(H -> A & B)ex

is also ground-true.

Previously the prover would note conflicts in substitutions and
would halt a proof if the conflicts might give rise to problems.
The above example with the conflicting substitutions was handled
by returning the self-conflicting substitution {A/X, B/X}. The
prover would not allow this substitution to be applied to any
formula containing an X. By using this method the prover

handles most cases. However, the simplest example of a theorenm
the prover would halt on is

O(A) & Q(B) =>3X((P(X) => P(A) & P(B)) & Q(X)).

The proof of the first half of this conclusion proceeds
the previous example but the prover halts when trying to
substitute {A/X, B/X} into Q(X). However, we have developed a

theory that allows the prover to adequately handle these
conflicts and allow proofs to proceed.

as in

The central idea of the theory is the notion of generalizegd
substitutions. Basically a generalized substitution contains

both substitutions and information about the relationship of
these substitutions. '

Definition. © is a generalized substitution if

(1) ® is an ordinary substitution, or
(2) ® has the one of the forms
- (61l v 82), or (el & 02)

where 8l and 82 are geheralized substitutions.

Definition. If @ is a generalized substitution, then we

define
6' by
(1)- ' =6 if & is an ordinary substitution,
(2) (0l ve2)' = (el' & 02'),
(3) (8l & 82)' = (01' v 02").,
Definition. A generalized substitution is said to be a pure

disjunction (conjunction) if it contains

no & symbols (v
symbols).

Ordinary substitutions are both pure disjunctions

and pure
conjunctions.

Definition. If A 1is a formula and e is a
substitution, then Ae

left to right, ie, ,
(1) Ae is the usual result if & is an ordinary substitution,
(2) A(8l v 82) Aol v AB2,
(3) A(el & 62) = Ael & Ae2.

generalized
is the formula gotten by applying & from

wn

Properties: If & and X are generalized substitutions, A

pure disjunction, and A and B are formulas then A
conjunction and

(1) (e')!' ®

(2) - (A0) (-a)e!

(3) (A v BYx = Ax v Ba

(4) (A & B)x = Ax' & Ba'
(5) (A => B)x = (AX' => B1)

is a
is a pure

nu

The following theorem justifies an AND-SPLIT that makes use of
generalized substitutions.

4

Theorem: If) and » are pure disjunctive generalized
substitutions then if ¢ is such that

(H => Ale
is ground true and X is such that
(H =-> Bo')a
is ground true then
| (H => A & B) (62 v 1)

is ground true.

If IMPLY is given the goal of
| ({H . => A & B)
it will first form the subgocal
(H => A).

If this subgoal now returns the substitution ©, IMPLY will form
the second subgoal

(H => Bs').

If this subgoal returns the substitution A, IMPLY will return
the substitution of

(6x v 1)

for the original goal. ’

Thus the two conflicting solutions of the subgoals generated by
the earlier example

P(X) => P(A) & P(B)
can be combined into the single generalized substituti§n
({a/x} v {B/X]).
Wwhen this method is applied to the example
0(a) & Q(B) =>ZX((P(X) -> P(A) & P(B)) & Q(X))
the second subgoal becomes

Q(A) & Q(B) => O(X) ({A/X} v {B/X])"

which is just

g

0(A) & Q(B) => 0(X){A/X} & Q(X){B/X}

and is proved.

At first glance it appears that the use of generalized
substitutions increases the amount of work in the simpler cases

one level up. If 8 is {A/X} and A is {B/Y} then the returned
substitution is :

({a/x, B/Y} v {B/Y}).
If this goal were the first subgoal of the higher.up goal
| H => ((A & B) & P2)
then we would need to prove
H => P2({A/X, B/Y} v {B/Y})'
which is
H => 'P2{A/X, B/Y} & P2{B/Y}.
It is easy to see that this is equivalent to
H => P2{A/X, B/Y}

which 1is what would have to be proved using the procedure that

does not allow conflicts. The prover can detect this rather
simply.

References

1. Nils J. Nilsson. Problem-Solving Methods in Artificial
Intelligence, McGraw-H11l, 1971.

2. A. Newell, J.C. Shaw and H.A. Simon. Empirical explorations
of the logic theory machine: a case study in heuristics.
RAND Corp. Memo P-951, Feb. 28, 1957. Proc. Western Joint
Computer Conf. 1956, 218-239. Computers and Thought,
Feigenbaum and Feldman (Eds.), 134-152.

3. James R. Slagle. A heuristic program that soclves symboli
integration problems in freshman calculus, JACM, Vol 10,
1963, 507-520.

4, H. Gelernter, Realization of a geometry theorem-proving
machine. Proc. Int'l Conf. Information Processing,
1959, Paris UNESCO House, 273~-282.

* 5. Raymond Reiter. A semantically guided deductive system for
automatic theorem proving. Proc. Third IJCAI, 1973, 41-46.

6. Richard Fikes and Gary Hendrix. A network-based knowledge
representation and its natural deduction system,
Proc. Fifth IJCAI, 1977, 235-246

7. W.W. Bledsoe and Mabry Tyson. The UT interactive theorem
prover. The Univ. of Texas at Austin Math. Dept.
Memo ATP-17a, May 1975,

