A Resclution-based Prover
for General Inequalities

by

W. W. Bledsoe

July 1979 v ATP-52

Part
Abstract
1. Introduction .

2, Resolution< .

2.1 TY-Resolvents

°

e

®

-

e @ * a 2 ®

2.2 Variable-elimination Resolvents

2.3 Chain Resolvents

2.4 Processing Resolvents

2.5 Sequencing

3. The Principal Parts

RESOLUTION <

RESOLVE~CHAIN

RESOLVE . . .

CHAINER . . .

MATCH-CASE, RL-CASE
PROCES5-RESCLVENT

PROCESS~RESOLVENT

REDUCE

The Special Clause TY

ELIMINATE~-VARTABLES

4, Examples . . .

5. Computer Implementation and Results , .

6. Completeness .

7. Comments . . .
Acknowledgement
References

Appendix 1.

®

°

°

®

@

@

®

@

o

-

°

e

s

E

LISP Program

o

B

°

e

e

0

B

&

B » © e e °

Page

16

10

13

14
15
18

20

20
20
21
21

22

39

42
44
45
47

A Resolution~based Prover for General Inegqualities

W. W. Bledsoe

Abstract. A variation of Resolution is described which has been designed to

prove theorems about general inequalities. Special clauses and resoclvents

are introduced to avoid the explicit use of certain axioms, such as the transi-

tivity and interpolation axioms for inequalities, which tend to explode the

search space. Several examples are given along with results from a computer

implementation.

B

1. Introduction

The purpose of this paper is to describe a resclution-based theorem
prover which has been designed to prove theorvem about real inequalities,
An important motive for building special imequality provers is to avoid

the explicit use of axioms such as

TRANSITIVITY: VxVy Ve (z2<yiy<z-x<z)
INTERPOLATION: VxV¥Wy (x <y - 3z (x<z<7y)),

Vx >O\?y >0 3z >0 {(z <xaz < vy).

Such axioms tend to lengthen the proof search because they can match with other
formulas in so many unproductive ways. Also, the explicit use of the field
axioms for the real number present similar problems.

To avoid these difficulties special "built-in" procedures have been sug-

gested and used with varying degrees of success. Some of these procedures are

(1) the built~in partial ovdering of Slagle and Nortom [2]:

(2) the ground inequality packages of King [3], Oppen, et al. [4], Shostak [5],

Bledsoe, et al. [6] (these tend to be in the Presburger mode);
(&) the methods of Hodes [7];
(5) the Restriction Intervals Method [8, 6].

In [6] we combined a ground inequality package and a restriction interval
method with our existing natural deduction prover to obtain a general inequality
prover capable of handling a variety of inequality theorems without the explicit
use of any axiom about inequalities or the real numbers.

Even though this prover has met with a degree of success on some rather
difficult theorems, still further changes are necessary to handle many other in-

equality theorems., One such change is the inequality chaining described below.

The reason for this paper is to show one way in which these features can
be built into a resolution prover and to compare the results with those from a
natural deduction prover with similar features.

Resolution is particularly suited for the restricted variable method
(see variable-elimination resolvents, Sect. 2.2, below) because each clause has
its own unique variable, Some other advantages of Resolution are that no
substitution needs to be returned from the proof of a subgoal, no backtracking
is needed, the clausal data type is uniform and simple, and completeness re-
sults are easier to obtain. It remains to be seen whether these advantages
offset disadvantages that have been articulated elsewhere, but it seems a safe
bet that a well-tailored resolution system will be best for inequality theorems
of limited difficulty where human interaction is not required, and it is hoped
that such a limited capacity prover can be coded on a mini-computer to work

in parallel with and swpport a larger system.

2. Resolution<

Resolution < is much like ordinary resolution [1], except that in addi-
tion to the traditional clauses there is a special clause (only one) callied TY
which is essentially a conjunction of ground inequality literals, and four
different types of resolvents sre used, These are
- Ordinary Resolvents
- TY-Resolvents
+ Variable-elimination Resoclvents

. Chain Resolvents

2.1 TY-Resolvents

A TY-Resolvent is obtained by conjoining a ground inequality literal
with the special clause TY and checking the result for consistency by calling
the routine, CONTRADICTION. If CONTRADICTION succeeds, then the resolvent

is []; otherwise, it is the augmented TY.

2.2 Variable-elimination Resolvents

A literal, x < a, is called an RlL-literal if =x 4is a variable which
does not occur in a, and the variable x is called an RL-variable for that literal.
This definition is extended to include the cases x < a, a <x, a < X, in a
similar way. (As an example of a variable which is not an L-variable, consider
the x in £(x) < c¢ or £(x) < x.)

If a variable x occurs only as an RL-variable in a clause, it is said

to be eligible (and can be eliminated from the clause, as we will see shortly).

We will assume the following interpolation axioms,

-

Ix (x < a)

dx (a <

™
/

<b)y & a<hb

dx (a<x<brrx<c e asbyace

etc., where x does not occur in a, b, ¢. We also assume the appropriate modi-

fications of these axioms, such as

Ix (a<x<b) @ac<b,

when some or all of the <'s are replaced by <'s,

We will (implicitly) use these axioms to eliminate eligible variables in

clauses,

Variable Elimination Rule

1f x is eligible in a clause C and x occurs in C in the literals

a; fx; i=1,n

x £hys

(D

i

I, m

then C is replaced by its "resolvent” C' which is gotten by removing the literals

(1) from C and replacing them by the literals
a; f bj : i=1, n; j =1, m.

It should be mnoted that if either n or m is O, then no literal is added to re-
place those deleted. The rule is extended appropriately to include the symbol
"<, It should also be noted that C' would have been obtained by resolving C

against one of the interpolation axioms,

on

Example. C =afx _ x%b

C'' =a<b
Example. C=a f x vbhbdLdxr v 2
Ct=yg
Example, C=afx.xfb vi® <c

X 1s not eligible so it cannot be elimimated.

When an RL-variable is not eligible, as in clause C of this last example,
the variable camnot be eliminated. However, it might become eligible in a
later resolvent, as, for example, when C is resolved with the clause
(£(x") £ ¢ v D) where x' does not occur in D.

Reference [6, pp. 7-8, 13-14] and [7].

2.3 Chain Resolvents

A chain resolvent is obtained when two or more literals (from different
clauses) are joined (with unification) to form a contradictory inequality chain.

For example, the three clauses
£ < f(Zy} v D{y}
f(Za) <L
L < f{H v E
have the resolvent
D{a) v E.

We impose the following restrictions., No chain is "continued past a

variable"; for instance, in the above example, if L is a variable, then the

resolvent of the first two clauses is

£ <L vD(a.
Furthermore, when one of the links of the chain has the form
A<B + %,

where x is a variable, the chain is continued and the variable "carried along."

For example, the clauses
1. £(H < f(Zy} +eve<oO
2., f(Zy) < L
3. L < f(tO)
4. f(to) < £(9
where ¢ is a variable, have the resolvent

5. f£(8) < f(to) +eve<oO,

This can be converted (see Sect. 2.2) to
6. f£(H < f(tO)

which resolves with 4. +to []. ©Notice that if we had (incorrectly) resolved

1-4 to

(as would seem natural), the result is a useless tautology.

A better understanding of this procedure can be had by studying the al-
gorithm CHAINER given below and examining the examples of Section &,

Of the four types of resolvents only two, regular resolvent and chain

resolvents, are constructed during the regular resolution cycles; the other two,

[e]

TY-resolvents and variable-elimination resolvents, are produced by processing
other resolvents and preprocessing the initial clauses,

A 'splitting" procedure is used here (see below) which insures that,
among other things, ground literals occur only in unit clauses. This greatly

enhances the usefulness of the TY clause,

2.4 Processing Resolvents

When a new resolvent, R, is formed:

1. If R is [] the proof is successfully terminated,

2, If R is a unit inequality ground clause it is "resolved” with TY.

3. 1If R has an eligible variable, that variable is eliminated by the methods
of Section 2.2,

4, Otherwise R is (factored and) added to the set of clauses (with new stan-
dardized apart variables). Ordinary subsumption and tautology removal
are used.

5. 1If R can be split into two or more independent (no variables in common)
sub=clauses Rly.a.th, then RESOLUTION is called on § v {Ri}, for 1 =

1,2,...,m.

2.5 Sequencing

At the beginning of a proof the theorem to be proved is converted to
clausal form. All unit ground inequality clauses are ''conjoined" together to
form the special clause, TY. These unit clauses are also retained as separate
clauses. TY is checked for comsistency by a call to the function CONTRADICTION.
If it is inconsistent, the proof is successfully terminated.

Also, at the beginning any variable x that is eligible in a clause is

eliminated in that clause by the procedure of Section 2.2. And splitting is

performed where possible. (It should be noted at this point that ground clauses
can be split completely, and that this causes an excessive amount of splitting
when the set S contains only ground clauses. However, this prover is designed
to handle difficult non-ground theorems where very little splitting takes place.
See the examples of Section 4.)

The procedure is then to perform Resolution by the level saturation method
until [] 1is obtained or until the computation is aborted. However, there are
certain restrictions which are detailed in the algorithms of Section 3. Loosely
speaking, a literal L is selected from a clause and 'resolved away' by omne of
the methods. RL-units are not selected to be resolved upon until all other
literals in the clause are selected. Only ground inequality literals are re-
solved against TY (and then only when a new resolvent is generated). Paramodu-

lation [9] is used to affect equality substitution.

}nwv\wé
)

3. The Principal Parts

(RESOLUTION< Th)

This is the top-level function, where Th is the theorem to be proved.

It returns T or NIL.

Convert Th to clausal form, getting the set § of clauses,

Call INITIAL-TY
This constructs the special clause TY (not a member of S). If TY is [|
the calculation is successfully terminated.

Call INITIAL-RL
This eliminates any eligible variables from the original clauses, Then
each clause is REDUCED and then ordered, with RL-literals last. If []
is obtained, the calculation is successfully terminated. The result is
a set S of clauses, Subsumption and tautology removal are also used,

Call (SPLIT S)
If L is a literal of a non~unit clause C of S, and L has no variable in

common with C ~ {L}, then call both

(SPLIT (S ~ (C} U {{L}D)
and

(SPLIT (8 ~ {C} U {C ~L}D.

Else put 8. = 5, and

0
Let C be the next clause of SO (the top clause).
Call (RESOLUTION-CHAIN S5 C)

If it returns T, return T. Else go to 8.

If SO has no more clauses, return NIL. Else go to 6.

oo
o

Once the splitting of § (if any) is completed in step 4 above, the pro-
gram does Resolution to complete the proof, where we include chain resolvents
as well as ordinary resolvents, and where these resolvents are processed to
produce, in some cases, TY-resolvents and variable elimination resolvents.

The algorithm presented here in steps 5-8 and in the routines RESOLUTION-
CHAIN and RESOLVE-~CHAIN are given to show one way that these new resolvents can
be used in an actual resolution program. This procedure resembles linear reso-

lution with ordering of literals. Completeness is not claimed (see Section 6).

(RESOLUTION~CHAIN S)

Called by RESOLUTION<. Returns T or NIL. C is called the "top clause."

1. Put C0 = C.

2., Let L be the next literal in CO.

3. Call (RESOLVE-CHAIN SCT)

If it returns T, return T. Else go to 4.

4, 1If C0 has no more literals, return NIL,

Else go to 2.

(RESOLVE- CHAIN S CL)

Called by RESOLUTION-CHAIN. and PROCESS-RESOLVENT. Returns T or NIL.

o

This tries to prove that S is unsatisfiable by resolving upon the

literal L of C.

1, Put R = (RESOLVE CL)
If R = [], return T.
If R = NIL go to 2.

Else return (PROCESS-RESOLVENT R).

2., If L is not an inequality literal, return NIL, Else put R = (CHAINER CL) .

If R = [], return T.

If R = NIL, return NIL.

Else return (PROCESS-RESOLVENT R).

1f neither RESOLVE nor CHAINER succeeds, then NIL is returned and
RESOLVE~CHAIN is called with another L from C. If a resolvent R is produced,
then PROCESS-RESOLVENT processeé it, adds it to 5, and recalls RESOLUTION-CHAIN

with R as the new top clause,

(RESOLVE C L)

Called by RESOLVE-CHAIN. Returns a clause.
This is traditional Resolution. An attempt is made to resolve C upon L
with each clause of S. The ordinary resolvent is returned.
In matching inequalities we require
a < b to match against b < a (as usual),
a < b to match against b < g,

a < b to match against b < a,

but in this last case the literal (a = b) is added to the resolvent.
Paramodulation (or some form of equality substitution) is used.
An inequality literal of the form (x < y) or (x < y) where both x and y
are variables is never allowed to match with another literal. (Hopefully,

these cases are handled by variable-elimination.)

et
L

(CHAINER C L)

Called by RESOLVE-CBAIN. Returns T or NIL.

C is the top clause of S, L is a literal of C, L has the form Qﬁ AB)
or ({ AB), where A and B are terms, L is not an RL-literal (e.g., L is not of
the form (< xB) where x is a variable that does not occur in B).

An attempt is made to chain from left to right (e.g., A<A <A < B

1 2

and, if that fails, from right to left (e.g., B > B, > B, >A). If either

1 2

succeeded, the resolvent R is formed by appending the non-chained-upon parts

of the clauses used in the chain. The function CHAIN is used for this purpose,

Put

° CLR = (CHAIN TAB '< NIL T 0)

) . _ ~ 1T

If CLR is not NIL return R = ((C iLH U CLR , else put
. CRL = (CHAIN NIL B A '< NIL T 0)

If ¢, is mot NIL, return R = ((C ~ {L}) UC

RL else return NIL.

RL?

If A is a variable we omit calculating CLR’ and if B is a variable we

omit calculating CRL'

16

(CHAIN DIR AA BB SYM D © E)

Called by CHAINER. Returnms T or NIL,

DIR is T or NIL.
If DIR = T, the chaining direction is from left to right,
Else it is from right to left,

AA and BB are terms, which initially are A and B, respectively, if DIR
is T, and B and A if DIR is NIL.

SYM is '< or '<. It starts a '<, and changes to '< if a '< occurs in
the chain,

D is a set of literals, which is part of the eventual resolvent,

© is a substitution, which is the cumulative substitution to this point
in the chain,.

E is a term (a sum of variables).

ALGORITHM CHAIN
¢ TIf AA has the form (A'+x) where x is a variable, then return

(CHAIN DIR A' BB SYM D @ (E+x)).

If AA is a variable not occurring in BB, or BB is a variable not occurring
in AA, return
(RL-CASE)
¢ If AA and BB are unifiable with mgu &, and DIR=T, return

(MATCH-CASE)

The rest of the algorithm will be described as if DIR-T (i.e., as if

the chaining is from left to right). A similar procedure is used when DIR = NIL.

17

1. Put SS = S.
2. Choose the next clause C' from SS.
3. Choose the next literatl L' = (sym'A'BY) from C'.
4, Put 8 = unify (AA,AY).
4.1 1If & = NIL, go to 5.

4,2 Else put

e" - gpei

D" = [p U (Cc' ~ LY]e

SYM'" = '< if sym = '< and sym' = '<, else '<,
CH = (CHAIN DIR B'© BB SYM" D" @' E)

4,3 1f CH = T, return T.
4.4 Else go to 5.
5. If no more literals in C' go to 6. Else go to 3.

6. If no more clauses in S, return NIL. Else go to 2.

In the above algorithm we do not allow "chaining across a variable.!
To ensure this, we skip step &4 (and go to step 5) if either AA or A' is a

variable,

18

(MATCH- CASE)

Called by CHAIN. t returns NIL or a resolvent clause R,

ALGORITHM MATCH-CASE

Put D" = D U (C ~ {LD8

Ir RETURN

E :e DH

E£0 (D" U {(sym" A B +E)) H*
chain-length < 2 NIL

(RL~CASE)

Called by CHAIN. It returns NIL or a resolvent clause R.
The arguments and variables of CHAIN and CHAINER are visible to it.
This case arises (in CHAIN) when either AA or BB is a variable x not

occurring in the other.

*Here we let sym" = '< if sym = '< and sym' = '<, else '<,

19

ALGORITHM RL-CASE

If chain-length = 1, return NIL, Else

Put R = (D U (C~ {LPHe U ({L"}],

where: If AA = x (a variable not occurring in BE)

if Put L"

DIR =T, E =20 ~ {sym'" x BB)
DIR=T, E£0 (sym' A x +E)

DIR = NIL, E =0 ~ (sym' BB x)

DIR = NIL, E £ 0 (sym' x B +E)

and: If BB = x (a variable not occurring in AA)
If Put L”

DIR =T, E =20 ~ (sym" AA x)

DIR =T, E£0 (sym' A AA +E)

DIR = NIL, E = 0O ~ {sym' x AA)

DIR = NIL, E # O (sym' AA B +E),

In RL-CASE we do not allow the chain-length to be 1 because that would
cause, in certain cases, the input clause C to be returned as the resolvent.
In MATCH~CASE we also do not allow the chain-length to be 2 because that case

is handled by RESOLVE (ordinary resolution).

(PROCESS-RESOLVENT R)

This is called by the routines RESOLVE and RL-CASE, when a new resolvent

R has just been produced,.

¢ Put R = (REDUCE R).
e If R= [], return T.

o If R is a ground inequality unit, call (CONTRADICTION TY R)

¢ Put R = (ELIMINATE-VARIABLES R).
e If R= [], return T.
s+ If R is a tautology, return NIL.
e If R can be split on L (i.e., C ~ (L} is not empty and L and C N {L} have
no variable in common)
(PROCESS-RESOLVENT (L))
and
(PROCESS-RESOLVENT (C ~ (L})).
¢ (SUBSUME R S)
Returns NIL if R is subsumed by S, and removes from S clauses subsumed
by R.
¢ Put R = (SORT R)

Sort the literals of R so that RL-literals are last,

» Replace C by R in S.

L.

Return (RESOLVE~CHAIN S R).

{REDUCE R)
This is a procedure which rewrites certain formulas as others [10].

For example, each of the formulas (0 < 1), (A + 5 <A + 6) is rewritten as T,

whereas each of (2 < 1), (£(® + 1< £(x)), is rewritten as [|, and

(<D A<B)

is rewritten as ((A < B)).

21

An algebraic simplifier is used in various parts of the program,

THE SPECIAL CILAUSE TY

TY is a conjunction of ground inequality literals which may be altered,
as the proof proceeds, by conjoining onto it additional ground inequality units.
The initial value of TY is gotten by a call to INITIAL-TY which combines all
the ground inequality unit clauses of S into one conjunction., If TY is or
becomes contradictory, then the proof is successfully terminated. A function
(CONTRADICTION TY 1) is called to determine whether TY is indeed contradictory.
If L is not NIL, it is first conjoined onto TY before the determination is made.

CONTRADICTION is called by INITIAL-TY and called as (CONTRADICTION TY R)
by PROCESS-RESOLVENT in the case when the resclvent R is a ground inequality
unit clause. In that case TY is augmented, and this new walue of TY is retained
in the remainder of the proof. If CONTRADICTION does not return [], it might
infer from TY a set E of equality units (as, for example, would be the case if
R was the unit (< AB) and TY already had the conjunct (X B A)). In this case,
these equality units are applied to TY and all of S by a special equals substi~-
tuting routine.

Any ground inequality package such as those described in [4, 5, 6] can
be used to handle the functions of CONTRADICTION. Our implementation has

used the one described in [6, pp. 7-81.

(ELIMINATE-VARIABLES C)

This is called by INITIAL-RL and PROCESS~RESOLVENT. If the clause C has
variables which are eligible in C (see Variable-elimination Resolvents, Section 2,2),
then they are removed from C using the methods of Section 2.2 and the resultant

clause returned.

[
(K]

4. Examples

Here we list some examples along with their proofs by Resolution <.
Some of these have been proved by our LISP program (see Section 5). Many
(non-useful) resolvents are not listed in these proofs., The search space is
in most cases much larger than that shown.

The first few examples are trivial and are listed only to illustrate the

methods,

Ex. 1. (a<b-a<hb

1. a<b
original set of clauses
2, b<oa
TY: [a < b, b < a] added by preprocessing

Since TY is inconsistent, [is obtained during preprocessing and the

proof is complete.

Ex. 2. (¥x (£(x) <c) » f(a) <c.f(b) <¢)

1. £(x) <ec

2. ¢ < f(a) ve < £(b)

Preprocessing splits clause 2, getting the two cases 2.1 and 2.2.

Ex. 2.1

1. £ <c

2. ¢ < £(a)

3. [1, 2, a/x

Ex.

R
L

Ex., 2,2

f(x) < ¢

c < £(b)

L] 1, 2, b/x

3. 3x (x<a)

] 1, variable elimination (note that x is "eligible" in clause 1,

see Section 2.2)

. 3A. a<b-3x (x<£a)

] 2, variable elimination (mote that clause 1 is not used) .

. b (a <b-3x (a <x < b))

a<hb

x < awv b<x

b<a 2, variable elimination
(x is eligible in Clause 2)

n 1, 3

Tn this example we omitted writing the special clause TY since it was

the single clause 1. The actual procedure is as follows:

Y

3.

TY

[a < b] Preprocessing
b <a 2, variable elimination

[a<b, b<al, [] process-resolvent, 3

24

Ex., 5. (Ve Yy (£x) < £(y) » x < y) A f(a) < £(b) »a < b)

1. f(@y) <fx v x<y (top clause)

2. f£(a) < £(b)

4, a<b 1, 2 a/x, bly

TY: [b<a, a<b], [] process-resolvent, &

Notice that we did not resolve upon the literal x <y of clause 1,
because it is an RL-literal (so other literals are resolved upon first) and
also because we forbid resolving upon a double-variable literal of the form

x < y where both x and y are variables.

Ex, 6. (VxVy x<y- £x < £(¥)

"Wzl <z £(£(2)) < £(z+D)

A 1_<_xo->f(x0) <x0 + D
1. £(®) <@y v v <x (top clause)
2. £(f(z)) < f(z+1) v z < 1
3. 1<%,
4, xy 1< f(xG)
TY: [1 < Xys %5 + 1< z(xg)j
5, f{z)y <z +1vaz<l 1, 2, £(2)/y, z+1/x
6. X, <1 5, &, XO/Z

7. [6, TY

25

Ex., 7. {£(8) <0 A O0<Em A £<c ~b< }

> 3y[Vzz <b s £(2) <0 =2<7y) ~ vy <D

1. £(n <0
2, 0< £(b)
3. £<c¢
4, b< 2

5. z.<bv &<
g S <vy
6. £(z) SO visZy

7. y<z v <y (top clause)
. -

TY: [£(4) <0, 0 < £(b), £<c, b< £]
8. 2<b 7, 5, bly

9. [8, TY

Note that when clause 8 is added to TY, the program first infers that

b = £ and then uses that to reach the contradiction, 0 < £(b) < 0.

Ex. 8. (0O <anVs (0<s-£(0b) <E()) 4 £(a) < £(e) » £(b) < £(c))

1. 0<a
2., £(b) < £(s) v 8 <0
3. f(a) < £(0)

L, £(c) < £(b) {top clause)

TY: [0 < a, £(a) < f(c), f(c) < £(b)]
5. ¢<0 4, 2, c/s

This resolvent is useless, so CHAINER is called.
6. a<go CHAIN: 4, 2, 3, afs

7. UJ 6, TY

26

Ex. 9. a<2<b-3x 0<x<5a4aaslx
1. a<2z2
2, 2<6b

b, 0£5vasfs 3, variable elimination
5. af5 %4, REDUCE

6. [J 5, TY

Ex, 10. IJx JuV¥s (s =%x-s < w

1 sx,u = X

2. u< Siu

3. u<zx 1, 2, sub =

4, [3, variable elimination'

Ex, 11. (Vy 4 <y vy<b) - £<hb)

1. 2<yvy<pb

2. b< 2 (TY)
3. £<b 1, wvariable elimination
4. [3, 2 (= TY).

¥

In this presentation we sometimes use the notation x{y instead of its
equivalent v < x, and x € y instead of vy < x, but the program always converts
such expressions so that no negations (of inequalities) are used.

THere x and u are variables. In this and other examples, the reader
can determine which symbols are variables by the quantification in the statement
of the theorem,

