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.ABSTRACT. Lockiﬁg is a restriction of resolution which is somewhat
similar to A-ordering but is more restrictive. It involves arbitrarily
indexing with integers the literals in the clauses to be resolved;
different occurrences of tﬁe same literal may be indexed differently.
Resolution is then permitted only on literals of lowest index in each
clause, The literals in resolvents are indexed hereditarily ("merging
low" when necessary). It is shown to be complete for first order logic.
Locking results in a significant reduction in the number of clauses
generated (as compared with ordinary resolution). In this thesgis locking
is compared with other restrictions of resolution and is shown to be
incompatible with some. It is not compatible with linear format and
merging but this shortcoming seems to be more than compensated for by the
fact that both ciauses are restricted in every resolution. Several
examples of locking derivations are given. Finally, a special application
of locking to a troublesome transitivity axiom is described whicﬁ greatly

reduces the irrelevant clauses generated by that axiom.



Preface

For a flirst reading, may we suggest the fo?fowing.
1) Read the Introductlon for a general view of the'subject
matter.
2) Follow carefully the example at the beginning of Chapter 1
for a baslic ldea of what resolution Is.
3) Read Chapter 2 (which ﬁarks the beginning of the material
original to thls thesis) for an explanation of the locking
restrictlon on resolution,
k) Muse over a few of the examples of lockling proofs In
Chapter 6. .
5) Read Chapters 3 and L, the core of the thesis, after a
cursory reading of the‘definitfons In Chapter 1., Refer to these

definitions (by means of the Index) when'necessary.

Iv
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Introduction

It Is an old wish that we might have rules by which to
think. To some degree mathematics gives us rules for thfnk?ng
about the world, !ﬁ 1s only natural that logiclans have tried
to produce mathematical rules. for thinking about mathematics.
The Inventlon of computers has Insplred an enthusiasm for a
practical mechanization of mathematica?linfefence. Thbugh- the
Important results so far produced In this endeavor have been
about, rather than by means of, éomputatlon, this field is known
as "automatic theorem proving,"

The foundation or "ground" of automatic theorem
proving lies In the concept of the tautology. The
propositional logic !s essentially the cafcu!us of tautologlies;
and any question in the propositional loglic can be declded by
the method of "truth tables." As anyone knows who has computed
the truth tables Fbr a few propositions, questions about
tautologles are essentlally bor?ng. They would not be of rea}
interest to ényone, perhaps, were It not for thé remarkable
theorem of J. Herbrand.

While trying to reduce mathematical logic to a
mechanlzable system in 1930, Herbraﬁd discove%ed that any
question In the flrst order predicate fcgf& can "almost" be
reduced to a question of tautologles., It Is generally belleved.

that most of mathematics can be done In the flrst order



predicate calculus, A

Roughly speaklng, Herbrand showed that-¥f P is a
formula In the predicate loglc and H Is the collection of all
names of objects,(H Is commonly known a Herbrand's Unifverse),
then‘P Is a theorem if and only if some finlte disjunction of
Instances of P by terms In H Is a tautology. The "some" iIn his
theorem Is the reason that we must say he "almost" reduced logic
to tautologies. It Is éhurch's theorem that tells us the
"almost" can never be erased; for If we could find a procedure
that would glve us that "some" for any P (or tell us }f such did
not exist), we would have a dgcision procedure for the predfc§te
calculus, But there Is hone.
| Desplite the impossibllity of declding whether there Is
some finlte disjunction of ?nétances for any P, we can still
always find a proof for any P, 1f P Is a theorem. For example,
we might simply proceedkto examine all the possible instances. |
This procedure was actually tried on computers in 1960 by
Wang(20),Prawitz(13), and Davis(7). It was discovered, however,
to be a ﬁask too demanding for the computers in existence then
OF now,

In 1860 D. Prawltz(1lk) and in 1963 J.A. Robinson(16)
Independently discovered a method for greatly Increasing the
search for the right Instantiations. They showed that one may
search In a persplcuous fashlon, high above the ground level of

the proposlition logle, conslidering Infinltely many Instances "in



a2 single bound." Robinson's dlscovery he named the process of
"uniflcation”; he embedded It in a Inference system called
"resolutlon," which system is the basic framework for most work
done slnce then In "automatic theorem proving.,"

Even though resolution provides a vast Improvement
over the method of instantlation, It is stll1] plagued by an
exponential explosion In the number of "clauses'" it generates;

this explosion Is unmanageable on hard problems. Many

researchers have found strategies that restrict this growth

while st!111 preserving resolutlion's completeness. In this
theslis we present such a restrictlon whlich we call "locking.” In
Chapter 1 we present a grammar of resolutlon. In Chapter 2 we

Introduce the concept of locking. Chapters 3 and 4 contain the
proofs of the completeness of lockling In the "ground" and
"general' cases. In Chapter 5 we describe the relationship of
locking to other restricted forms of resolution. Chapter 6
contains some examples of lockling refutations. | Chapter 7

describes a'special applicatiqn of locking to a common but

troublesome axlom,



1. A Grammar of Resolution

Before precisely defining the concepts of resolution
we offer a brlef example of 2 resolution proof,

For any binary predicate G, (such as "=! or """y the
followlng is a theorem,

VxIy(((6 y x) = Iw (6w v))
NGO 32 Gz AGY ) = (6yx))))

To prove this theoren by resolution we first transform
it Into the set of five clauses:
ILL(Gy (a)) (G (F y) y) )
2 [ (Gy (a)) (6 y (f yv)) ]
3 [ G w ) (6 (Fy) y) ]
b [ =G wy) (Cy (Ff y) ]
5 [ =t wy) (6 y (a)) 1]
The rules for thls transformation are quite
stralghtforward(cf, p.18). The members ofvthe clauses are
called "literals", e.g. =1 (G y (a)) in the fifth clause., The
Tlterals without the "not" sign ( =1 ) at the front are called
"atoms.'" The symbol "f!" is called a "functlon symbol" and was
Introduced during the transformation., The symbol "a" is called
a»"constaﬁt,” and It also appeared during the transformation,
"(f x)" and "(a)" are called "terms." The symbols "w" and Tyl
~are, of course, variables, and we think of them as beling

replaceable,



Once we have these orfginal clauses, we try to
"resolve" them together. Resolving involves taking any two
Clauses, picking any two of thelr literals (one from each
clause), and checking for a "match" of a certaln kind, (This
matching Is called uniflcation! ), If this match Is found, we
then create a new clause, called a "resolvent," from the
llterals (other than the ones we matched) in the two clauses we
are resolving.,

For example, we take clause 1 and clause 3, and try to
"match" their first literals

(G y (a)) =1 (G w y),
To match them, we filrst check.te see that one Is an atom and
one has the "not" sign., We then look for a way of rep!acing‘
some of the variables in these two literals so that the two
resulting 1lterals will be fdentlcal (except for the "not"
sign). If we replace v by w In (G y (a)) and y by (a) in
= (G w y) we shall have

(G w (a)) and =1 (G w (a)).
Therefore, a "match" exists. And therefore, we may produce a
resolvent, |

The resolvent produced s the set cbns?st!hg of the
other 1Itéra1 In clause 1 (with y replaced by w) and the other
literal in clause 3 (with y replaced by al), namely
6 [ (G (f w) w) (G (f (2)) (a)n].

In a simlilar way we resolve the first 1lteral in



clause 2 and the first literal in clause 4 to get the resolvent
7 [ G w (f w)) (G (a) (f (a)) ) ]

In fact, It Is possible to resolve the flrst five
‘clauses In twenty ways. After making all these resolvents, we
then proceed to resolve the resolvents with one another and with
the original flve clauses. Then we resolve the new resolvents
with one another, with the previous resolvents, and with the
original flve; and so on.

The purpose of all thls resolving is to generate the
empty set as a resolvent (we denote the empty set by "[O")., For
once we have generated [], we‘shail have "proved'" the theorem.
But the only way to generate 00 as a resolvent is to resolve two
clauses which have only one literal apiece (since only then
would there be no "other" 1iterals in either clause to appear In
the reéo?vent.) The reader may guess, therefore, that we have
one more process In store,

This other process is called "factoring" (1.18). To
factor a clause is to replace some of the variables In the
literals of the clause in such a way that the clause "shrinks."
For example,’i? we replace w by (a) In clause 6, we obtaln the
clause |
8 [ (G (f (a)) (a))) ]

This "shrinkage" occurs simply because a clause !s a set and no
§et can "contaln the same element twlce."

Similarly,



o [ (6 (a) (f (a))) ]
Is a factor of 7.

In resolution, we admit the factors of clauses to ful]
standing, T.e., In addition to resolving our original clauses,
thelr resolvents, etc. we also resolve on the factors of every
clause in slght.

I'n particular, we can resolve clause 9 with clause 5.
For If we replace v by (f (a)) and w by (a) In the
Tlteral =1 (G w y), we get —(G (a) (f (a))), which is
Identical to the only literal In clause 9 (except for the "not"
slgn). Hence 9 and 5 resolve to produce |
10 [ (G (f (a)) (a)) ] ’

l.e. the set consisting of the other 1lteral In clause 5 (wlth
y replaced by (f (2)) and w replaced by (a).)
Now we can resolve 8 and 10 to obtaln the desired [J.

Thus we have proved the theorem by means of resolution.

The main result of this chapter Is the Resolution
Theorem 1.26, Those familiar withvresolutfon may well skip the
entire chapter-after a cursory glance at 1,15, 1.16, 1.17, 1.19,
and 1.20, Virtually all of the definltions and theorems may be
found in (16).
Those who tlre of the definltions and theorems before 1,26 may
well begln reading after 1.26 and refer to the earlier material

when necessary.



We now describe the language in which resolution s

the rule of inference.

1.1 The Symbols

The language Is determined by three disjoint sets of symbols,
vlz., the variables, the function symbols, and the predicate

symbols.

The variables are Infiniie In number and !nclude:

H | 1
Wox,Yezow! xt,yt, 2wt xt Y,

There are a countable number of function symbols.v With each
functlon symbol 1s associated exactly one non-negative integer
called "the number of arguments' of that symbol. A function
symbol of 0 arguments is called a "constant." The language hés

at least one constant.

With each predicate symbol s associated exactly one
non-negative Integer called "the number of arguments' of that

symbol.,

There are four additional symhols,

( ) ! /



1.2 Terms
- From the functlon symbols and variables are built the "terms!
of the language. To be precise, let H be the smallest set such
that
1) H contains the varlables of the Tanguage,‘and
‘2) If t1, t2, t3, ... tn are members of H and f is a
function symbol of n arguments, then H contains the
string (f t1 tZ ess tnJ,

H Is the set of terms.

1.3 Atoms
If P Is a predicate letter of 0 arguments, then P is an atom,

If P is a Predicate letter of N arguments and tl, t2, t3, ... tn

are terms, then the string
(P tl t2 t3 ... tn)

" Is an atom.

l.4 Literals, Complements, and Signs

If A ls an atom then .
1) Ais a "iteral”,
2) the string
= A
Is a "llteral”,
3) A and = A are "complements" of one another,

) the "slgn" of A is "T" and the "sign'" of —A is e
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and

5) A Is called "the atom'" of hoth A and = A,

1.5 Clauses

A clause Is a finite set of literals. The empty clause Is the
empty set and s denoted by "O". A clause with exactly one

member s called a "unit" clause,

1.6 Groundness

A clause, a literal, or an atom is called "ground" if and only

If no variabhle occurs In it.

1.7 Substitution Components
‘lf x Is a variable and t is a term and x Is not t, then the
string |

t/x
Is called a "substitution component.'" x Is called the "second
ﬁart" of the component and t Is called the "first" part of the
component. (e think of the second part as about to be replaced

and the first part as the expression that will take the place of

the second part,)

1.8 Substitutions

A finlte set of substlitution components Is called a

"substitution'" provided no two distinct members have the same
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second part, (The reason a substitution cannot have two
components, say t/x and t'/x , with the same second part Is that

we could not know whether to replace x with t or with th.)

1.9 Instances

Suppose that L is a term, a literal, or a clause. The lnstance
of L under a substitution o Is the result of simultaneous]y
‘replacing in L each variable x that is the second part of a
component t/x of o with the t.

“LO " denotes the instance of L under o . 1If L o s
ground(i.e. has no variables), 1t Is called 8 ground Instance of
Lo If o Is a substitution, L is a set of literals, and L,

has as many members as L, then L o Is called a "direct

>Instance” of L,

1.10 Varlants

Y

I'f E Is an Instance of F and F Is an instance of E, then E and
F are called "variants” of each other,
For any E there exlsts an F such that £ and F have no

variables In common and E is a variént of F,

If ¢ and v are substitutfons, we would like to have a

substitution y such that (B, ). I's E_Yv, l.e. the

composition of o and T,
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1.11 Composition of Substitutions

Suppose o and T are substititions, Let y be the

substitution to which the component t/x belongs If and only If

el ther

1) for some t', t'/x !s a component of o and t = t'T

é

or

2) x is not a second part of a component of ¢ and t/x

Is a component of =t ,

Y Is called the "composition" of ¢ and = and s denoted

by " g1 ",

1.12 Unification

If S is a set of literals, o Is a substitution, and S Is a
o)
singleton, thenoglis said to "unify" s,

2

Consider the set C

[ (Gy x) (G (F x) zJ.

Each of the following substitutions unifies C.
[ CFOFCF(F(a))))/y  (FOF(F(a))))/x
INSICICITIINITS |
[ (F (a))/y (aY/x (a)/z ]
[ (F (x))/y x/z 1

l.13 Most General Unlfiers

If q unifies S and for each <+ that unifies S there ex!sts a
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T, then 0 1s said to be a "most

i}

by such that g

general unifier" of s,
The substitution
[ (f(x})/y x/z ]

Is a most general unifier of C above,

l.14 Uniflication Theorem

If any substitution unifles S, then there exists a most general

unifier of S,

1.15 Simultaneous Unification

If S1, S2, ... Sn is a sequence of sets of literals, ¢ ls a
substitution, and for each i, Si is a slingleton, then o Is
g

sald to "simultaneously unify" s1, s2, ... Sn.

-

1.16 Most General Simultaneous Unifiers |

If o simultaneously unifles s1, 52,.... Sn and for each =
that simultaneously unifles S1, 82, ... Sn there exists a A
such that oX = 1, then ¢ Is said to be a '"most general

simultaneous unifler" of sl, S2, ... Sn.

1.17 Simultaneous Unification Theorem

If amy substitution simultaneously uniflies 81, s2, ... Sn, then

there exlsts a most general simultaneous uni{fler of S1, S2, ...
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Sn.

1.18 Factors

If C Is a clause, T is a subset of C, and o most generally
unifles T, then C s s called a "factor" of C. (Since a ground
clause has no non-trivial instances, It has no n0n~triv§a1‘

factors.,)

1.19 Fully=-factored Sets

A set S of clauses is said to be "fu11y—factoréd" if and only
If some variant_ of every factor of every member of S s a

member of S,

1.20 Fully=factored Theorem

If C is a memher of a fully-factored set S of clauses and o
Is a substitution, then there exist a member C' of S and a

substitution 1 such that C, is a direct instance of C' under

1.21 !nterpretat?dns

A set of ground literals | Is called an "interpretation"
provided that for each ground atom A, either A is a member of |

or mA Is a member of |, and not both are.
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1.22 Models and Satisfiability

1f S fs a set of clauses and | Is an interpretatlon, then | Is
called a "model" of S If and only if each ground Instance of
each member of S contains some member of |. S is called
"satisflable! If and only if some Interpretation s a que} of

S.

1.23 The Model Theorem

If S Is a finite set of clauses, there exists a model of S If

and only If for each sequence of substitutions oy, oy, ..., o
such that for all 1, S 0’35 a set of ground clauses,
i

S U %m U ,..U S admits a model..

g3 [+

n .
e now prove the Model Theorem. By the definition of»

model, If S admits a model M, then M Is a model for any

SGl U 302 U ...U SOn o Hence, one half of the Model Theorem

Is trivial,
The other half Is only a variation on Kénig's Lemma.
One might view the Model Theorem as a compactness theorem.

Suppose that for each sequence 01, Gz,...,gl of

substitutions such that for all i,S Is a set o? gro&nd

a.
; i
-¢clauses, Scl U S02 U...U S, admlits a model. There are only -

n

countably many substltutions, Let T1sT2sT3s ose be an
enumeration of those substitutions v such that ST is a.set of

~ground clauses, Let us denote by I(m) § us ces U S .
T3 T2 "fm
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Let Al, A2, A3, ... be an enumeration of the ground atoms,

For each i, we sha?}‘recurs?ve]y deflne an Mi and it
will turn out that LJO M Is a model of s,
1> 1

There Is a literal L such that
1) elther L Is A]or L Is —A : and,
2) for each m, L Is a member of some mode] of 1{m),
For suppose that for some Jo AIIS not a member of some model of
I(jo). Then for all k > 0, A is not a member of any model of
I(jo+k), since any mode].of F(jo+tk) Is a model of 1(jo).
Simllarly, if for some J1 =1 A1 is not a member of a mode] of
1(j1) , then = A, >is not a member of a model of I(j1+k), But
then nelther of Ay ,~ A is a member of a model of 1(jo+J1).
This, However, contradlicts the assumption that for every
01, G2 2 cee s o such that § gils a set of ground clauses
Scl U S02 Uu...u SUn ~admits a model, | |

We define M; to be [L] for such an L. Suppose that
for some | > 0 Mi has been defined and that for each m, Mi
fs a subset pf some model of [(m). By an argument similar ﬁo
the one Immediately above: |

There Is a literal L' such that

1) either L' is Ai+ or L' Is‘WA,+1 and

1 i
2) for each m, M UL ts a subset of some model of I{m).
Let M i = MU [LT . Then for each m, Mjs41 s a sqbset
of some model! of I(m),

Now let M = ngmi . Then for each m, M is 3 mode
1> :
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of I{m)., For, let J be a positive Integer such that {f L is a
Tlteral iﬁ I{m) and A n Is the atom of L In the o%der?ng

Al, A2 , A3, ... of the atoms, then n < J. Then If C is a
clause in I1(m), some member of M Is a member of C,

Therefore, M Is a model of S.QED,

1.24 Resolvents

If C and D are clauses, L1 and L2 are literals in C and D
respectively, the slgn of L1 is not the sign of L2, and there

exists a most general unifler o of the atoms of L1 and L2,

then ‘
(Cc=-[L1]Yyu (D - [LZ]))G

1s called a "resolvent" of C and D, 2

1,25 Resolution

If S Is a set of’c?auses, then let R(S,0) be S and for each
positive Integer i+l let R{(S,i+1) be ﬁhe union of R(S,i) and the
set of all resolvents of factors of members of R(S,1). Let

R(S, w) be U R(s, 1),

T ew

1.26 Resolution Theorem

If s js a finite set of clauses, S |s unsatisfliable If and only

If O <eR(s, w ),
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The Clausal Transformation and Herbrand's Theorém.

Before‘proving the Resolution Theorem (1.26) we do two
things. First, we show how to transform any question In the

3 into a set of clauses. Second,

first order predicate calculus
we state Herbrand's Theorem, which tells us why resolution is of
Interest.

Suppose we wish to prove in the first order predicate
calculus that C follows ?rom Al, A2, .., An. Without loss of
general ity we assume there are no free variables in an? of
C, Al, A2, ... , An. Let TH be the formula
ALAAZ N oo AANARC, (Thus In our example at the beginning
of this chapter TH Is just

= W3y y x) = Iw (G w y))
ACC T3z (Gzy)a (Gyz)) = (Gy x))))
Now perform the following threé operations on TH,'
1) Transform TH Into prenex normal form. (For our example,
this Is
IxVy 3z¥w = (((G y x) = (6w y))
AUGzZ Y A(GyYy2Z) =  (Gyx))),
2) If TH has the form VXIsz...VanyB (i.e., v Is ﬁhe first
existentially quant!fied variabfe in TH) then let‘f be a new

function symbol of n arguments and transform TH Into the result

of replaclng v by (f x, x g ecex ) In Vx VX pe00¥x By 1f TH stil]



has any existentially quantifled varlables, perform step 2

again,

(Step 2 Is referred to as "skolemization" and the new function
symbols Introduced are called “"skolem functions." |n our
example, step 2 Is performed twice and the result s
Yy ¥Yw <Gy (a)) = (6w y))
A GG (Ff y) y) A (G y (F yv)) = (G y (a)))),

3) Transform TH into conjunctive normal form., In our example,

this Is
Yy Yw (((G vy (a)) v (G (fiy) v))
AG Yy (a)) v (Gy (f y)))
A= (Gw y) V(G (F y) y))
A (G w y) v Gy (Fyv)))
/K'1CG Wyl vV (G y (a))) ) #

After these three steps have been performed, TH is of the form

'Vx].,.vxp( ( Lo \’lev“'VL?k] )
A( LZ} VL22 v.o-VL zkz )
A % & @&

' m
Each Lij Is a literal as defined at (1.4)., TH Is inconsistent
if and only If € follows from Al, A2, ..., An.

Let us call
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¢ (L 1 Vljg VooVl )

| Tk,
Al 1.2] v122 v.,.vL2k2 )
AC L . Vlmz v...vLmkm ) )

the negated-skolemized=conjunctive-normal-matrix of
(C, Al, A2, ..., An) or NSCHNM(C, Al, A2, ... An) for short,
Let S be the set of clauses

ot b byl

[ L2, Ly, z2k2]
[ Lm] . Lm2 tee %kngj
S is precisely the set of clauses we give to resolution to
declde whether C follows from.Al, A2, «.., An. Let us call s
the clausal form of C, Al, A2, cse, An or |
CL(C,Al, A2, ..., An) for short,
Now that we have shown how to obtain cTauées from

guestions In the first order predicate calculus, we state

Herbrand's Theorem and show Its connection with resolution,

Herbrand's Theorem

Al, A2, ..., An if and only If there exist substltutions

01, 02, cees O such that for each 1, Dc. has no
. : i
variables and (D, A D A...AD ) Is Inconsistent, S

1 o2 k

3
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What is the connectlion with reso]ution?‘ Suppose that

O1s Op, sees O are substitutions and for each 1, Dg‘ has no
i

variables. Then by the method of truth tables,

(D AD A oo AD ) Is tnconsistent If and only if there
01 Jo Gk

exists no way of assigning the value T to some literal in each

disjunction of each D 5 without assigning T to some literal and
,i .

its complement., It immediately follows that

(D AD Ae.so AD ) 1s inconslstent If and only If
B} Go O'k : .

(s Us U...US ) does not admit a model (recall that we
(o5 C2 Uk

let S = CL(C,Al, A2, ... , An).,) Now by the Model Theorem
(1.23), C follows from Al, A2, ... , An if and only if S does
not admit a model. Therefore, once we have established the

.Resolution Theorem (1.26) we shall have

The Completenéss and Soundness of Resolution

If S is cL(C, Al, A2, ..., An), tﬁen C fol]ows from
Al, A2, w.s, An If and only If [J e R(S, w),

We thus complete the digression on the clausal
transformation and Herbrand's Theorem and begin proving the
Resolution Theorem (1,.26).

One half of (1.26) is easy, namely:

1.26,1 If § has a model, then [J ¢ R(S, w),

We first prove by Induction on n,
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1.26.2 Lemma

I'f S Is a set of clauses and M Is a model of S, then for each
C ¢ R(S,n) and for eachisuch that CA is a ground clause,
some member of 1 Is a member of CA .

1.26,1 is an Immediate consequence of this lemma, for
If every ground instance of every member of R{(S,w ) contains a

member of M, then surely [ 4 R(S, w),

By the definition of model, every ground Instance of

every membe} of S contalns a member of M. Since R(S,0) = S,
the lemma holds for the case n = (.,
Suppose 1,26.2 holds for | < n+l, and Cl and €2 are

members of R(S,n). By the Induction hypothesis, every ground
Instance of Cl or C2 contalns a member of M, Let C1' and C2' be
factors of Cl and C2.‘ Trivially, any ground instance of Cl' or
C2' contalns a member of M. Suppose that L1 ¢ Cl', L2 £ ¢2', the
atoms of L1 and L2 have most general unifler o, and L1 and L2
have opposite signs, Let R = ((C1' =[LI) U (c2?! L2D) ;. Let
A be any substitution such that Ry Is a ground clause, Then
(c1!t -==[!_3:DG_A or (c2! '[Lﬂ>cx » hence R, , contains a member of
M. QED.

We now suppose that S does not admit a model and
proceed to show that for some 1, O ¢ R(s,1). The proo?‘is

bésed upon the Model Theorem and
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1.26.3 The Ground Case

If S Is a finlte, unsatisflable set of groﬁnd clauses, then
Oe RS, w), -

I'n proving the Ground Case we make use of a
partiéular]y transparent form of Induction first presented In
Anderson & Bledsoe (3), We shall again make use of it In
Chapter 3 to prove the ground case for !ocking, He need the

definitlion of

1.26.4 The K Parameter

If S Is a finlte set of clauses, then K(S) is the difference
between the sum of the cardinalities of the members of S and the
'cardinality of S, (More simply, K(S) Is the number of liﬁeraié
minus the number of clauses. But note we count distinct
occurrences of Iiteré]s!!!)

e now prove 1.26.3,

Suppose that S Is a finlte, unsatisfiable collection
of ground clauses, [If K(S)< 1, then elther O ¢ S or each
member of S Is a ;Ing}étons If 0 ¢ S, then [0 ¢ R(S,0).

So suppose that each member of S Is a singleton.
Since § Is unéatisf?able, there must exist some atom L such that
[L]e S and[=L] ¢ S. But then [J e R(S,1).

Now assume that k Is an lnteger and for al] J such
that j< k+1, if S' is an unsatisflable collection of ground

clauses and K(S') = j then for some n, [Je R(S',n). Suppose
F R
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further that K(S) = k+1. Then efther 0 ¢ S or S contalns a
clause that is not a singleton. If O ¢S, De R(5,0). So
suppose there is a clause C in § with at least two members, one
of which Is the literal L, Let A = c=-[L]. Lef S* = (S =[C]
ULAL Clearly, then, K(S%) = k. Furthermore, S* is
unsatisfiable since any model of S* is a model of S. Hence for
some integer J0, [] ¢ R(S%* ,» J0). But this implies that el ther
Oe R(S, v0) or [L]e R (S, J0). Let S¥x = (s =[cp U [[.L 1.
K(S*%) <« k+1, Furthermore, S*% is unsatisflable, Therefore,
for some integer Jl, [ e R(Swx, J1). Therefore,

O e R(S,J0 + U1).  This establishes 1.26.3.

Digression on Lifting and Instantltating

Aftér the following digression, the proof of 1.26 cchtfnues at
1.26.5
By the Mode] Theorem, a Co??ection S of clauses |s

unsatisfiable If and only If there exlsts a sequence

T

ol 62, euo.,0n of substitutions such that for each 1, § is
: i

a collection of ground clauses and

S U s U eeo U'S
g1 gn O'n

Is unsatisfiable.

If G Is a finite collectlion of ground clauses, then
for some Integer n, R(G,n) = R(G, w ). Hence to decide whether
S Is satisfiable, we might take some enumération of afi

substltutions ¢ such that S0 Is a collection of ground

&
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clauses, and for each | compute R(S01 U’S0 U ... U SU sow )

- , .
untll [J 1s generated. Although Davis, Prawitz, and Jang used
methods more efflcient than resolutlon for checking
Inconsistencies, their programs attempted essentially this
compﬁtation.

1t Is, however, an unsatisfactory approach to proving
difflcult theorems,

I't was J. A, Robinson(16) who discovered that i{ is
posslible to avoid taking resolvents of ground instanceé of S by
taklng "general" resolvents of S. He describes resolution as a
"demon" that, if possible, finds just the substitutions

o1, 02, v..,0n for which we are looking. In fact, If
6l, 02, ...,0n Is a shortest sequence of substitutions such that
S U Sc

g1 2

n
Integer such that [J ¢ R(S Us U... US , J0), then
o1 02 - Y ;

U eaoe U S0 Is unsatisfiable and J0 is the smallest

Oe R(S,J0).

The kernel of Robinson's proof Is

1.26.5 The Lifting Lemma

If C1 and C2 are clauses and ¢ s 3 substitution and R is a
resolvent of C1 and C2, , then there exlst factors Cl' and
C2' of C1 and €2, a resolvent R' of C1' and c2', and a R
substitutlon A such that R = RY

We now conclude the proof of the other half of the Resolution

Theorem.



26

1.26.6 I1f S 1s a finite, unéatisffab!e collection of clauses,
then [0 e R(S,w ),

Suppose S is a finite, unsatisfiable collection of

clauses, By the Mode] Theorem, there exist O1s 025 .oy %
.such that Ss. is a set of ground clauses and

i
S01 1§ SG2 U ...SGn Is unsatisfiable,

By induction on i, It is clear that I|f
Ce R(SU1 U 802 U ... U Scn,i), then there exist o and
C'e R(S,i) such that ¢ = C 'g . If 1 =0, this Is trivial, By

Induction, if ¢ and D are in R(Scl U 802 U... U Sgn,i),there

exist C' e R(S,1), D' ¢ R(S, 1), and X such that ¢ = C'A and

D = D'A » Hence any resolvent R of C and D Is an Instance of a
resolvent R' of factors of ¢! and D' by the Lifting Lemma,

Since S, UsS U .,., s is unsatisfiable, for some
1 02 Gn

J, [0 ¢ R(Scyl U 502 U oo U Sgn +J). Therefore, O Is an

Instance of some member of R(5,J). Therefore Oe R(S,J).



2. The Concept of lLocking

The use of unificatlion permits a vast Increase in the
effipiency of proof procedures based on Herbrand's Theorem. By
avoiding the individual examination of ground instantiations of
the original clauses, a proof procedure needs Jless time and
storage. Nevertheless, there Is still no proof procedure that
solves many and varied hard problems In mathematlcs én | |
computers, The exploslion In the number of clauses genefated by
resolution, In particular, and the corresponding lncrease In the
time necessary to examine the clauses still provide insuperable
probleris for an? present computing facility. One of the most
ohvlious causes ® of thls problem is that any unsatisfiable
collection of clauses Is likely to admit a large number of
refutations, and reso]ﬁtion will procged to find them all. Any
technique that provides a method for significantly reducing the
number of resolvents, without s?gnfficant?y'lncreasing the dépth
of the shortest refutétion, is of Interest.

We present in this thesls a restriction of resolut ion
that does slignificantly reduce the number of resolvents
generated, This restriction Is bhased on the simple ldea that
If one were to resolve on only one literal In each clause, the
number of resolvents would certainly be reducéd. Ideas in this
general dlrectlon have been pursued in the works of Reynoids,

Slagle, Kowalsk!, Haves, Loveland, and Reiter’,

27
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One wishes he might choose any 1iteral 1in each of the
orlginal clauses, resolve upon just those literals, choose one
llteral in each of the resolvents, resolve agaln, choose again,
'and sO0 on. However, It Is easy to show that this procedure Is
Incomplete., For consider the fo]?owtng unsatisfiable set of
_ ground clauses: ;
LA BIMM B ANG aA [y ~E]]
Suppose we choose to resolve only upon the first ]tteral in
each clause, We get the following resolvents:

[ B a8l A =4l
- Agaln suppose we choose to resolve upon the first 11terais
only., We then obtaln the resolvents:

[wBAll-~ A =3].

If we agaln decide to resolve only upon the first literals, we
can only produce duplicates of clauses we already have, |f we
contlnue to choose literals from these clauses as we chose
before, we will never get any more new clauses, and certalnly
not [J.

A restricted version of thils procedure Is complete,
however., In particular, In the ground case, 1t is true that one
need only resolve on a particular literal in the clause (and it
Is easy to determine'which one It Is), The general'case permits
slightly less freedom.

The technique for decliding wE?ch literal to resolve

upon Is roughly as follows, Before beglinning resolution, we
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asslgn to each occurrence of each literal in each clause a
positive Integer. This may be done arbltrarily. Let us call
the Integer the "index" of the literal. Note that different
occurrences of the same literal may bé assigned different
indices. Having made this asslgnation, we resolve clause
against clause as In unrestficted resolution, but only upon the
lowest indexed literal In each clause. The literals in the
resolvents have '"hereditary" Indices.

For example, suppose we have the two clauses

[(ﬁ)y (a)) (% (F v) y) ]

[= (g.w y) = (G y (a)) ],
(The number printed below a literal Is lts index.) The only
Tlteral in the first clause that may be resolved upon is
(G (f y) y) (because 1 < 10). The only literal in the second
clause that may be resolved upon is = (G vy (a))
(because 6 < 11). There is only one ?ock~resb?vent of these two
clauses, vliz, |

[ (G (a)(a)) =1 (G w (f (a)))]

10 11

as opposed to four ordinary resolvents,

There are two matters we need to clarify. Strictly
speaking, we may not refer to "the" lowest Indexed literal of a
clause., Even If we Index different occurrences of literals
differently at the beginning, two distinct llterals, descendent
from the same orliglnal literal, may appear In a resolvent.

Therefore, we resolve on all the literals of lowest jndex 1n a
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clause. Thus If the clause
[ (% X y) (% x (f x)) (ﬁ)(f x) (f x)) ]
should arlse, we would resolve on both literals of index 3.

The second matter is that a Jiteral méy appear in a
resolvent as a descendent from two llterals, one in each.of the
clauses resolved. If these two literals have different Indices,
we assign to the descendent the lower of the two Indices, Thus,
the resolvent of '

[ (% (f x) (f x)) (g x x) ]

[ (% (f x) (f x) ~1(P X X) ]
is

[ (% (f 'x) (f x))].

Because we think of the literals in a c?iuse that are
not of lowest Index as "locked-out" of the resolving process, we

refer to our method of resolution as "locking,"

2.1 Locked

If S Is a set of clauses, then S is sald to be "locked" |f and
only if for each clause C in § and for each 11teral L in c,

there exists a positive Integek i such that | is the Index of L.

2,2 Lowest Index

If C Is a clause and L Is a1 literal in C and the Index of L iIs
Tess tﬁan or equal to the index of every 1lteral In C, then L Is

sald to be "of lowest index" In c.
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In Chapters 3 and L we precisely define the concept of

"lock~resolvent" and prove the completeness of lock=resolution,



3. The Completeness of Ground Lock=resolution

The usual method for proving the completeness of a version
"of resolution has two parts. Flrst, one proves the "ground
case', the case in which no variables {and consequently no
substitutions) occur. Then one "1ifts" to the general case, ile
follow the method here, This chapter contains the definition of
a ﬁground lock-resolvent" and the completeness proof forAground

lock~resolution. Chapter L treats the general case,

3.1 Ground lock=resolvents

Suppose C1 andlCZ are members of a locked set of ground
clauses,

Suppose further that'Ll s a literal of }owést Index In C1 and
L2 Is a literal of lowest index in 2.
Finally, suppose that L1 is an atom and L2 is = L1,

Now let R = (C1 - [L1]) U (c2 -[ 2D, f a literal L in R
s a member of both (C1 =[ L1D and (€2 - [L2]), let the index
of L In R be the least of the index of L in (cl -[ L1]) and the
index of L In (C2 -[ L2 D. Otherwise, let the index of a
lTiteral in R be the same as It is in (¢l -[L1]) or (c2 -[r2Dy.

Under these suppositions and allowances, R Is said to be a

"eround lock-resolvent! of Cl and c2.

32



Abstract

A restrlction, called "locking', of the resolution
deductive system of J.A, Robinson is presented. Locking
~itnvolves arbitrarily Indexlng with integers the literals in the
clauses to be resolved., DIifferent occurrences of the same
11teral may be indexed differently. Resolution Is then
permitted only on literals of lowest index In each clause., The
1lterals In reso]venfs are indéxed hereditarily ("merging low"
when necessary). Thls restriction is shown to be complete.
Locking results in a signiflcant reduction in the number of
clauses generated. Locking is compared to other restrictions of
resolution and is shown to be incompatible with some. Several
examples of lockling derivations are given., Flnally, a special
application of locking to a troublesome axlom is described which

reduces the irrelevant clauses generated by that éxiom.

vi
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3,2 Ground Lock=-resolution

Suppose S is a locked set of ground clauses. Let L(5,0) be
S, and for each positive integer 1+1 let L(S,i+1) be the union
of L(5,1) and-the set of all ground lock-resolvents of members
of L(S,1). Let L(S,u) be U L(s,1).

igw
The kernel of this chapter Is the following lemma:

3.3 Lermma

Suppose S is a finite, locked set of ground,c]auses.

Suppose also that m is the least integer such that somo
Titeral in some clause of S has index m and every literal in
every non-unit clause of S has index less than or equal to m.

Finally, suppose C is a clause in S, L is a literal in C, and
the index of L Is m.

Let S* = (S =[CD U[(C~-[L])].
Then, for eéch non-negatlive integer n and for each clause D
fn L(S*,n) there exists a clause D' in L{S,n) such that either
1) D and D' are identical and have the same‘locking,‘ér
2) D = D' -[L], L has Index m in D', and each member
of D has the same Index in D and D',
Proof:
lie prove this lemma by inductlon on n. [f n = 0, the
lemma is trivfaf. lle associate (C = [L]) in S=* w?tﬁ C InS; and
we associate every other member of S* wlth Itself,

- Suppose the lemma holds for some non-negative integer j.



There are two ways a clause D can be a member of L(S#,j+1), |f
D e L(S*,j), then De L{S*,j+1), But in this casé, by the
induction h&pothesis, there exists a D' ¢ LGS, J) with the right
properties and D' ¢ LS, +1),

On the other hand, D may be a ground lock-resolvent of two
clauses D1 and D2iin L(S*,7), By the induction hypothesis,
there exist D1' and D2' in L(S,J) with the right properties,
Suppose that D Is the result of resolving on L1 in DI and L2 in
D2. Then Lle D1' and L2 e po', Furthermore, L1 is of lowest
Index in D1' and L2 is of lowest index In D2'; this follows from
the induction hypothesis and Fhe fact that m is greater than or
equal to the index of any Titeral In any non-unit clause in
L{(S, w ). Therefore there exists a ground lock-resolvent D' of
D' and D2' on L1 and L2; and thus D' e L(3,j+1).

It remains to be shown that D and D' have the correct
relationship. There are four cases to consider:

1) If D1 and D1° a}e identical and have the same locking
and D2 and D2' are identical and have the same Iockiné,>
then D and D are identical and have the same locking.

2) If Dl = D1' = [L], L has Index m In D' and each member
of D1 has the same index in D1 and D1t, and
D2 = D2'" - [L] (etc.), then D = p -0 L], L has index
m In D', and each member of D has the same Index In D and
D'. The main point is that since L has index m in hoth D1°

~and D2, 1t will have Index m in D',
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3) If DI and D1' are ?dént?ca? and have the same locking,
but D2 = D2' - [L], L has index m In D2', and each member
of D2 has the same index In D2 énd D2', then

a) D and D' are identical and have the sameA]ocking
if and only if L occurs in D1 and is not Ll; whereas
b)Y D = D' =[L], L has index m In D', and each memher
of D has the same Index in D and D' if and only If L
does not occur in D1 or L is L1.

The main point here is that if L is in D1 and is not
resolved upon, then L will appear in D' and D with the same
index 1t had in D1.

L) case 3, mutatis mutandis,

This concludes the proof of the Temma,
Let the reader recall the definitions of "satisfiable"

(1.22) and the ”K—parémeter“(l.?ﬁ.h).

3.4 The Completeness of Ground Lock-reso}ut?on

If S Is an unsatisfiable, finite, aﬁd locked collection of
ground clauses, then 0 e L(S, w),
The proof is by induction on K(S); Let 5 be an
unsétisf?ab?e, finite, and locked collection of ground clauses.
[f K(S) < 1, then either Oe S (In which case
O e L(5,0)), or each member of S Is a unlit clause. In the
latter case, there exists an atom A such that[ A Je s and

f*xA] e S. For otherwise, S would be satlsfiahle, Clearly,
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e L(S,1),

Suppose for some non-negative Integer, |, that if s' is an
unsatisfiaﬁ!e, finite, and locked set of clauses and |
K(s') < §+1, then Oe L(S',w ). Suppose further that
KIS) = 1+1. FEither [0 ¢ S or there is a clause in 5 with at
least two literals.

e now apply Lemma 3.3. Let m he the least integer such
that some literal in smnn‘c1ause of S has index m and every
lTiteral in every non-unit clause of S has index less than or

equal to m. There exists a clause C in 5 that is not a unit

tlause and a 1lteral L in C whose Index is m. Let

i

S¥+ = (S -[cly u[(Cc -[LD]. Clearly, then, K(s*)

wn
4]

Furthermore, S* is unsatisfiable since any model of §%
model of S. By the induction hypothesis, for some Jo.
Oe L(S,jp ). By Lemma 3.3 there exists a clause D' in L(S,j,)

such that either

O =D, or
O =D" = [L]and L has Index m In D',
I f O e L(S,i0) the proof is complete, 30 suppose that
[L] e L(5,J0). Let S*x = (S -[c] ULl J1. clearly, then,

K(S#%) < [+1, Furthermore, S*w% is unsatisfiable since any model
of S*+ is a model of 5. 8y the Induction hypothesis, for some

J1s Oe L(S**,j1). Therefore, Oe LG5,jg+), ). QED.



L, The Completeness of Lock-resolution

In this chapter we define "lock=resolvent" and prove the
comnleteness of lock=resolution., The definition and proof are
fundamentally hased on the seminal concept of unification.
Because we pay close attention to the detalls of indices, our
definition and proof differ widely in the letter {bqt hardly in
the spirit) from the definition and proof of the completeness of
resolution given In Chaptér 1,

Except for the restriction on literals to be resolved upon,
the major difference between lock-resolution and unrestricted
resolution is that in lock-resolution we are interested in
factors only at the beglinning., Instead of factoring each
resolvent, we have built the essence of factoring Into the
definition of lock=resclvent. This techniéue ?s not new® and
has been called "merge=-resolutlon.” Although the definition of
lock=resolvent is more complicated than it would be if we relied
6n factoring, we belleve it results in a clearer completeness
proof.

The idea behind the definitlon of the lock=resolvent of two
clauses C and D is simple. Basically, we take a 1iteral Al of
lTowest index in C and a literal Bl of lowest Index in D and look

for a most general substitution o7 such that -'vAlG = Bl

91
To avoid factoring, we also look for literals Al in C and

literals 31 in D and an extension o of o; that unifies each

37
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Al with Bi. That is, we try to merge Al with BI, Ve then talke
R = ((C = [Al]) Uu (D - [Bl])% as a resolvent éf C and D
after assigning appropriate indices to the literals in R.

The precise definition is:

4,1 Lock Resolvent

Suppose that
1) C and D are members of a locked collection of clauses,
2) n Is a positive Integer, (we Intend that n may he 1)

3) AL, A2, ..., An is a sequence of distlnect 1iterals in C, Al
is a literal of lowest index in C, and Al is an atom,

4) B1, B2, ..., Bn ié a sequence of distinct literals in D, Bl
is a literal of lowest index in D, B1 is not an atom‘(i.e. Bl Is
the negative of an atom), and finally

5) o Is a host general simultaneous unifier of
[[—= A1 8110 A2 82]...[ An Bn]], o does nof unify two distinct
literals of (C -[ A1l), and o does not unify two distinct
1lterals of (D -[ 81]).

Let R be ((C - [Ai]) u @ - [81D) .

If there exist L1 In (C - [A1]) and L2 in (D - [B81]) such that
Llc = L2U . then let the Index of Llo in R be the least of
the index of L1 in (C = [A1]) and the index of L2 in (D - [B1 D).
Otherwise, If L Is a literal in (C - [AL]) or (O -[B1]), let
the Index of L . I'n R be the Index of L in (C = [A1l]) or
(b -[B1]).
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Under these suppositions and allowances, R is said to bhe a

"lock=-resolvent" of C and D, 2

We now prove the basis of the completeness proof:

L.2 The Lifting Lemma for Locking

Suppose that

1) C and D are members of a locked collection of clauses,

2) t is a substitution, CT and DT are ground c1ause$, and T
does not unify two distinct members of C nor does it unify two
distinct members of D,

3) If Le C, then the index 5f L . in ¢ is the index of L in

T

C; and If L € D, then the index of L. InD « Is the index of L

in D, and finally suppose

L) R Is a ground lock=-resolvent of C . and D, .
Then there exist a lock-resolvent R' of C and D and a

substltution A éuch that

(D R', = g,
(I1) A does not unify two distinct members of R', and
(i11) If L e R', then the index of L 5 in R Is the index

of L In R',

Proof:
Let us make the suppositions of the Lifting Lemma for

Locking. There exist a sequence al, a2, ..., an of distinct
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members of CT and a sequence bl, b2,..., bn of distinct memhers

of DT such that

1) al Is an atom and a 1literal of lowest index in C ,
.

2) bl is not an atom but is a 5iteral of Towest index in
D y
3) —al = bl,

L) RN = (CT -[all) v (DT - [bl]),

5 for 1 > 1, a; = bi,and
6) if L e(Cc_=T[all) and L e (D= [bl]), then for some
I > 1, L = a; = bi’

These points are all easy consequences of the fact that R is

a resolvent of CT and DT s
Since 1 does not unify distinct members of C or D, there
exlst a sequence Al, A2, ..., An of distinct members of C and a

sequence 31, B2, ..., Bn of distinct members of D such that for

each 1, A1_ = a;, Bi_ = h, the index of Al in C is the index
of ai in CT , and the index of Bl in D Is the index of b 1,in
DT R

Since T s a simultaneous unifler of
[[ —a1 81 ][A2 B2 J1...[ An Bnl], there exists a most genera?
simultaneous unifier o of [[ —Al BZ][ A2 B82]...[An Bn]], and a
substitution A such that oA = T . Because t does not
unify two members of C or of D, néitﬁer does ¢ . Therefore,

R' = ((¢c -[aAa1]l) u (D - [Bl]})g is a lock=-resolvent of C and
D. But
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Ro= (CT- lai] U (DT - [h1]
= (C’ - LAty _u (o - (81D
= (¢ - [A1D u (- [BY)),
= (¢ - [AaTD v (D - [B1]))

= R'A .

This establishes the first part of the conclusion of the

S Lifting Lemma.

e now show that A does not unify two members of R',
Suppose kl e R', k2 ¢ R', k1 # k2, but klx = kzx . From
these suppositions we shall derive the contradiction k1 = k2.
There exist K1 ¢ (C = [A1D) U (D - [81]) and
kK2e (C -[AL]) U (D - [81]) such that KI_ = kI and
K2 G - k2, Since o does not unify two memhers.of (¢ -[ A1D

or of (D -[ 811], we may assume without loss of generality that

Kle (C - [A1]) and K2 ¢ (D - [B1]). By (6) ahove, for some

P> 1, klA = a; = b.i = k2l « But we have AIT = a; and
Bi _— bT. S§nce Al : = an., Ai = Kl. Furthermore,
Bi = K2. But kl = Al s = Bic = k2, contradicting the

assumption that k1l # k2. Thus we have established the second

part of the conclusion of the Liftinz Lemma.

Finally, we must show that if L e R', then the index of L
in R'" is the index of Ly, In R. There are two cases to
consider., |

1) If for some I > 1, L = Al_ = B

g ¢ then the Index of L

in R'" is the least of the index of Al in C and the index of



42

BI in D. For since o does not unify members of

(c =LALD), if L' ¢ (C =[AL]) and L'G= L, then L' = Ai.

i

And similarly, if L' e (D - [B1]) and L'G L , then

LY = Bi. In this case, however, the index of L in R' is

the least of the index of a; in (C_=Tall) and the index
. ,

of h{ in (DT - [b1]).

2) If for no i > 1 is L = Aig = Bic , then there do not

exist L1 in (C - [AI]) and L2 in (D = [B1]) such that

L = LlU = L2 s *+ Hence, there exists precisely one L'

in (C ~[A1]) or (D = [B1]) such that L'o = L., If

L' ¢ (C =[A1]), then the Index of L' in (C - [A1]l) is the
index of L in R', the index of L‘T in € , and the index of
LA in R. And similarly, if L' ¢ (D - [B1]),

This concludes the proof of the Lifting Lemma for Locking.

Before proving the completeness of lock=resolution, we necd

L,3 Lemma

Suppose § is a finite, locked, fully=-factored, unsatisfiahle

collection of clauses. Then there exists a finlte, locked,

unsatisflable collection | of ground clauses with the following

property:

For each member D of |, there exists a member C of S
and a substitution A such that

1) D = CA

2) » does not unify two distinct members of c,
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3) if Le C, then L has the same index in C as L A has in
D.
Proof:
Suppose S is a finite, fully-factored, unsatisfiable

collection of clauses, By the Model Theorem, there exists a

sequence 0oy, O, o0 of substitutions such that for each i
S is a collection of ground clauscs and S U s ssal) S
Oi g1 0'2 O’n
is unsatisfiable, Let | be § U s see S . By the
Ul 0'2 0n

fully-factored theoren, fér each D in | there exists a C in §
and a substitution X such that D = CA and A  does not unify
two members of D. Ve now only need to "rig" the indices of the
lTiterals In the members of |, For each clause D itn 1, let D' he

{

a member of 5 and X a substitution such that.D'A = D and A
does not unify two memhers of D', If L D', let the Index of
‘LA In D be the Index of L in D'. QED.

‘le are now prepared for the completeness theorem, so we

define:

4,5 Lock Resoclutlon

If S is a set of locked clauses, let L{(S,0) he §, and for
each positive integer i+1, let L(S5,i+1) be the union of L(5,1)
with the set of all lock-resolvent of memhers of L(S,1). Let

L(S, w) be.LJ L(S, 1),

Tew
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L,6 The Completeness Theorem for Lock=-resolution

If 8 is a finite, fully=-factored, unsatisfiable collection of
clauses, then O e L(S,w ).

Suppose that S is a finlte, fully-factored, unsatisfiable,
and locked collection of clauses., Let | be a finite, locked,
unsatisfiable collection of ground clauses with the following
property:

For each mehber D of I, there exists a member C of S and a
substitution XA such that
1) D = CA

2) ) does not unify two distinct members of ¢

3) if L € ¢C, then L has'the same Index In C as LA has In
There exlists such an | by Lerma 4.3. Ule now prove by'?nduction

on n

L,7 Lemma
I'f n Is a non-negative Integer and R e L{l,n), there exists an

N''e L(S,n) and a suhstitution A such that R = R'A , A does
not unify two member of R', and if L e R', then the index of L
in R" is the index of L in R.

In the case n = 0, thls follows immediately from the
defining properties of I.

Suppose that Lemma 4,7 holds for n and that R e L(I,n+1).

There are two ways R can be a member of L{l,n+1), If
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Re L(I,n), then Re L(I,n+1).A In this case, however, there
exists by the induction hypothesis an R'e L(S,n) and a A with
the right properties, and R' e L(S;n+1).

Un the other hand, R may be a ground lock-resolvent of two
clauses C and D in L(I,n). By the induction hypothesis there
exist C' and B' in L(S,n) and substitutions A1 and A,  such
that C'A1 = C, D'Az = D, A1 does not unify two distinct
members of C', and A does not unify two distinct membhers of D',
Furthermore, if Le ¢' then the index of L in C' is the index of
L Ay In C, and siailarly If L e D', Since we provide that no

tiio clauses bheing resolved have variables in common, there

exists & substitution T , namely A1ry , such that ¢! = C,
T
D'T = D, and 1 does not unify two distinct members of C' or

of D', By the Lifting Lemma for Locking, there exists 2z
resolvent R' of ¢! and D' and a substitution A such that
R'A = R, X does not unify two distinct members of R', and if -
L e R', then the index of L \ in R is the index of L in R',
This completes the induction step, and consequently the. proof of
Lemma 4.7,

Since | 1Is unsatisfiable, by the Ground Completeness of
Lock-resolution, for some n, O e LC1,m. Therefore,

O e L(s,ny. QED.



5.The Incompatibil?ties and ldiosyncracies of Locking

5.1 Lockling is Incompatible with the elimination of tautologies,
I'n the literature on resolution, a "tautology" is defined to be
@ clause that contains two complementary literals, |In every
other form of resolution of which we are aware, [J may be
derived from an unsatisfiable set even If one never resolves a
tautology against any clause. The following locked set of
clauses fairly approximates the restrictions which we wished to

apply in the first round of the example in Chapter 2,

1 [[ A B ]
1 2
2 L =84 ]
3 4
'3 [ B q 4]
5 6

4 [ = A Aas] )

7 8
Notice that every possihle lock-resolvent In the first round is
a tautology, Clearly, elimlinating them would prevent [J from

arising. e present a derivation of O for this set of clauses.,

I Er o e e e o e e o
e - -

e
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11 [ = A ] 9,3
12 [ B ] 11,1
13 O 9,12

The key difference between lock-resolution and the
incomplete strategy suggested for the example In Chapter 2 éomes
to light In clause 7. Not?cg that lock=resolution forces clause
7 to be locked differently from clause 2. (cf, example 7.2 for

another locking refutation of the same set of clauses.)

5.2 Locking Is Incompatible with linear format. There Is a
powerful restriction of resolution discovered by Loveland(10)
among others, called "linear format". |If S is a set of clauses,
€i, €2, C3, ... Cn is a sequence of clauses, Cle S, and for
each 1T > 0, Ci+1 is a resolvent of Ci and a member of S or some
Cj where j < 1, then C1, C2, ... Cn Is called a linear
derivation of Cn from S. There isba linear derivation 5? 0 from
any unsatisfiable collection of clauses. This is not the case
for'iocking. Consider the following set of clauses:

AR I

[ A ]
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[ B =1P ]
3 4
[ 78 7]
It Is possible to derive [Plon one branch, and [-1PJon another
branch, but these two clauses do not admit lock-resolvents with

either "ancestors" or "input parents',

5.3 Locking Is Incompatible with the ancestor restriction of
Loveland(10). If S ié an unsatisfiable collection of clauses,

[0 may be deduced from S 1f one accepts only those resolvents R
of two clauses C and D such that one of C, D is in S or sone
Instance of R is a subset of some instance of C or D. This Is
not the case for locking, however; consider the following
unsatisfiable collection of clauses:

1 [[ F % -1 % ]

2 [ =R ]

3 [ P ]
s I Lﬁ -1 % % ]
5 [ =4 ]
6 [ 1 F ]

In the first round we obtain
' 1
7 ‘[ S P, 11,2
8 [ =s FJ u,s5
5 8

But nelther 7 nor 8 lock=resolve wlth any of the‘origina?

clauses, The lock=resolvent [‘15 z}of 7 and 8 1s not a subset
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of 7 or 8., Hence, if we accept the ancestor restriction, no

resolvents will appear In round 2.

5.% Lociking is incompatible with the merging restriction of
Andrews(4), If S is an unsatisfiable collection of clauses, [J
may be be deduced from S if one accepts only those resolvents R

S

of two clauses C and D such that one of C,0 is In S or one of
the 1lterals resolved upon is a merged literal, This is not the
case for locking, however, as the counter=-example to

linear~-format above reveals,

5.5 Locking s incompatible with a set of support restriction.
If S Is an unsatisfiahle collection of clauses but every proper
subset of § ?s satisfiable, and C e S, it is possible to
generate [] by resolving just C against S, then those resolvents
agalnst themselves and $, then the new resolvents against
themselves, S, and the previous resolvents, and so on. But .
Consider the following clauses:

[ = ar ]

4 1 2

[ o ]

L ]
Notice that the third clause admlts no resolvent on the first

round,
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5.6 The method of p1 resolution invented by RoblInson(17) is an
€asy consequence of the completeness of lock-resolution, A pPi
resolvent is a clause formed by resolving two clauses together,
one of which contains only negative literals. This effect can
be achieved In lock-resolution by simply assigning the Index‘l
to all positive literals and the index 2 to all negative
literals., MNo negative literal can be Jlock-resolved upon unless
all the llterals In the clause containing the literal are

negative,

5.7 Locking is compatible with Anderson's restriction on
merging °. Recall that when we reso?ve‘two "general" clauses C
and D we not only try to unify =1 Al and Bl (for some Al e C and
Ble D), but also try to simultaneously unify some other
Ai's ¢ C with Bi's ¢ D, This has the beneficial effect of
sometimes "shrinking" the resolvent by the merging of literals;
but 1t also requires a sfgnificant amount of computation,
Surprisingly, it is possible to restrict the search to just
those Ai's and Bi's that have the same index. To be precise we
may: o
Add to supposition &4 of definition 4,1 the condition 'and
for each 1 > 1, the index of Al in C is the index of Bi in
DH
without the loss of completeness.

If we make sure before beginning resolutlon that
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literals in different clauses and in the same clause have
different indices, this result tells us that we need only merge
literals whose origin Is the same. To some extent thils strikes
us as intuitively reasonable; it means that the only essential
function of merging is to keep a ]iteral from getting In its own

way,

5.8 Several authors have discovered restrictions of
resolution based on resolving only some of the literals in a
clause,

Reynolds Worders the predicate symbols before
beginning resolution; then ?ﬁ one of the clauses belng resolved
he resolves only on literals with highest predicate letter,
Slagle (18) combines thls restriction with maxima] clash
resolution,

Kowalskl and Hays (8) redefine an A~ordeffng (a
concept introduced by Slagle) to be a total ordering of some of
the literals. Thelir A-ordering Includes the requirements that
(1) if A < A", then for all subétjtutions o A < A; p
(2) if A is a variant of A', then A < A', and (3)

A s A = 1A, They then demand that neither of the
literals resolved upon be less than any other literal in either
of the clauses being resolved,

Relter (15) follows Kowalsk! and Hays In defining an |

A-ordering as a partial ordering on all the literals, This
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ordering 1s Induced by a total ordering of all the ground atoms
and by instantiation. Using a linear format, he requires that
In one of the cfauses being resolved the literal resolved upon
be maximal,

Kowalski & Kuehner(9), Loveland(1l1l), and Relter(15)
have found linear format and other restrictions compatible with
resolving on éxact]y one llteral in a clause being resolved with
~an original clause, (They do not restrict the literal to be
resolved upon in orlginal clauses,)

The essential difference hetween locking and all these
versions of resolution Is that In lock-resolution ”mo;t” of the
time one need only resolve on one literal In each clause., |f
one simply simply assigns different Indices to the literals In
the original clauses, one never resolves on more than one
lTiteral in any clause unless the clause contains two distinct
descendents of the same originai literal, and these literals
have lowest Index In the clause. In particular, one never
resolves on more than one literal in an original clause, Thus
lock resolution differs from the versions mentioned In the last
two paragraphs because in those versions resolution is_aiways
permitted on any of the literals In an original clause. In
comparison to the ordering of predicate letters or A-ordering,
locking permlits a greater discrimination between 1itéra}s {and
thelr complements, varlants, and lnstances.) This comes to

lTlght In examples such as example L In the next chapter.
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Ordering the predicate letters there has no effect whatsoever
since'theré is only one, |If one A-orders the literals and
admits to the ordering the literal (x < z) from the
transitivity axiom, the A-ordering becomes comp?ete]y‘trEVEa?.
lie first became Interested In Tocking clauses precisely hecause
of examples like this, which arise in proving elementary
theorems in analysis. Finally, locking may be distinguished
from all versions of resolution by the number of known

restrictions with which It is Incompatible,



6. Some Lxamples of Lock-resolution

Example 1
Our first example of a lock-resolution proof s based
on the example at the beginning of Chapter 1. Conslider the
followlng collection of locked clauses,
LI @y ) (GFy)y) ]
2 I (% y (a)) (g y.(f v)) ]
3 [ﬁ(Ggw v) (G3(f y) v) ]
b [ = (ﬁow y) (q*y (f y)) ]
5 [+ (ﬁlw y) = (g y (a))y 1]

aEmmmmEmmEx

In the first round there are only two possible matches
(as opposed to twenty for unrestricted resolutlion).
68 [ (g (al(a)) = <§1W (fa))) ] 1,5
700 gwan W (F @) ] 3,5

B gt o e e e o me o O
EammnmEmmoE=mE

In the second round we have
g [a@w ) = (f (2] 6,5
9 [ (%lw (f (a))) = (glw’ (f (a5)5 le,7
10 [ = gw(fay ] 6,7
11 L (g (a) a) = (Gw (f (a3 ] 7,1
12 [ (6w (a)) -1 (Gw" (f (a))) ] .3
Since clause 10 subsumes every other resolvent, we may delete

them all 1L

54
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mEmmmmm T

The only resolvents of round 3 are those‘of clause 10

. with the or?gfnal > clauses, v?%.

13 [ (G (f (a)) (a)) ] 10,1

W L(g (a) () ] 10,2

15 [ TG w (f (a))) ] 10,3
[

~1(G0w (ay) ] 10,4

SR NI s s

Among the resolvents of the next round is

17 0 | 14,16

We know of g program using linear~format, set of
‘support, merging, splitting, and subsumption (but not locking)

that generated more than 100 resolvents in nproving this theorem,

Example 2
In Sectlon 5.1 we presented one locking refutation for
the "full set on two atoms." e present here another locking

that leads to a less pathological derivation of 0.

1 LA 8]
1 [t
2 [ A =3 ]
2 6
3 [=~a B ]
7 3
4 [=4a3 ]

B mD e o mm o e mes ews e o o
LSRR~ I

W
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6 [ B811,5
7 [=B ] 2,5
O 6,7

Notice there is only one possible match in the first round.
This compares with the elght possible matches of unrestricted

resolution,

Example 3
The following collection of clauses'may not‘appear at
first glance to be the clausal representation of a theorem of

the form A = A, 12

1[0 0+tx 0%y 0< (fxy)]
7 8 1

2l 0tx 04+ vy (fxy)< x]
9 10 2

3 0 % x 0¢ v (f x y) < vy ]
11 12 3

57 0 < (a) ]

5[ 0 < (b) ]
6L 0§ (Fa)(b)) (Fa)(b)) § (a) (fladb)) § (b) ]

In the five rounds that resolution takes to derive [J,
the first four clauses lead to many spurious resolvents. But
notlice the locking proof, 7
70 0 % (a) 0 g (b) (f(a)(b))g (é) (f (a)(bd) : (b ]

6,1
30 03 (a) 0 () (F(a) (b)) E (b) ] ‘



7,2
90 0 t(a) 0 k(b) ] 8,3
7 8
100 0 4 (b) ] 9, L
11 O

Notice that not one spurious clause was generated,

Example 4
=oaliple
Our next example 1is more Interesting and more

difflcult, 13

Lot x 0%y 0< (fxy)]
12 13 Y
2 [0 ‘itu x 0 %Sy (fsx y) < x ]
S[Ofsx 0%7y (fxy);y]
i [xg Y é% z X<z ]
5 [0< (a) ]
6 [ 0< (h) ]
704 2z (c) < z (dy < z ]
18 7 10
8 L0t z ()< z (d) ¢ (b)]
19 8 20
S [0t z ()t (a) (d)< z]
21 22 9
00 0% z ()4 (a) (d)4 (b) ]
23 24 11
The lock-resoivents of round 1 are:
11 [ (d) ¥+ v v t (b) (¢) ¢ (a) 0 ¢ 2171 10,4
3 2 24 23
12 [ (d) £ 0 0 ¢ (b) (c) ¢ (a) ] 10,4
3 2 24
13 [ 0 ¢ (b) (cifla) 0 % z ] 10,9
21 22 23
s [ 0 § (b () ¢ (a) ] 10,9
1 22

57
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Among the reso?venté of round 2 is:
15 [ (c) & (a) ] 14,6

This clause subsumes all the other resolvents of round
1. .Hence we may delete them and their descendents. We also
delete clause 9 and clause 10,

In round three the resolvents are:

16 [ (c) g Yy v g (a) ] 4,15

17 [ 0t (a) (d) < (a)] 7,15
18 10 :

18 [ 0k (a) (d) £ (1) ] g, 15
19 20 :

Among the resolvents in round four are

19 [ 0 ¥ (a) 0k vy ()4 (f (a) v) ] 16,2
14 18 3
20 [ 0 h(a) (c)-g (f (a)(a))] ' 16,2
21 [ 0 % x 0 4 (a) (e)k(f x (a)) ] 16,3
) 17 3
22 [ 0 %S(a) (c) § (f (a) (ay) ] 16,3
23 [ (¢)y & ¢ ] 16,5
24 [ 0k (a) (d)y < (a) (c) ¥ (o) ] 16,7
18 10 3
25 [ 0 ¢ (a)y (d)y ¢+ (b (c)y 4 (c) ] 16,8
19 20 3
26 [ 0 {fs(a) (c) § (d) ] 16,17
27 [ 0% vy y 4 (a) (d) ¢ (by ] - 18,4
3 2 20
28 [ (d) 4 (b) ] 18,5

Because of 28 we can delete clauses 8§, 18, 25, and 27.
Thus after four rounds, we are concerned only with the clauses

i, 2, 3, 4, 5, 6, 7, 15, 16, 17, 19, 20, 21, 22, 23, 2L, 26,
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and 28. Let the number 12 be roughly compared to the 61
possible matches of unrestricted resolution in the flrst round
alone. Having pralsed lock-resolution, we now admit that
writing all lock=-resolvents of the future rounds becomes
tedlious, Ve simply list the interesting clauses produced in

each round,

29 [ () ¥y oy 4 (b) ] 28,4
3 2 .

30 [ 0y (fla)y) ()< (fF(a)y) 0 vy 0 4 (a) ]
18 10 15 14

19,7

31 0 0 (b d)t (f b | | .3

[ X f, (B) ()} (F x (b)) ] 29,3

32 [ 0 4 (F (a) (b)) ¢ f, (30 04 () ] 30,31

33 [0 & (f (a) (b)) 0 ¢ (b) ] ~ 32,5

18 15

38 [ 0 4 (F Ca) (b)) ] 33,6

35 [ 0 4 (a) .0 ¢ (b) ] 34,1
12 13 .

36 [ 0 4 (b) ] | 35,5

37 o - | . 36,6

B o e ow me e me o we e
—-moEREEREE=

(If we added to lock=resolution the helpful strategy
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of always reso!vfng Immediately with unlt clauses (regardless of
indlces) whenever the resolvent produced subsumes the other
clause with which we resolved, then this proof would be
shortened by five rounds. In particular, the last six rounds

would be shortened to two rounds.)

Example &
The followlng theorem Is due to Joyce Friedman,
A x 3y Yz ((C (P xy) = ((P x z) © (Qy z)))
AP xv) & ((P z z) = (Q z z)))
- (o x_y) & (Qz z) )

In clausal form this s

[

[=(P xy) (P x(zxy)) (Qy (z x y)) ]
20 10 i

2 [=(P xy) (Px(zxy))=(Qy (z x y)) ]
21 2 11

W

[ﬂ(gzx y) —‘(IP2 (z x yv) (z x y)) (3Q (z x y) (z x y)) ]
[(gxy) (5(zxy) (z x yv)) ]

BV T

[ (P x ) =1(Q (z x y)(z v ]

6[(gxy) (%(zxy)(zxy))]
7 [ xy) =|€Q (z xvy) (z x y)) ]
23 N v
Here 1s a locking derivation of 0 from these
clauses,

8 [ﬂ(szx ) ‘}(1!2 (z x y) (z x y) '1(2% xy) ] 7,3
9 [-x(;zrx V) ‘1(1Qs(z (z x y) (z x v)) (z (z (xy)) (z x vI)))

=1(Q x v) ] 5,8
23
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10 [—(P x v) (Q(z xy) (z x y))—(Q x y) ] 6,9
22 8 . 23

11 [ (P x yv) =1(Q x v) ] 7,10
22 23
12 [ (glx v) *1(g3x (z x v)) 1y (z x y))]11,2
11
13 [ (P x x)(Q x (z x x) ) ] 11,2
_ 21 11 A
I [ (P x x)=1(P x (z x x)) ] 1,13
20 10
15 [ = (gox x)'ﬂ(%s(z x (z x x3) (z x (z x x)))]5,10
16 [ — (gox X)- (% x (z x x)) ] 6,15
17 [=1 (P x x) ] | 13,16
18 [ (P x v) ] 4,17
19 O " 17,18

Bl Y —
oo oo oo mms

There are only two cﬁauses generated in the First
round., (There are 27 posslble matches In the first round for
unrestricted resolution,) The two are clause 8 and the
tautology

[ @Qxy) =@xy) ] 6,7

8 23 :

Let us for the moment call a clause "spurious'" if it Is a
tautology or is a superset bf a clause previously generated
(Ignoring Indices). Ve polnted out in 5.1 that in general If
spurious clauses are eliminated then completeness Is lost., Let
ﬁs for the moment, however, ellminate spurious clauses, Then in
the twelve rounds needed to derive EI for this theorem fewer
than twenty resoivents besldes those listed above aré produced
(and fifteen of them are spurious). This leads us to hope for a

powerful Improvement of lockling based on the ellmination of



spurious clauses which meet some special condition. (For

example, one might place a condltlon on the original locking.)
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7. Hammer Locking

In unrestricted resolution, a set of clauses that

contains a transitlvity axiom such as
[ (x 4 v) (v ¢ 2) (x < z)]

presents an annoying problem. Naturally, any clause whatsoever
contalning a literal of the form (a < b) or (a ¢ b) can be
resolved against the transitlvity axiom. The problem is that
resolvents so formed will contaln at least two literals,
descendent from the axiom, which again match literals in the
axlom,

For example, if the clause

[ (a) £ (b) ]
should arise, then after four more rounds we should obtain such
spurlous resolvents as
[ (ay £ v) (y & y") (y' & y'') (y'rd gty

(y"'%(b))]
We believe such resolvents are unnatural., In essence they
amount to an application of the transitivity axiom to itself..
In this chapter we show that such resolvents are unnecessary;
and that they can be avolded by a very simple use of locking,

If S Is an unsatisfiable collection of clauses
Including the transitivity axiom -

[ € x§ vy} 2 Cx < 2)]

and every llteral In each member of S except this axiom has an

63
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index greater than 3, then there is a locking derivation of O
from>s such that no literal of index 2 is ever resolved against
the transitivity axiom. This restriction prevents any resolvent
that contalns two literals of index 3 or two literals of index 2
from arising. |

Before proving the completeness of this restrictionvwe
wish to point out é pecullar aspect of 1t. Conslder the

following collection of ground clauses:

([ (@ § (b (b) b (a) < () ]

[ (c) ¥ () (d) ¥ (e) (c) < (e) ]
3 2 1

[ (a) 4 (o) (e) £ (e) (a) < (e) ]
3 -2 1

[ (a) ¢ (e) ]

[ (a) < (b) ]

[ (b) < () ]

[ (e) < (d) ]

[ (d) < (e) 17.1

Note that it Is unsatisfliable, but that If we observe
the restriction of not resolving any literal of index 2 against
the transitivity axiom, then we shall not obtain [J . However,
using the uninstantiated transitivity axlom

[ x't vy y & z x < z ]
3 2 1
we can cobtaln [ under this restriction,
Thus to prove the completeness of the restriction we

conslder flrst a "semi" ground case. Suppose S s a collection

of ground clauses, every llteral in every clause of S has |ndex
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greater than 3, and

s* = s UI[[ x g y y E z x < z 1] is unsatisfiable.
Then there Is a locking derivation of {3 from S* In which no
1iteral of index 2 Is resolved agalnst the transitivity axiom,

We procede by Inductlon on K(S). If K(S) = 0, then
there exlst ground terms al, a2, ..., an such that for 0 < I < n
[at < ai+lle s and [al tan]l e S. This can be seen by
considering s U [[ «x f» v y % zx sz 11 . From:
this 1t follows that there Is a derivation of [0 from S* [n
which no llteral of index 2 is resolved against the transitivity
axlon,

If K(S) > 0, then there Is a literal L In a non-unit
clause C of S such that the Index of L Is greater than the index
of any 1lteral In any non-unit clause In S and greater than 3.
By the Inductlon hypothesis (S* - [C] ) U [c - [L]] admits
a restricted lock derivation of [J. Hence S* admits a
restricted lock derivation of {0 or [ L ] where L has the’
same index 1t had In C,. But (S* = [ C] ) U [[L]] admits a
restricted lock dérivation of [ . Hence S* admits a restricted
derivation of [J. QED. The 1ifting to the full general case Is
Emmédiate.

We hope that results simllar to this can be derived for other
axioﬁs. We also look for a generallzation of locking that will
permlit control over a set of axioms. In particular, we helleve

It Is possible to lock equallty axloms in such a way as to



simulate paramodulation(2l) and E-resolutlon(12).
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Appendix

Two complications, monumentally shallow, arise In the
- locking of literals,

The flrst problem Is that the "same" literal may have
different Indices in different clauses. To be completely
precise we might redefine a literal to be an ordered pair
consisting of an Index and a "literal" as we have defined It.
Then we should redefine an Interpretatlon to contain equivalence
classes of literals. And then we should worry whether it Is
possible to unify lliterals with different indices. e belleve
this would only be a source o% annoyance to the reader.

The second problem Is the notion of "factor." In the
main theorem of the thesls (4,6) we start with a fully-factored
set of cTauses. It Ié a minor point, but true, that when
generaﬁ?ng a fully factored set one need pay no atfentfon to
indlces. That Is, one may ”fulfy-factor" first, and then
"lock." But if literals have Indices "bullt=-in" as suggested
above, then to achieve the desi|red fagtor-}ocking general?ty,.

one must engage in a gvration like the following:

Variations

If C and C' are clauses and there !s a one-to-one
correspondence between C and C' such that corresponding literals

have the same sign and atom (hut not necessarily the same
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indices), then C and C' are called '"variations" of one another,

Factorx

If C Is a clause, T Is a subset of C, the members of T all have
the same sign, o Is a most general unifier of the atoms of the
members of T, B is the set of all 1iterals in C 5 for which
there does not exist a literal In C0 with the same sign and
atom but a lower Index, and D is a variation of B, then D is

2

called a "factor=*" of C,

Fully=-factored* Sets

If S Is a collectlon of clauses such that If C is In S and ¢!
Is a factor* of C, some variant of some variation of C' is In S,

then S Is sald to be "fully-factored=,'



Index

atom

clause

complement
composition

direct instance
factor
fully-factored
function symbhol
ground lock resolvent
ground
Interpretation
k=parameter

literal

lock resolvent
locked

lowest Index

mode 1

model theorem

most general simultaneous unifler
most general unifier
predicate symbol
resolution theorem
resolution

resolvent
satisfiable

sign

simultaneous unifler
substitution
substitution component
terms

unification

unit clause

variable

variant
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10

12
11
14
14

33
10
14
23

38
30
30
15
15
13
13

17

17
15

13
10
10

12
10

11



Footnotes

1 The exact definitlon of resolvent may be found at
(1.24), It Is there explained that one looks for a "most
genéra1 unifier", Before one resolves two clauses C.and D, it
Is actually necessary first to change the variables in C and D
‘'so that C and D will have no variables is common; othefw?se, one
may not obtaln the right unifler., We pass over thls detail In
cur examples throughout the thesis,

2 Before resolving C and D one must first create a

varfant C' of C and a variant D' of D such that C' and D' have

no variables in common. Theﬁ one resolves C' and D' instead of

C and D. Otherwise, one could not resolve [ — (G x) Jwith

[ (G (f x))], for example.

3 A valuable reference on the first order predicate calculus
Is Schoenfleld(19). He proves Herbrand's Theorem on p.5k.

& We lgnore tauto]ogous disjunctions .such as

( (Gy (a))v= (G vy (a)) ).

> In the Introductlion, we claimed that Herbrand's Theorem
dealt with tautologles, D01 A D A .../‘\DCr Is Inconsistent

Jo k

o5 Veso V —!%kis a tautology.,
There is a valuable examination of this problem in

if and only if a;Dclv-wD
8

Kowalskl & Kuehner (8). For a discusslion of other inadequacies
of resolution, see Bledsce (5) and Bledsoe, Bover, & Henneman

(5)0
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7 In section 5.8 there 1s a comparison of locking with the

works of these authors,

8 It Is defined In Anderson(2), for example.

9 This result was pointed out to me in a conversation

wlith Robert Anderson.

10 We have not seen the original source (viz.

Unpublished seminar notes. Stanford Unlversity, fall 1965, cited
by Slagle(l8)). This technique is described in Allen and

Luckham(1).

11 In this chapter, If C is a unit clause, D Is a clause

different from C, and C Is a subset of D, then we say that 'C
subsumes D" and delete D, Thls is a very special case of the

general principle of subsumption.

12 In the next two examples, we depart from the "prefix"

notation for "< " and "—", Furthermore, 0 is a contant here

and should really be written "(0)."

13 This Is example 4, sectlon 6, of (6).

14 This example was pointed out by Robert Anderson.
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