THE OVERDIRECTOR
by

Peter Bruell

August 1979 ATP-49

This work was supported in part by NSF Grant

MCS77-20701 at The University of Texas at Austin.

Contents

Introduction .cceccecosssvcsccsosecscvvsoccsccacsass
Type Peclarations ccccescscccscscsosssosssscsssasans
Function DefinifioOnNs ccssceccessscesscscscccssscsnss
The Intertace between the UVERDIRECTUR and IMPLY ..
The Trapping ProblelM ..cccccevcecsscssscsscsccssass
The Role 0f QUIT=LT cccocscocscssccccsscccssosacsascsnscs
REeMATKS coesccccsscsccsosccccsocosoecssasosococscnnsss

ReterenCES AN N A NN EEEENENRENE-RENE-E-ESE-EJ-EJZE-EJSJEMNEMNJENEBRESENENNENE-RN]

Page
2

4

©

i6
290
21
22

23

Page 2

1.0 INTRODUCTION

The UVERDIRECTOR conceptually isoclates domain dependence ot the
search conducted by the program described in [1]. 1Its mechanical
aspects along with its interface with IMPLY are detailed in this
document. The document also contains brief descriptions of some
semantic, domalin dependent functions (e.g, PRIORITY) which hint at
the way in which semantic knowledge is called upon. Before continuing
it would be helpful to visualize the system as depicted in Figure i,

|]
| }
i UVERDIRECTOR {
i |
| |

}

]

y

AGENDA

A

}

]
| }
i IMPLY {
{ J

Figure 1.

When the program is running, control passes back and forth between the
two components, and they communicate #ith one another via the AGENDA.,

Section tnree of this document is most easily studied by ¢tirst
reterring to figure 2, The first assignment box shows the basic task
of the functions CYCLE and CYCLE#, while the big loop corresponds to
the body of the function UVERDIRECTOR itself. Since the listing of
functions is in alphabetical order, the sudggested approach is to turn
first to the description of OVERDIRECTOR and Lo proceed outwards from
there,

.

Pr—

v

DB RORRRBWBRBRBDRODOR R D DD D @ @I DD DS R O D D DD R

i
H <= Hypothesis ©f theorem i
C <= Conclusion of theorem i
AGENDA <= NIl i
i
j

P —

Generate=Tasks{({Quit C T), (0 NIL NIL T))

BRBDRDBG BB B RWBRD BRROEDE DR D TEDBROCR DR DR DR D DT T WD D

i
i
|jorwocsworovasnecences) |
}
v
T
AGENDA empty? wmee==> NO proof founc

- ER Gy OB WP @ T D Sp W oP 60 Wb ™ WO P Gw a

§

i

i

|

|

{

{ §

l IE

i {

H |

§ V

i D R R WD R D TR R Y R D T WP U T G T R TR o O TD NS O TR SR W W O WD AR O wn ap

§ i }

i | J <= Select=Task(T) H

i i Apply=Method{(Caar(Jd), Cdr{(Jd), T) i

§ § {

' DD DD VDD DD D DG e G T T S e e

! !

j |} New tasks are added to the AGENDA as
i | a result of the call to Applv=Method
| |

| ¥

§
§

@R TS s U O AR OD W W WP OR O R TR O o g W O O

mm e TRUE=task on AGENDA?

@ TR YD R P P R D P P OB T G SR aR O R U ap O Or WS OB

!

i1

i

j

y
Proof Found

Figure 2.

Page 3

Page 4

2.0 TYPE DECLARATIONS

For the purposes of documentation it will be convenieng to treat
LISP code as 1if it were written in a more formal algebraic languyage
which admits data tvypes., Since the documentation is not executable
code, these data types will be specified informallve.
Ans = Qulit or Answer or NIL

Answer = (Sigma DBR)

BC=Lemmas = "a 1ist of names of tnheorems to be used for backward
chaining®” (see chapter 4 of {11)

Conclusion = "a conclusion®

PB = "3 data pase®

Direction = (Formula Formula) or NIL

Disjunctive=string = "a disjunctive string®

Flag = (T, NIL}

Formula = "a first order predicate calculus expression®
G=Method = {CUNTRA%, DC*, DH*, ES%, FTLA%, NOQUIT*, PFEK*}

G’=Method = {CASES, CONTRA, DC, DH, ES, FTLA, IMPLY#*,
PEEK, QUIT, QUIT*, TRAP¥, TRUE}

Goal = Conclusion
or {°DH Hypothesis Goal} '
or (°‘DH¥ Hypothesis <definition of hypothesis> Goal)
or (‘ES (3= a b) Goal) or (°ES¥ (t= a b) Goal)
or (“CONTRA% Hypothesis Conclusion)
or (*CASES Disjunctive=string
Disjunctivee=string
Conclusionl
or (°BC Conclusion Conclusion)

Heuristics = {FTLA, PEFEK, ...}
History = "a list of tasx numbersg”

Hypothesis = ®a set 0f hypotheses represented py either a list
or & conijunctive string”

Messaye = "a guoted atom or string®
Method=name = G=Method or (’=Metnod

Method=names = "a list of method namesg®

R

Node = (Task=number Goal History Sigma)
Parity = {T, NIL}

Priority = "an integer or PFOSINF"
Promoters = {BC, CASES, CUNTRA%, DH¥, E3%,
Quit = ("Quit Goal Sigma)

Sigma = "a supbstitution®

SQ =A8tate or Quit

State = (Method=pame Goal Sigma)

State® = (Method=name Goal)

i

States list of State’

Task = Cons{{Method=name Prioritv), Node)
Task=number = [0,.POSINF)

Theorem = "a theorem®

Theorem=label = "a list 0f sympols"

TNIL = {T, NIL}

=>}

Page 5

Page ©

3,0 FUNCTIUN DEFIRITIONS

AH(G:Coal) it ormula

o T e Op W TR WD G TH WS R O W @B 0 wn W O

1f Typep(G, ‘Contra%x) then CadriG)

Else if Typep{(G,°’DH¥) then And-on{Caddr(G), AH{Caddr{Gil}
Else it Typep(G, ES*) then AH(Caddri{Gl;

Else if Typep(G,°®=>) then And=on(Cadr(G), AR(Caddr(Gli)
Else if Typep(G,° &) then AH(Cadr(G))

Else NIL

APPLY*HEURISTIC(H:Hypothesis, MiMethod=name, N:Node, Pi:Parity):inNIL

D O GO SR R g G T AR G5 W oD D U WP D TP WP P TR TP WP 40 WD T m O @ Y N0 gp OB D W D O 4R OR O OB D G0 R W5 U2 WD OF o o op GF U OB W 5 OB U0 o W R T W 0w

If M = °FTLA then FTLA(N,P)
Flse if M = ‘PEEK then PEEK(H,Conclusionl(n),N)

s« Calls to other hevuristics

Else NIL

APPLY=METHOD (M:mMethod=nane, N:Mode, P:Paritviyenil

1. 0 <= Apply=Method*{(WM,N,P)

2, 1t Q0 = NIL then NIL
(** A method which does not call ImPLY returns NIL ¥%)

3, Else it M = "IMPLY* and Conclusionl(Q) = Conclusionl{(N) then NIL
4, Else 1f Quitter(0) then

€if "Typep(Conclusioni(Q), BC) then Generate=tasks{Q,N)
else
(*% see section on QUIT=LT #x)
noguit=tasks{(Cadr{Conclusioni{(0l},
Caddr{Conclusioni(Ql}i,
Ca’jdr(Q)'
N)p

if “(S8igma(0) = T) then (%% gzee section on travping %)
for each u in Sigma(Q) do
New=(ask({°Trap*® (oalik) (ul), N}>

5. Else new=task{{(TRUE Goal(k) Car(0)), NJ
(%% Aagdg (he "TkUk=task” tc the AGELDA 2%)

Page 7

APPLY=METHOUD*(M:Method=nanme, N:iNode, P:Paritv):Ans

--_----Q-a-¢----'--~--'-n----u-------n—-g-anu-----

It M = *Contra then Pbc(Conclusioni(N),)

Else {f M = °‘DC then Detine=conclusior(Conclusioni(N), N)
Else it M = °DH then Define-nypotnesis(Cadr(Goal(N)), N)
Else if M = °‘ES then Egualitye=substitution(i)

Else if Memg(M, Heuristics)
then Apply=Heuristic(new=H(H,Goal(N}), M, N, P)
Else (%% M must be a method name ending in “%° x¥x)
Callimply({M, Goal(N}, M)

C=METHUODS (@ Quit):Method=names

D om e gp GP @ on g VR wP T o 0P W 0N PR G @ U5 U0 GR W W 0P W @ T U T

This function 1ooks at CONCLUSIU™1 of Q and returns a list of
method namés which wmay bpe wuseful in proving it. 1f no available
method applies to the root rode, °(1+PLY¥) is returned, indicating
that ImMPLY should be tried,

C=METHODS=F IRST(H:hypothesis, C:Conclusion) sTNIL

S AP Gn w o W o6 G o @6 UP R W0 OB GR 00 OF TR SR W O WY ap O on o AR G5 3R 99 mp GO T TR 4B 9B S 6D R @ W O @ o @ T

This function returns T if methoos which applv to C should be
tried before any methods which apply to H, Its domain dependence has
a great influence on the search conducted by the system (see the
section on priorities in <chapter 4 of {11). It is called by
GENERATE=TASKS before attempting to generate tasks based upon methods
which apply to the hypothesis.

CALLIMPLY(MSsMethod=name, G:Goal, N:Node):Ans

0, If TRACEOVERD then (¥#% running completely automatically *%)
Print some message indicating which task has
been selected fronm the AGENDA

1. EXCLUDE <= WnlIL
QUIT=LYT <= T

2, 1f m = ‘“Trap* then EXCLUDE <= Cacddr(n)
(*% FACLUDE set to sigma part of noace N %%)

3. IMPLY(DB, Hy G, TL, 8, NIL)

Page 8

CHOUSESUBST(H:Hypothesis, C:Conclusion,
A,B:Formulél:Direction

T D R P TR N W TN P RS UP o % 0 S O SR O A 6w OB UY O 00 O D oB WE T WP om T W O P O

This tunction returns
{i) (A B) it it decides B snould be substituted for A
(ii1) (b A} it it decides A should be substituted for B

(iii) else NI1IL

CONCLUSIONTI(S:80):Formula

Conclusionl¥(Goal(s))

CONCLUSIUNLI¥*(G:Goalltormula

- R D O P R AP up T W OD U W o W W D @ P R D R TR R oD T R W

This function returns the first subgoal which would have to be
proved 1f IMPLY were called with C = G,

EXAMPLES
G CONCLUSIUNI*(G)
A & B Conclusioni%*(a)
A => B Conclusicni%(B)
{*DhH Basis(B,A) C) Conclusioni*(C)

{DH#% RBasis(B,A)

1in ind B & = & Conclusioni*(C)

C)
(°ES az:=p C) Conclusioni*(C)

(ES% az=p () Conclusionis(C)

Page

CYCLE(TH: Theorem, TL:Theorem=label):nll

G RR R T S R GD an W WP OD U op D U R G5 SR GP 9% U0 4P N0 U5 O3 4% Wh OB S5 %0 S0 W up TR W0 o W@y WD b

i, TH <= Skolemize TH

2. H €= Hypothesis of TH
C <= Conclusion of TH

CYCLE*(DB:Data=base, HiHypothesis, C:Conclusion,
TLiThecrem=labell:TNIL

T R B R D R D R Gh R GR T G P P TR W Ok e TR W TR D uh R WD U AR UP TR o OB O P 4 W W o

1. GNC <= 0 (**% global node count initialization *#*)
AGENDA <= NIL ‘
CLOSED <= NIL

2, Generate=Tasks((*Qult ¢ T), (0 ~IL NIL T))
(%% place initial tasks on the AGENDA #%%)

3. Overdirector

DEFINE=COWCLUSION(C:Conclusion, N:Nodel):NIL

G G R U G R R T O O oD R TR PR T o B OR GD Rr WP an e us W BN um U2 W G 0N G W W R wp D

TEMP <= Definep(C,T)
If "(TEMP = NIL) then Mew=tasx{((°DC*%* TEMP Ty, N)

DEFINE=-HYPOTHESIS(H:Hypothesis, N:Node):NIL

T A S DGR Gp W TR D 4D GE D G U Y WD O R T R T WD TR Y% G O O @ D o o G WD R U0 T 6D O ¢B U5

TEMP <= Definep(H,nNIL)
It "(TEMP = NIL) then
New=task{((’DH* (°DH* H TEMP Conclusioni(nN)) T),
(Car(N) Caddr(Goal(n)) History(N) Cadddr(nN)))

DEFINED=TERMS(G:i:Goal):Formula

W ER DR D R D D T D DG D R O O W R D W O O SR o O W W

1f Typep(G, °DH*) then And=on(Cadr(G), Defined=terms(Cadddr(G)))
Else 1t Typep(G, ES*) then Defined=terns(Caddr(G))
Else NIL

EQUALITY=SUBSTITUTION(N:Node) :NIL

S T R UR w T OR R R B O P YD S OR GRS R W D W T 4 uR un W W OB g

New=task(("ES* ('ES* Cadr(Goal(N)) Conclusioni(iN)) T),
(Car(i) Caddr(Goal(nN)) History(wn) Cadddr(n)))

Fage 10

EVLOOP(Mimessage):NIL

D S TR R T A OR TR U 5P o TS O% U ORGP oy o W

This tunction is <called from the tunction Overdirector when
TRACEUVERD = NIL, i.e. when running interactively. The message
OVERDIRECTUR is printed, and the user is prompted for input. At this
point the user may exercise any of the following options.

NAWME SYNTAX EFFECT

L) = D o 6 W @ w5 aw W W R o

Proceed line feed Causes the system to proceed to select
and executle the next task on the AGENDA,

Escape an Causes an error exit to the top level
cf LISP,

Print the A Causes the AGENDA to be printed.

AGENDA

Print the T Causes the top task on the AGENDA to

top task be printed,

Print the TP Causes the theorem to be printed.

theorem

Print the H Causes the hypothesis to be printed.

hypotheslis

Print the C Causes the conclusion to be printed,

concluysion

Pursue P n Causes task n to be puyrsued by making it

the top task on the AGENDA. Will reopen a
closed node 1f necessarv,

Successors S n Causes the successors of task n which are
still on the AGENDA to be printed.

Eval <expr> Causes <expr> to be evaluated by LISP.

Most of tnese options are also available at the interactive stop
inside of 1MPLY. 8ee [2]) tor details.

GENERATE=TASKS(Q:Quit, NINUDEJIWNIL

DD G TR YR W@ G O GO OD WP Om AW YR UR OB G5 b NN ap 4B UD 8 1B 00 I O T W WD W go W

For each u in C=Methods(Q) do New=task{Cons(u,Cdr(ul)., N)
I1f "CeMethods=First{New=H{H,Goal(Q)}), Conclusioni{(Q)) then
tor each u in HeMethods(Q) do New=task(Append{u, (T}), N)

GUAL(S:8Q):Goal

e G TR R G ap up O T O WO MR @ m

Cadr(s) (*% this function points to the SUBR for CADR *¥%)

HISTORY(N:Node):History

Caddr(n) (%% this function points to the SUER for CADDR %%)

H=METHUDS(H:Hypothesis, Q:Quitl):states

BT T D T W e G W N G D G5 on G AR U D 4D fE P TR 55 TP 42 O on @ 9D G0 9D 7D op on O W 42w

H=Methods*(New=H(H, Goal{(0)), Conclusioni(Q), Goal(0))

Page 11

Page 12

R=METHUDS*¥{H:Hypothesis, C:i:lonclusion, G:Goal):States

PR DD BR DR B DO RPN P D BRP DB R ERIRD R DRI W WD S

This tunction looks at each hypothesis in H individually and
decjides whether instantiating its detinition may be useful. 1f a
hypothesis is an eqguality, CHUUSESUBST is also called to determine
whether 1t may be useful for egquality substitution, A list 1is
returned, each element of which has the form (M (M E G)) where ™M 1is
either ‘DH or °ES and E is

(i) a hypothesis whose detinition may be instantiated
if M = ‘DH

£ii) (2= a b) it M = °‘FS and CHUOUSESUBST has decided ¢to

try to substitute b for a by looking at the equality
a = b in H,

NEW=GUOAL(M:Method=name, G°,G:Goal):sGoal

e T R W N Or TR T i T D W wp U W D O O B O um VR G TR OB I ap U W R R W

If Typep(M,G’°=Method) then G°
Else Typep(M,G=Method) then Subst(G°, Conclusioni*(G), G)
Else if Memg{(M,BC=lemmas)
then Subst((’=> Eval(M) Conclusioni*(G°)), Conclusioni*(G°), G*)
{%¥% this is tor the backward chaining heuristic discussed
in Chapter 4 of (1] *%)
Else ERKROR

NEA=H(H:Hypothesls, G:Goal)iHyvpotnesis

D W S ST S T Op K R O N S e O W T D D HD SR B P I Ul ST R D 0P b T 5P op wo G WY R W

1. D <= Andatom{Defined=terms{Conclusioni*{(G)))

Z., Return Set=Diff(Andatom(And=on(H, AH{G))), D)

NEA4=TASK(S:State, NiNode)}:NIL

1, M <= Car(s) (** method name %%)

2, P <= Priority(M, S, History(n))

3. GRC <= GNC + 1

4, G <= New=goal(M, Goal(s), Goal(h}}

5. H® <= Cons{Car{nN), Historv(nl))
{%% new task 1s a descendent of N %%)

6. Sort=in{({{M P) GNC G H®° Sigma(s5)1)
{¥% gort the new task into the AGENDA %%)

Page 13

NOQUIT=-TASKS(C:Conclusion, G:Goal, S:5igma, N:Node):NIL

DR S WD IR S R N I AR D D ED UD G SR D TP 6 U0 O U U TD @k %P 45 W0 W YU VR TR un GF W0 S0 90 T G % S Uh O U 4 OP W WD ob WD @ oo B9 9 W

New=task((Nogult¥* (°BC C 1if Typep(G,°BC) then Cadr(G)
else Conclusioni(G)), n)

1t “Typep(G, °BC)
then Generate=Tasks((’Quit Subst(G,Conclusionl(N),Goal(N)) S$), N)

1f£ Typep(G, "BC) then Noguit=tasks(Cadr(¢), Caddr(G), S, N)

The recursion is necessary, because back chaining may have been
tried more than once before it tailed. For example, when attempting
to prove

R & (D & E =>P) & (P =>C) & (U =>C) &§ (R =>C) =>» C & R
IMPLY will return
{°Qult (& (°BC C (°BC P D & E)Y R)T)

and two "NUQUIT=tasks™ whose yoals are (°BC C P) and (°*BC P D) will be
added to the AGENDA,

UVERDIRECTUR:TNIL

Ry O O WP GY U5 U W 0D OP R 4N D W0 B9 5

0, If "TRACEOVERD then Evioop(’DVERDIRECTOR) ,
(*% TRACEOVERD = T means running completely automatically %%)

1. 1f the AGENDA 1s empty then print %% No proof found *%
and return NI1IL

2. J €= Select=task(T)
3. Apply=method{Caar(J), Car(J), T)

4, If the AGENDA is not empty and the first task on the AGENDA is
the "TRUE=task"™ then print %% Proof round *%* and return T
Else Goto ¢

PBC(C:Conclusion, N:Node):NIL

BRBDUVBRD DDV W PR DT DD ERDDDR® P VR D

If Typep(Conclusion*(Geoal(N)J), Contra*) then NIL
(*% only allow proot by contradiction once #%)
Else
X <= Ppc¥(And=on(H, AH{Goal(N)}), NIL)
Y <= Reduce({(°’\ C)}
For each g in X do
New=task (("CONTRA* (’CONTRA%* Y Reduce((°\ qg))}) T), W)

Page 14

PBC*¥(H:Hypothesis, L:Hvpothesis):Hypothesis

'--'--'-—-O----‘vs-------y-»---u-'-—u-—--\-‘-n--

This function returns in a list each hypothesis which might be
contradicted, It 1is very domain dependent. For example, in the
domain of linear algebra it is not wuseful to tryv to¢ contradict a
hypothesis such as A el R{M,N), whereas it is sometimes useful to try
to contradict a hypothesis such as lin ind A,

PRIORITY(M:Method=nanre, S:State, HiHistoryvl):iPriority

--‘-‘---------ou----—--Q-n-----&---—--—-—--------uﬁﬂq

NW <= =10 ¥ Length(H) (%¥% negative welghting term %%

NW ¢
if M = *DH then Priority*(M, Cadr(Goal(S)))
else it M = ‘ES then 0
else If M = °FTLA then 100
else 1t M = “IMPLY% then 100
else it M = ‘Nogult* then 0
else 1f M = °“Trap* then 100
else it ¥ = TRUE then 106000

° other clauses

else Priority*(M, Conclusioni(s))

The negative weighting term tends to maintain a breadth first
search by lowering the priority proportional to the number of
predecessors of the node being expandea, In fact, if all vpriorities
are jdentical, then negative we1ghting will maintain a breadth first
search, Tnhe assignment of different priorities is thus a means of
dictating the search strategy,

PRIORITY*(MiMethod=nane, EiFormula)iPriority

b“------'-----—--'-----'—----Q--'-onnu---—-

This function 1lo0Ks at tnhe method name 14 and the tformula F to
which # is to be applied and returns an inteager, which is the priority
0t applying M to E. Priorities returned are between =100 and 100;:;
however, tasks ®may receive priorities less f{han the static priority
returned here, pecause 0f the negative welghting term (see Prioritvde.

Page 15

QUITTER(X:Ans):TNIL

D D DD O T D O p U W W T

Eq({Car(XxJ), Quit)

SELECT=TASK(F:Flag)sTask

-----n-w-qﬁ-----ﬂ-O.----

If TRACEOVERD then (%% running completely auvtomatically *x%x)
<J <= Car (AGENDZ),
AGENDA <= Cdr{AGENDA)
return J>

Else
<J <= tirst task on AGENDA whose node does not appear on CLOSED,
If F = T then CLUSED <= Cons(Cdr(Jy, CLOSED),
return J>

The CLOSED list is maintained for interactive convenience, when
running interactively ang debugging 1t is sometimes necessarvy to
recpen a node which has previously been closed,

SIGMA(S:8Q):8igma

Caddr(s) (x% tnis function points to the SUBR for CADDR *%)

SORT=IN(T:Task):sNIL

T W W S G G TR O WS G s D w W aw @

This function inserts the task T into the AGENDA based on its
priority. 1t calls SORT=IN¥ to do the insertion. :

Page 16

4,0 THE IKTERFACE BETREEN THE OVEKEDIRECTUOR AND IMPLY

¥rom thne viewpoint ot the OVIRDIRECTOR, the interface with IMPLY
is contained entirely within the function CALLIMPLY, From the
yviewpoint of IMPLY, the interface cannot be localized to any one
function. Recall that IMPLY is cherged with proving the total subgoal
sent to it, and, falling this, it must return to the OVERDIRECTUR that
portion of the subgoal which it was not able to prove. This portion
will often be the entire subgoal; however, there are caseés in which
partial proofs may be obtained., 1In either case, the portion returned
by IMPLY is collected by the functions AND=C, OR=H, PROMOTE, and
TRYBACKCHAINING. ’

With the exception of the function PROMOTE, these are the
tunctions whicnh introduce new nodes 1in the proof tree which IMPLY is
exploringe. It is theretore not suprising that thev should be the ones
responsible for reporting the success or failure of the exploration.
The function PRUMUOTE 1s included because o0f its role as an interpreter
of the goal sent to IMPLY., This will be made clear below., All four
of these functions call on tnhe tunction OVERD to combine remaining
subygoals which they c¢an “"see® with subgoals whose falillure has been
reported to thenm.

AND=C(EXCLUDE:Sigmal}iAns

(%% Goals H => A & B ¥*x)
If [H => A)}Fix=pv{(A,B) returns X then
if Quitter(X) then return Overd{(X,B8X,T)
else it (A => BXJFix=pv(A,B) returns Y‘tnen
if Quitter(y) then return Overd(y,NIL,X)
else it Compose(X.Y) = wnlIL then return NIL

else if Compose(X,Y) intersect EXCLUDE = NIL
then return Compose(X,Y¥Y)

else
<TEMP <= Select=intersect(EXCLUDE,X,Y)
return AND=C{(RXACLUDE union {TEMP}}>
else return NIL

else return NIL

Fage 17

EQSUB%*(A,BsFormula)snNiL

o o o @2 P OGP A Gu GO OO G P WH USRI O IO W @S W W w

(%% called only by PROMOTE #*¥)
1. DB <= Subst{(a,B,DB)

2. An <= Subst(A,B,AH]

3, H €<= Subst(A,B,H)

4, G <= Subst(A,B,G)

5., Return NIL

OR=H(EXCLUDE :Sigma) :ADns

(%% Goal: A v B => C ¥x¥%)
1f (A => ClFix=pv(A,B) returns X then

if Quitter(X) then return
overd(’{(Quit WNIL T), (°Cases A v B, A v B, C), Caddr(x))

else if LBX => C] returns ¥ then

if Quitter(Y) then return
gverd(°(Quit nNIL T), (°Cases B, BX, Cl), X}

else if Compose(X,¥Y) = NIL then yeturn NIL

eise it Compose(X,Y) intersect EXCLUDE = NIL then
return Compose(X,Y)

else
<KTEMP <= Select=intersect(EXCLUDE,X,Y)
return OR=H(EXCLUDE uynion {TENP})>
else return NIl
else return NIL

OVERD{Q:QUit, Cs:Conclusion, S:Sigmajivult

io. C <= And=on(Goal{(Ql, CJ}
2. 5° <= 5igma(0) union S
3., Return (°Quit G s8°)

Page 18

PROMOTE(DB:Data=base, AH,H:Hypothesis, G:Goal,
TL:Theorem=1label) 1Ans

---'-‘-muﬂ—-‘-n-—un-o---wuq-n-n-u-—o-n—s—n---pu

1f Typepl(G, BC) then (¥% see section on QUIT=LT *¥)
<QUITGOAL <= conclusioni*(Caadr(GlJ,
QUIT=LT <= nlL,
X <= Promote*(DB, AH, H, Cadr (G,
it Quitter(X) then
Gverd(’(Quit nilL T), Subst(GoaltX),G,C), SigmafXx))
else A>

Else if lypep(G,°Cases) then (** see OF=H #%)
promote(DB, Remaining=cases(Cadr(G), Caddr(G), AHd,
Remaining=cases(Cadr(G), Caddr(Gl), H),
Caddr(Gl,
TL)

Else if Typep(G, DH*) then
(%% EXAMPLE G = (DH% Basis{B,A) (1iin ind B & = A) G°) #%%)
Promote(DB, And=on(Caddr(G),AH), H, Cadddr(Gj, TL)

Else it Typep(G, ES¥) then
(%% EXAMPLE G = (ES* {:= a o) G°) *%)
<H® <= Copy(H),
Egsub¥(Caddadr(G), Cadadr(Gll,
X <= Promote(DB, AH, H, Caddr(G), Print(Append(TL, (=8)))),
it Quitter(X) then
if Conclusionli(x) = Conclusionl#{(C) then
<H® <= pffected=Hyps{(H®,H,NILJ,
(*%* which bypotheses were atfected by substitution? *%)
(*pouit if H® = NIL then Caddr(G)
else (°=> i°® Cadar{Gl)
Sigma{X})>
else X»

Else if Typep(G,’(Contra%,=>)) then
Promote (DB, And=on{(Cadr(GJ,AH), H, Caddr(G),
Print(Append(TL, " (P=>)1))

Else
" ¢X <= Promote#*(DB, At, H, GJ,
it Quitter(X) then
overd(‘(Quit NI1L T), Subst(Goal(X),G,C), Siaqma(Xx))
else A>

This funhction implements what mignt be called the “generalized
rule of promotion." It “interprets®™ goals as defined in the tvpe
declaration section., As a specCial case, the rule applies to a goal Of
the type P => 0 by adding ¢ to the aaditional hvpotheses, AH, of the
subgoal, This is, of course, the usual rule of promotion, Atter all
interpretation has been completed, PROMOTE* is called (where An will
be added to H). 1If the answer returned by FROMOTE* is one of fallure,

FPage 19

then OVeEkD will be callea to pass baCk a fallure message together with

the (partial) subgoal which remains to he proved,

PROMUTEX*(DB:Data=base, AH,Hi:Hypothesils, C:ConclusionjiAns

T R Gh o Gp UR W 4D B oD U5 ap @b OB U5 D O 4 45 ©F 6P R 40 0D GF op 0P op o0 W0 W up ur TP ON O W OB 6B O D O WS gy O Ub Y op T un an 6P G5 W8 S s

Imply (DR, And=on(aH,H}, C, TL, it QEL=LT then 3 else °8, PV)
PROMUTION() :ADS

Promote(bDb, nNIL, H, C, TL}

This function is called by IMPLY whenever fhe main predicate of
conClusion is a member ©f the type Prometers,

REMAINING=CASES(D,DS:Disjunctive=siring,
HeHypothesis)slivpotlhesis

o T On R UD Gn o WD R UD OU op UR 0P TR O O G0 Uh WR Op UR U O uR O R e op 6 8 gp o O U SR AR S5 @ uw

(*¥% called only by PRUMOTE *%)
1t Typep(H, &) then
"~ Andeon{kKemaining=cases{(D,D5,Cadr(Hl)),
Remaining=cases{D,D5,laddr(H}}

Else if Typeplii,’v) then
<R <= (ratom(H)
U <= B QOratom(D)
it B = U then return H
else return DS>

Else H

the

Page 20

TRYBACKCHAINING(EXCLUDE:Sigma) tAns

B GR GO TE D B W W CH D @ CR G D TT GR @D D SR UR W @ T G G W P W am W

(*% Goal: B => C where B is an implication %4%)
If TRYB(B,C) returns (%, H°, C°) then
if [H => HXJFix=pv(H’,C°) returns Y then

it Quitter{(Y) then
return Overd((°Quit (°BC C Goal(y)) Sigma(Y)), NIL, Xx)

else 1f Compose(X,Y) = NIL then return NIL

else if Compose(X,Y) intersect EXCLUDE = WNIL then
return Compoecse(X,¥Y)

else
<TEMP <= Select=intersect{(EXCLUDE,X,Y)
-return TRYRACKCHAINING(EXCLUDE union {TEMP})>

else return wnIL

else return HWIL

5.0 THE TRAPPING PRUBLEM

Since IMPLY scans the hypothesis of a theorem from “lett to
right” it is susceptible to falling into traps by making the wrong
substitution for a variable, For example, consider the theorem

(¥} Pa & Pb & Ob => Some X (PXx & Ux).

IMPLY will quit on (%) returning (°Quit Qa {a/x}). By line 3.3 of
Apply=methoa, this will cause a "TRAP=task® to pe added to the AGENDA,
since the substitution part of the returned answer is not T« It this
"TRAP=task" 1s ever pursued, then Callimply will set EXCLUDE <= {as/x}
which will permit the correct substitution {p/x} to be found.

Page 21

6,0 THE RUOLE OF QUIT=L1

when the OVERDIRECTOR calls IMPLY to attempt to prove a subdaoal,
it permits IMPLY to work until it encounters a subgoal which it cannot
prove, At this point IMPLY will transfer control back to the
OVERDIRECTUR, passing back the subgoal upon which it quit working. It
does so0, anticipating that the UVERDIRECTOR will be able to suggest
some method which will enasble IMPLY to prove the subgoal the next time
it is triled. But the failure of IMPLY may lie in the fact that it was
tring to prove an unprovable supgodl. For example, consider trving to
prove the Lheocrem

(1) R & (P =>C) & (0 =>C) & (R =>C) => (.,
By back ¢haining, the supgoal
(2) R & (P => C) & (Q => C) & (R => C) => p

is set up and IMPLY guits, returning (°Quit P T) to the OVERDIRECTUOR.
Lacking any methods which might bpe useful in proving P, this theoren
is unprovable by the system described so tar., Of course, the proplem
here 1lies in wusing the wrong nypothesis, not in the lack of methods
for proving P,

wnat we need 1s & method which will allow wus to continue the
search tor proof. Simply recalling 1MPLY on (1) will serve no purpose
because it will quit returning the same answer as before, Calling
IMPLY on (2) will also not work, because we alreadyv Know that IMPLY
cannct prove P. The solution is to recall IMPLY on (1), allowing it
to continue past the first subgoal whicnh it cannot prove and returning
N1L as its answer.

The method which does this is called KNUQUITH, It is 1invoked
when, as in the example, back chaining has ftorced consideration of a
subgoal which IMPLY 1is unable to prove, In the example,
Trybackchaining will return (°BC C P) a5 part ot its answer when IMPLY
fails to prove the hypothesis P, Apply=-method (line 3.2) will tnhen
add the "NOQUIT=task"™ whose goal is (°BC C P) to the AGENDA, to allow
for the possibility that a pack chaining trap has occurred, iIf this
task 1s later pursued, Promote will set QUITGOAL <= P and QUIT=LT <=
NIL. when P again becomes tnhe conclusion by back chaining, Provec
will return wIL, thus ~causing Trvbackchaining to return N1L and
allowing the next hypothesis to be considerea. A description of
Provec follows.

Page 22

PROVEC() tAns

Above

I1f K > upperk then
<Print €, Print "Provec falleg”,
if QULIT=LT = T then return (°Quit C T}
else return NIL>

Else if QUITeLT = NIL and C = QUITGOAL then
<QUIT=LT <= T,
Print "Quitting on”, Print C,
return NIL>

Else if “Memq(K,ProVec-levels) then <K <= k+1, Goto Above>
Else if K=1 and Proveci returns X then return X

Else <K <= K$l1, Goto Above>

Clause 4 actuaslly represents several clauses, one ftor each value
of 1 for which & function called Proveci has been defined, This
allows tor several different “levels of proof strateqv." The variaple
Upperk is a bound on the levels to be tried on this call to IMPLY., K
is initialized to Lowerk inside of the function IMPLY before Provec 1is
entered, The variable Provec=levels can be used as a mask to disable
any given levels before IMPLY is called.

7.0 REMARKS

The semi-=formal specification 0f the UVERDIRECTOR presented in
this document 1is intended to be of use to those Who may wish to
implement tnis svstem or one similar to it, The document is not
selfecontained, as it contains references to functions which are net
themselves described., This defect 1is partially remedied by other
documents (2,31, A complete remedy presupposes the existence of a
static program, a state which few research programs achieve, The
ultimate wutility of this document lies in the flexibility ot the
program it describes, Unfortunately, this flexibilityv is responsible
tor moditications which will soon reduce this document to the status
0f a mere suggestion for the design of future systems,

8.0

3.

Fage 23

REFERENCES

Peter Bruell, An AGENDA Driven Theorem Prover. Ph.D. Thesis,
The uUniv, of Texas at Austin, August 1979,

Peter Bruell. The Control Structure of IMPLY. The Univ. of Téxas
at Austin Math. Dept. Memo ATP=45, August 1978,

W. W, Bledsoe and Mabry Tyson, The UT Interactive Theorenm Prover,
The Univ. of Texas at Austin Math, Dept. Memo ATP=17a, Junhe 1978,

