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Ex, 12, (Vy(y<£ »3z(y<z<b)) » a < L ->a<bh).

1. z <bv £ <y
y = =
2 <z v 4<y¥
y v >
3. a< ¥
4, b < a (top clause)

TY: [a < £, b < al

5. y<z vb<y 4, 3, 2, CHAIN
6. y<bvi<yvb<y 5, 1, CHAIN'
7. £2<bvb<hb 6, eliminate y
8. 4<hb 7, REDUCE

9. [J 8, TY

*Note that this step falls under the RL-CASE of CHAIN (see RL~CASE,
Section 3).
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Ex. 13. (Ve (0 <e-A<B+ e - A<B)

1. A<B +eve<O (e is a variable)

2. B<A top clause)

TY: [B < A]

3. 0<B-A 1, eliminate variable ¢

4. [] 3, TY

In this example, the literal A < B + ¢ is rewritten as A - B < ¢ so that

€ can be seen as eligible in clause 1, and then eliminated, leaving 0 < B - A,

Ex, 14, (ve{e>05A<B+¢e A< C>A<0

1. A<B+eve<oO
2 B<C
3. C<A

TY: [B < ¢, C<A]
4., 0<B~-A 1, eliminate €

5. [ by, TY
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b,

15. Jel(e >0 ->A<SB_ +e)a BejSC—»AS ¢l

- e

B < C

e =

c <A (top clause)
[c < A]

A< C+ewve<O 3, 1, 2, CHAIN

(See Section 2, RL-CASE, Case DIR = T, E £ 0)

o

IA

C - A 4, eliminate ¢

[ 5, TY

.16, 3el(e >0 A <B +e)a B <C»A <] False,
—_— e ~ "¢ € — e~

1. A <B +eve<<O

e~ € -
2. B <¢C

e =
3. C<A

€
4, A€_<_C+e 3, 1, 2, CHAIN
But now we cannot eliminate ¢ as we did in Ex. 15.

Ex

.17, [Ve(e>0 » £(0 < f(ze) + e A f(ze) < f(to}) - £(4 < f(tO}}

D Sf(ze) +ev e<O
f(ze> < f(to> v e <0

f(tO) < £(H) (top clause)

[E(ty) < £(B ]

£() < £(ty) +eves<O 3, 1, 2, CHAIN
0 < f(to) - £(5 4, Eliminate e
L]

5, TY



Ex. 18. \{Z(P(z,cl) v P(z,cz)) - dx 3y PE,y) ~ a(y) < x).

1. P(z,cl) N P(z,cz)

2. ~P&,y) v aly) € = {(top clause)

3. Plz,c,) va(h £ x 1, 2, z/x, cy/y
b. ale)) £z v a(e,) £ =z 3, 2, z/x, cZ/y
5. [ 4, eliminate z

When a new resolvent is computed it is processed and used as the new top
clause. It is simplified by REDUCE and duplicate literals are merged, eligible
literals are eliminated, and the clause is split if possible. If the result is
a ground unit clause, it is resoclved with TY and checked for contradiction.
Finally, it is sorted, with RL-literals put last, before being used as the top
clause in a new call to RESOLVE-CHAIN (see PROCESS-RESOLVENT, Section 3).

In Ex, 19 and later examples, we indicate the literal being resolved upon by
outlining it with a rectangle, [j;] . This is usually the first literal of the

top clause after it has been processed and sorted.



Ex.,

12.1

13.

iz.2

19. [a<z2<b~ra<t <g
A Ve(e >0 3r(r< £ «%s(r<s< £ £ <E(s) +€)))
Vy(a<y<todz@y<z<lavt@<t<zo £(2) < £(0))))

- 55 < £(ep ]

a< ¥

£<b

af_to

t0<ﬁ

r, < £ e <90
f(}Z)Sf(s)+e»e_<_Ovs<r€ £ < s
y<zy v y<av £<y

zy<£ vy <av L<y

f(zy)Sf(t) y y<av,85yvt<a\;zy§t

£ £ f(tO) (top clause)
la <4, £<b, a<ty, t; <2 £(t) <£(H]
£(8) <f(t0)+e ve<0wv iz N1 o <z

= = v y

wy<awv £< yvt0<asz§t 10, 6, 9, CHAIN

o
Clause 11 splits on (tO < a) into clauses 12.1 and 12,2,

t0<a

] 12.1, TY

f(ﬁ)ff(t{;+ev€§0v’§zy<r€§v2<zy
y<av‘l7,_<_‘yvzy__<_tG



13. f(‘@)_‘\__'f(tg)wiee?(ii’()wy\'r v £ <z

€
vy<aw 4<y yi}iwg”t?j 12.2, 7, CHAIN
e, £() <f(tp+reves<O0vy<r U<z
€ Y.
vy<av i<y vy<t 13, 7, CHAIN
13, £(8) < f(tgd+e v e <0 v y<. i,
vy <a v,@_<_y».;y<t0 ‘ 4, 8
16. £(f) < f(tptev e <O

S<r vi<av £< ¢t 15, eliminate y

0

Clause 16 splits on (4 < a) and (4 < to) into clauses 17.1, 17.2, and 17,

(w0

17,1 £ < a

18. [ 17.1, TY, sub=, a = 4 = t
7.2 4=t

19. (] 17.2, TY, sub=, £ = £,

17.3 £() S £(t) +eve<0 v [f< rel

O |

20. f(o < f(tO} +e €< 17.3, 5
2l. f£(4) < f(to) 20, eliminate ¢

22, L[] 21, TY
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Ex. 20. Ja 3b ¥x 3u([x<b-su<a),x<u]l. (u<avxib)

1 %, < b v X, Lu . ufa

2. %, < b v X, £u v Xy = b g a, b, u are variables, Xy stands
3. uda v % fuvu ¢a for the expression LI

b, ufa vy N £u Xy = b

3. X <bwvw X, <a 1, eliminate u

6. X, <bwv Xy = b 2, eliminate u

7. %, £ a 3, eliminate u

8. %, £av Xy = b 4, eliminate u

{subsumed by 7)

9. bLawv %y <b 7, 6, sub =
10. b<La 9, 7, CHAIN
11, ] 10, eliminate a (or b},

Examples 20 and 21 arise in the search for counterexamples in a proof.



Ex., 21. 3a3b 3L 3w Vs Fu

(@<baru<0vsf£al rn[0<uvsf£blrafls<wv0O<ulawc<yp

a, b, £, and w are variables, and £ stands for S b gw”

1, b<avii<uvu<0vw<s, v f<w

0
2. 1t ! [H 7 v ou<0o - 3
1) 97 - b 5 W < s i

3. SO y 0
4. 1t 111 i? vou < O 1
5 " sO:av'u<va<sO "
6 121 if 1% vou < O 98
7 17 79 SO — b VoW < SO 17
8- 1A i 1) o < O 1¢

Preprocessing removes clauses 2 and 4 which are tautologies, and eliminates

the variable u from the other clauses,

1. b<av0<O uw<soxgﬁ<w
3‘ ‘ 131 SO — b “f W < SO 1e

1t — !' < §f
5. ™ SO a oW WO
6 13} it 17

1 i - ; < 1"
7 SO b W SO

1% i :b 71
8. SO

The literal (0 < 0) is removed from clause 1 by REDUCE. Then clause 3
is subsumed by clause 1, and clauses 5, 7, and 8 are subsumed by clause 6.
Thus preprocessing reduces these eight clauses to two.
1. ‘w <SO vib<awvg<w {(top clause)

6, SO:avb<avz<w



9, w<avb<<avi<w 1, 6, sub =
10. 2<w 9, eliminate a
11 [] 10, eliminate #

This example shows the power of variable elimination in reducing a

messy, but not hard, problem tc manageable size.

Ex. 22. (9Yx(f(x) >0) . Ys(f(s) >0 A L<s >t <s) »t<h)

1. f(» 20 v x< 4 (top clause)
2, f(s)<0‘v’s<£vto_<_s

3. &< £y

TY: [£ < to]

4.S<,@vtOSSVS~<_JZ 1, 2, s/x
5.t <z 4, eliminate s
6. [ 5, TY

Notice that in this example clause 3 cannot serve as top clause, although

one would naturally choose it because it represents the conclusion of the theorem.
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Ex, 23. £(&) <0 £(b) >0+ 550 < £(s) » £< s » t < 8)
A x(x<b A () <0 -x<4)

AYy(72(z<barfE) <0-2<y) >4<y) >t<4

1. £(0 <0
2. 0 < £(b)
3, f(s) <O0wvses<gvit, <s (top clause)

0

L, 0<E@® vb<xvxx<yg
5. zygbvﬁﬁy
6. f(zy)SO\/,ZEy
7, y<zyv’,@_<_y
8. ,Z<t0
TY: [£(8) <0, 0 < £(b), £ < to]

Note: Clause 8 will not succeed as top clause.
9.s<£vt0_<_svb<svs§,6 3, 4, s/x

0. b< 2w ty < £ 9, eliminate s

SPLIT 10 into 10.1 and 10.Z2

10,1 b < £

TY: [£(4) <0, 0 < £(b), £ < £ b < 2]

11, £4<y v 2<y 10,1, 5, 7, CHAIN
12, L[] 11, eliminate y

10.2 ¢

IA
N

0
13, ] 10.2, TY
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Ex., 24, a"(zo) < b“{zo} ,J\V'u(a(u) < b s a'(u) < Zg < b))

L 9xdydz @ (P<z <b'E) A @G <y < bE) 4 a"(z) < x < b"(z))
1. a'(Htz vzgd @ v a® £y vy £ b

v a'(z) £ xv 2 £ b2

2. a'(zy) < b"(zp)
3., a(uw) < b(w
4, a'(u < z

5. Z < b' (v

X%, ¥, z, and u are variables, and clause 1 is the top clause. Notice
that no variable is eligible in clause 1,
6. z, £b'(¥ va® £yvy€b® 1, &4, y/u, zo/z
v a”(zO) £x v <% b"(zo)

7. a(®) £y vy £b voal(zy) £ x v x £z 6, 5, y/u

Now vy is eligible in 7.
8. a(® <« b(® v a”(zo) fxvzxed b”(zo) 7, eliminate y
9. a"(zo) £xvzx{ b"(zo) 8, 3, x/u

Now % is eligible in 9,

10. a"(zO) £ ’D"(zo) 9, eliminate x

1. [ 10, 2.



5. Computer Implementation and Results

These ideas were tested by a program written in LISP and run on the

DEC 10 computer at The University of Texas at Austin. In that program we

varied somewhat the algorithms described in Section 3. For example, in

step 2 of the algorithm RESOLUTION-CHAIN, we allowed L to be only the first

literal of the top clause C. This "first literal only" strategy is incomplete

as can bes seen by rearranging the literals of clause 1 of Ex. 24, However,

we feel that examples like Ex. 24 are contrived and unlikely in "normal applica-
tions." Much work remains to be done to refine these procedures.
Ex. 1 - Ex. 24 were all proved by this program. We would be interested

to know whether other automatic provers are able to prove these examples,

especially Ex. 19, 21, 23, 24, and also Ex. 53, 6, 7 of [6].
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6. Completeness

Completeness is not claimed for this system. For example, the ability
to handle algebraic expressions must be further enhanced if it is to handle
complicated polynomial terms.

A series of completeness results might be proved to show that the basic
mechanisms of this system are correct (if indeed they are).

For example, the variable elimination rule, Section 2.2, requires
that the variable being eliminated be "eligible."” Then an interpolation axiom
is used (in effect) to eliminate the variable. The underlying philosophy is
that one can delay the use of the interpolation axiom until after the variable

becomes eligible. To make this more precise, consider the clauses

1. Px) va<¥tx vx £ b,

2. ~P(x,

3. a<b

and the interpolation axioms
CIl <y v x<wxy

Ci12 x ¥y v uwlxy <y.

We can proceed to [ ] in two different ways: by using CIl, CI2 first or

last,

4, P(w(a,b)) vashb 1, €11, CI2
5. a<¢b 4, 2

6. [] 5, 3

or

4, atxux<b 1, 2

5. a¥b 4, CIl, CI2

6. [] 5, 3
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Our contention is that we can always delay using CIl, CI2 until last, as we did

here, or at least delay until x becomes eligible. The statement of this con-

tention is given (but not proved) as Theorem 1.

Theorem 1. Suppose that S is an unsatisfiable set of clauses which contains
the interpolation clauses CIl and CI2 and which does not otherwise contain the
symbol w. Then there is a deduction of [ ] from S in which the function symbol
"y does mot occur in a resolvent, except in cases where it is introduced in
one step by resolving on one of CILl or CI2 and eliminated in the next step by

resolving on the other.

Of course, if Clauses 2 and 3 were replaced by

2, ~ P,
3. a<ug,
4, ¢ <b,

then CI1, CI2 could not be (profitably) used at all and then delaying is even
more desirable.

Another argument (perhaps the main argument) for delaying the use of
the interpolation axioms is that a premature use of CIL, CI2Z might block their
further use when more than one use is required. Consider the following example.
1. P vadxvxLghb
2., ~P(s) veLs
3. a<pb
4, ¢ <b

Since x is not eligible in Clause 1, we prefer to first resolve it, upon
P(x), with Clause 2, getting

5, cfxvadxvzegdhb
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and then eliminate it
6., c<bvadhb 5

7. [ 6, 3, 4

If we had tried to use CIl, CIZ first we would get

5. P(w(a,b)) va+¥hb i, CIl, CI2
6- P(W(a}b>) 55 3
7. ¢ % w(a,b) 6, 2

But this is blocked.

As a general principle, if we delay using the interpolation axioms until
the variable being interpolated becomes eligible, then we collect together all
the requirements on x, and eliminate them all at once. If in this process x

is instantiated by a non-variable term, then the interpolation axiom could not

have been used anyway.
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7. Comments

The Special Clause TY

TY is used simply to collect together all ground inequality literals.
(Because of splitting, ground literals can only occur in unit clauses.) One
could get the same effect by not using TY at all but instead collecting together
all ground inequality literals each time a new ground inequality is produced
as a resolvent and checking for a contradiction. We prefer the TY arrangement
because it lets us use the sup-inf procedures of [1l] to speedily process
ground inequalities. A similar speed advantage can be obtained by the use of
the ground inequality packages of [4] and [5].

In any of these methods, a set of ground equality units might be inferred
by TY, and these are applied to TY and S by an equality substitution mechanism.

1f one did not use splitting, then a method could be devised whereby
special TY-literals (a conjunction of ground imequality literals) would cccur

in clauses.

Chaining

Inequality chaining (see CHAINER, Section 3) is required for many of
the examples given in Section 4 (unless one is to resort to using the transitivity
axioms again), but it tends to enlarge the search space when it is used. We
envision a system that uses chaining but in a sparing way under the control of
heuristics.

The chaining we employ is, of course, similar to that used by Slagle and
Norton [2, 12], except that we do not chain across variables (see p, 17y, and
alse we do not retain the intermediate links in the chain as they do, For in-

stance, in the example
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£ = f(zy) v Dy
£(z,) <L

L< £ + E

We do not retain the (intermediate) resolvents
£(£) <L vb(a

and
f(za) < £(4) v E

but only

D{a) v E.

In this way it is somewhat like hyper-resolution.

Fast Implementation

Our intention here was not to present the best and fastest Resolution
system but rather to present a few concepts that could make an existing Resolution

prover faster for inequality proofs, We have not used here but would highly

recommend such things as

@

a pointer system which lets relevant clauses be accessed quickly [13],

s mechanisms that resolve more than one clause at once, and avoid the (explicit)
use of substitutions [13, 14, 22],

N fast unifiers [15],
s interconnectivity graphs [16-20], which precompute. various unification chains.
Some of theseconcepts are embodied in the provers of Overbeek-Wos-Lusk-Winker,

0f course, other powerful resolution procedures such as Modei Elimination [22] and

SL-Resolution [23] might be used,



44

Hyper-resolution and Counterexamples

Unfortunately, ordinary hyper-resolution is mot compatible with our
chaining and variable-elimination techmiques. For instance, the clauses

<
Lz, <t

2, < z
7= y

resolve to [ ] as follows

1, 2

4, [ 3, eliminate y

and yet there are no negative clauses at all. (Of course, if we included the
interpolation axioms we would have at least one negative clause,)

A similar problem arises in trying to use models (counterexamples))
because that is just an extended form of hyper-resolution [21]. We expect to

overcome this problem to some extent in a later paper.
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