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ABSTRACT

PROVING A SUBSET OF SECOND-ORDER LOGIC

WITH FIRST-ORDER PROOF PROCEDURES

John T. Minor, III

August 1979

A mechanical procedure is described for reducing a subset
of seéond-order logic to an expanded first-order logic, which
remains provable by existing first-order proof procedures. This
reduction is accomplished by first eliminating predicate quantifiers
from second-order expressions, using a procedure based on the
theoretical work of W. Ackermann and H. Behmann. Their papers on
the claésic Elimination Problem of Mathematical Logic were written
*in the 1920%s and 1930°'s. Function guantifiers are reduced next by
finding logically equivalent expressions in first—-order logic
augmented by a special constant predicate, D(x,y,z) defined as

x(y)=z, which is axiomatized in a way that can be used by firsi-

erder provers.
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CHAPTER I

INTRODUCTION

Section 1 ¢ Summary

Many times-in mathematical logic, jt is easier to write a2
fﬁrmula, or possible theorem, in second=order logic, although the
efficient, complete proof procedures are all first order. It thus
becomes important to know when 2 second~order expression is equiv-
alent to & first-order one, and to0 which first-—order expressioﬁ it
r;duces. That is the aim of this paper. JoT example, consider the
two secoﬁd—order theorems:

(1) ¥z &z A KEre) A Km) —> 2PFR) ~ PR ~ (o))
and |
(2) g¢ Wx(£(b)=2 A (xfb-—-?f(x)sc)) :

The normal second-order (and higher—order) proof procedures

attempt to construct 2 predicate P in the proof of (1) and & func-
tion £ in the proof of (2) which satisfy their respective expres—

gions. The mechanical procedure discussed in this paper will in;

stead comvert (1) to



Vx A(x,x) ~ A(b,a) A Alc,b)—> (a#b A cb)
and {2) to
Vx Jul(x=b—> v=a)A (x¢b —> u=c))

which are both easily proved by existing first-order procedures.

Chapter II of this paper discusses problems of type (1),
that is, the elimination of predicate quantifiers from second-—order
expressions. This part is based on the theoretical work of H. Beh-
mann and W. Ackermann from the 1920°'s and 1930's, when this problem

wag called the Elimination Problem. The first section concerns the

Ackermann case} which is 3P E(P) where all individual quantifi- -~

ers in Elare universal. Here also is given an easy way to decide
if an second-order expression will. reduce to a finite firsi-order
formula by this procedure. In section 2 we allow existential
quantifiers also, although it is possible for a problem of type (2)
$0 arise in this section after the e;imination of the predicate

guantifiers. Behmann's special case4

, the pure monadic second-
order logic, is touched on in section 3.

Chapter III discusses problems of type (2}, that is, how %o
hendle function guantifiers in second-order expressions. Here we
describe a procedure to replace these second—ordef'ezpressions with
equivalent first-—order formulas augmented with a2 higher—order pred-
jcate D, whose axioms can still be utilized by first-order proof

procedures. Section restricts the problem to one-place functions

and universally quantified individuals, while section 2 allows ex-

tentions of this case. Finally section 3 will give some examples.
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Section 2 ¢ Notation

The second-order language being used is that of standard
first-arderT augmented with variable predicate symbols and variable
function symbols, which can be quantified universally, Y , or
existentially, 3 , like variable jpdividuals. These second—order
quantifiers cbey syntactic and semantic rules which gorrespond to

6,9

those obeyed by first—-order quantifiers.’

Symbol conventions being followed are:

(1) individuals - comstants 3, B, Cy ees (first of alphabet)
- varizsbles sco X3 ¥ 2 (1ast of alphabet)
(2) predicates = constants A, By Cy coo
- equality = (special constant)
- vapriables P, Q, Ry oes
(3) functions - constants/variables f, & By oo
(4) connectives = and A , implies —» , equivalent «—>

M
or  , not (over-lined)

In cases where there is a guestion about what is comstant or vari-
é&ié, we will assume that any symbol that is not bound by a guanti-
fier, that is, it appears free, represents a constant, and any
bound by a guantifier must be a variable. Script capital letters
like a ’ B s g ,m etc. are metasymbols representing arbi=

trary expressions ip the language.



Note that it is not necessary to have function symbols in
second—order logic, since they can be replaced by predicates. For
example, a two-place predicate F can replace the one-place variable
function f in

3t £(£(2)=b)

by writing o

37( ¥V x Vy(F(z,7) A V2(F(x,2)—>2=7)) A T(F(2,0)).
In fact, in the second chapter of the paper, it is convenient to
agsume that all function guantifiers bave been replaced by their
predicate equivalent. Then the problem becomes to eliminate only
predicate quantifiers, one at a time, until the problem is reduced
to first order, or it is known the expression does not reduce. o~
fortunately during this process, Skolem—function quantifiers are
. gometimes introduced (see section 2). These are handled in Chapter

IiI, where we now can assume that only function gquantifiers exist,

as all predicate quantifiers have been eliminated previously.

Rule R
Frequent use will be made of the rule
£ (c) «—> V= £ (x) v xke)
in order to make all positions inm a predicate or funciion univer-
gally-quantified variables, or in making some gimplifications.

This will be referred to as using Rule R.




Section 3 ¢ The Dual Case

The problem being discussed in this paper is how to treat
expressions like 3rF E{P) or 3Jf <Z(f) when they appear in the
conclusion of a theoren which is to be proven. When these exXpres—
gions appear in the hypothesis (or an axiom, 2 known properiy, 2
previously proved lemma, etc.), then we can assume the variable
predicate or function exists, replace it with a constant, and ig-
noré the quantifier. When they appear in the concluéion, no such
gimple process exists to treat the gquantifier.

The dual problem to the one above is wﬁen expressions like
Y P Ez(P) or Y £ Gi(f) appear in a hypothesis. This problem will
not be treated separately. Instead this problem can be solved by
taking the negationm of the given expression, solving the resulting
problem by +he methods described in t+he following chapters, and
then taking the negation of the resulting solution. It is possible

to give procedures and rules for the dual case, but this is unnec=

essary.




CHAPTER II

ELIMINATION OF PREDICATE QUANTIFIERS

Section 1 ¢ Universally Quantified Individuals

Assume the inmost predicate quantifier of a given formula
and its scope is represented by 3P £ (P), where 8(?) is a first
order expression except for containing the n-place predicate vari=-
able P, where n21. (We will ignore sentential variables, the n=0
case, as they cause no problem.) We can assume éE(P) will not
s;parate into EZI(P) v E?Z(P), because if it will, we can consid-
er it as two problems, =P EI(P) ~ 3P 62(}"').

In this section we will further assume that 2ll individual
quantifiers in g are universal. In section 2 we will treat the
case when existentially quantified variables are allowed in é;:.

Now if we eliminate —®and <€ symbols ;hd write é: in

" eonjunctive normal form (CNF), with the ranges of guantifiers and

negation signs restricted as much as possible, then we can separate

¢he appearing conjuncts into three classes:




Class o%(P) : P always appears positively (unnega‘ted) in the
conjuncts

Class @ (F) : P always appears negated in the conjunctj

Class Y(PF): P appears as both négated and positive in the con-
jun#t, and because of guantifier scopes cannot be
separated into the two classes o{(P) and 5(.5).

Fote that P or P must appear in all the conjuncts of E , Or else

the conjunct is outside the scope of 3P.

He need the following definition:

Definition o{(P) (or /B('I;)) is a unary class if and only if

every conjunct in the class has only one appearance of P (or -‘;"-) in
it.

FNow we proceed to the elimination of P from the second=-
order expression 3P i(P). There are three distinct cases:
Case 1 : Class oX(P) is empty, or class /8(-1'5) is empiy.

In this case 3P E(P) is equivalent %o universal %ruth.

Proof If class /3 is empty, then E(P)s =« (P) A Y (PP), and thus
P will appear positively in every conjunct. So by letting P be the
universél ¢truth predicate, wWe can make E (P) true, and thus

3P £ (P) is equivalent to universal truth.

Similarly when class <X is empty, we can let P be the uni-

versal false predicate




Case 2 : Class ¥ (PP) is empty and either class o{ (P) is unary or
class )8 (P) ie unary. ' In this case 3P E(P) is equivalent to a
finite first-order expression. The procedure for producing it is

described below, followed by a proof of its correctness.

Procedure If we assume A (P) is unary, then all the conjuncts in
ol can be collected together intoc the one conjunct:
Vzl‘v'xz... \/xn(P(xl,xz,.e.,xn) Y Q(xl,xz,...,xn)) .
This is done by first using Rule R to make sure every position in P
js a universally quantified variable. Then by renaming the vari-
ables in each conjunct in ¢X , we can factor them into one conjunct,
letting arepresent the conjunction of the non-P parts. For
example:
(P(a) v &) A Vz(P(z) v B(x))
c;.n be rewritten by using Rule R as:
\/z(P(z) v zfa VA) A YV (P(x) v B(x)).
Fow by renaming variable z as X, we can factor the above into:
Yx(P({x) v [(x#a v AY A B(x)} )
where the part in brackets will be referred to as 0;(:).
Thus I P E(P) can be rewritten as
IP( V3 eee VE (PR eeesn) v Qlxoeennx)) A B(F))
which we now claim is equivalent to the‘first-—order expression

Ba).

That is, the reduction is accomplished by simply replacing each

appearance of P in /5 with the predicate htl'...tn. a(tl,...,tn).




Similarly if ﬁ('f;) is unary, then 3P E(P) can be Tewrit-

ten as

3p( Wayeee V2, Pl m) v Blrpreiz D a o (7))

which we claim is equivalent to

x(B)-

Proof We now prove the claim that
EP( Vxl"' VIB(P(x11'°‘!xn) \/ a(111"°9xn))/\ ﬁ (5))
(———.%)5( a)-

(€—) comes from the fact that we can let P be Q, which gives

Voo Vo (Do) v Qlmpeem))a /3("5‘).

Now since the first conjunct is 2 tantology, this reduces to

B Q-

(—-—3) comes from a propertiy of /6 , namely that whenever

——

* Vxl"’ VIn(A(xl,...,In)—-?B(?l,-...,zn))
is true then

&) —BE)

must follow. Now let Po be the predicate thatl fulfills the hypo=

+hesis, so that

’v(:cl... v:n(l’o(xl,...,xn) va(xl,...,xn)'},\ /5(5:)).

This can be rewritien as

Wz Wy (Bolapreeei®g) =7 Qzyreeerz ) B (%)

and therefore

(/5(?‘0%—?/6(@))/\,5(5;)

jg. true, so that by modus ponens we can imply /6( a)e
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A gimilar proof goes through for the claim:

3Jp( \v'xl... Vxn(P(xl,...,xn) V B(xl,...,xn)) A X(P))
«—> «(B)

by letting P be 8 , and by noticing that & satisfies the above

same property that /B does.

Case 3 : The conditions of case 1 and case 2 are not satisfied.
That is, either all three classes are present, or botﬂ e{ and /5
exist but are non-unary. In ithis case 4P é(P) will not reduce
to a finite first-order expression by these methods, bui father to
SO

an infinite conjunction of the form{__} ( Ei), where each €i is
first order. Ackermann's general procedure generates this infinite
expression, but since the result is useless for the purposes of
this paper, we will not give it here. Instead we will treat this
case as non-reducible to first order.

A proof of the fact that this case is indeed always infi-
nite is included in Appendix I, as it involves understanding ‘of

Ackermann's general procedure. 1

The above classification of cecnjuncts and the separation of
gecond—order problems into cases is the work of the author. The
procedure used in case 2, and the proof of its correctness, is

taken from the 1934 paper of Wilhelm Ackemann.l
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Examples It might be helpful %o see bow ome uses the preceding

. ideas in some examples.

(1) 3P ¥z ¥y [alxy) v REs) A () v B(x3))

A (C(z,7) v P(xx) v qy.y))]

In this second-order expression, the first conjunct is in classe{,
the remaining are in class /5 . Since class g{ is unary, wWe are in
case 2 and need only let F ve Ax,y. A(x,y) in the ﬁconjuncts:

VI Vy Y_.(B(IiY) A4 A(xiz)) A (C(x,y) A4 A(X7I) ~ A'(y:Y))}

(2) 3P VzVy [(FE v A=) A FE) v BEI))
A~ (P(x) v FE) v (x) v e()]
One might think this last conjunct is in class Y,, but it separates

(P(z) v ¢(x)) v (Flz) v o))

Therefore we can convert (2) into two problems:
(2°) 3FPV=x [(P(x) v ¥y &z3)) A ) v ¥V B(=7))
A (P(z) v o))
() 37 ¥z [(P(x) v V3 az3)) A FE) v V5 Blzz))
A P v (=)}
Now only X and /3 clsuses appear in both prc’blems,.-and both classes
are unary. So we now let P be Mz, Yy B(x,y) in (27) and F be
Az, Yy a(z,y) in (2°):
Vz[(Vy Bxy) v Vy A=) A (Fy BE3) v c(x))|
v Vz[(¥5 &=y v ¥y szl (V alxs) v c(=))]



iz

or after factoring:
VX [( Vy A(x1Y) A% Vy B(x,y))
AUY 5 Bx,3) ve) v (Vs &x3) ve))]

(3)  3P(R(a) A P(B) AP(C))

(This problem is from the introduction.) Using Rule R‘, we rewrite
3r( Wx(P(x) v x#b) AP(a) AP(c))

Fow we let P be A x. x¢b, which gives

(a#b A cfb).

(4) 3 [rp(0) A ¥z Vy(r(x) A S(x,7)=>P(3) ~ F(a)]

(This is the contradiction of the induction axiom, where S(x,¥).

means y is the successor of x.) After eliminating the —» sign:s:
3r [P(0) & F(3) A Vi Vy(FE) v (y) v 5=3))]

¥ow all three classes appear, and the ‘{ clause ca.nnot be separated

go this is case 3, and it will not reduce to a2 iionite first=oxrder

expression by this method. (It does reduce to Q (a4i).) There-

fore the induction axiom also does not reduce.
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Section 2 : The Appearance of Existentially Quantified Individuals

We now come to the case where existential quantifiers of
jndividuals appear in é(P), the scope of =S P. In many instances
this will cause no problem, for as we push the ﬁniversal quantifiers
in (restrict their range) as much as possible, we can often bring
the existential guantifiers out front of the universal ones. When
they can be moved in front of all the wniversal quantifiers, then
they can be brought in front of the P and the elimination can
proceed as in section 1. But assume now that there is a guantifier
that cannot be moved completely out fromt, for example

Z(P):x Vxl... Vzk 37y E‘(P,xl,...,zk,y) .
Then we replace y with a function of Xyseeer Xyt

€ (p)= It Vxgeee ¥ 3, € 1 (Pyxyseee s X s flxyeeesn))

Thig is the so-called Skolem's procedure, although it is actually
an application of the axiom of choice. |

After executing the above pr-ocedure for all such existen-
tial quantifiers, the Bfi's can be brought in fromt of 31’" and
the elimination of P can proceed as in section 1. After ihe elimi=
nation of the predicates we are left with a problem like:

Jfyeee 31, T(£10eeenty)

In some circumstances this is still an easy problem, since we can

use the reversal of Skolem's procedure to eliminate the functiom

guantifiers, such as:

1 Vxpeen Vi, 0 (yeearm)imyeenm) :
—>Vx .o Vx, 3y ©HFix50000x,) o
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In general this will not be the case, as the form of 8(?) is sub-
stantially changed during the elimination of P. We will attempt
t+his problem in Chapter III.

Note that replacing z m-place variable function by its
predicate equivalent will not help, since the predicate used will
apﬁear as

3p( \;/xl... Vxn ER; P(xl,...,xn.y) A ooo Jo
In order to eliminate P we must introduce a Skolem—function for ¥,

and thus we return to the same type of problem.

Examples We give here two examples where we must introduce func-
tion quantifiers in order to proceed with a predicate eliminationm.
In the first one, we are able to reverse Skolem®s procedure after

4he elimination; in the second, this is not possible.

L]

() 37 [Vz 35(aza) A Px3) A Yz B7(3(z5) A FE7))]

We introduce two functiomns to take the place of the y's:

3¢ 3 IV [a(x,£(2)) AP(x,2(2)) A B(x8(x)) A Tz E(E))]
He can now reduce the scope of S P even more:
3f EL Y_‘v’x(A(x £(x)) A B(x,g(x)))
A TP Y x(P(x,2(x)) A Plme(2)))]
Using Rule R we can rewrite this last part as:

3 [V Vr(rz,9) v 5#2(x)) ANz Fme@)]

whieh reduces by the procedure in section 1 to

Yx (glx)#£(x)).
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Therefore (1) is equivalent to

Jr e Vx A £(x)) A B(x,e(x)) A e(x)é£(x))
or after reverse Skolemization:?

Vx 3u 3v [A(x,u) A B(x,v) A uhv ]

which is a simple first—order expression.

(2) 3P Yz 3+ [F) v alx1)) AVy(PE) v B(3,4))]
First we replace t by 2 function: _

3¢ 3¢ Y [FEED v alz @) A V3(e) v 3, )]
or after restricting the range of x and renaming: '

Je 3p [ VxFEE) v 4z, £(3))

AN3(P(3) v Y 2 B(z,£(2)))]
How we let T e Ay. Yz B(y,£(2)) |
' Je Vx V2 Be(x)f(2)) v A(x,f(x)).l

He cannot reduce this by reverse Skolemization, since £ appears as
s function of two differemt variables. We will show how to treat

4his type of problem in Chapter III.
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Section 3 : Special Case — Pure Monadic Second-0Order Logic

One of the first special cases of the Elimination Problem
to be completely solved was the pure monadic second=order case. In
fact Behmann4 and others9 have shown it to be equivalent to first
order by always being able to eliminate the predicate quantifiers
from expressions in this subset of second-order logic.

The pure monadic case puts itwo resirictions on second-order
logic, namely there cannot be any comsiant or variablé functions,
and all constant and variable predicates must be one-place, or
monadic. Under these restrictions we can make the following ob-
gervations:

(1) Both classes £ and [3 will always be unary, when they exists
(2) Class Y will never exist; and

(3) Existential gquantifiers oan always be moved out front of all

) universal quantifiers.
Therefore in section 1, we will always have case 1 or 2, by the
above observations (1) and (2), and in section 2 we will nevér have
4o introduce function quantifiers, by observation (3). Eence the
result of the elimination will always be a finite firsi-order
expression, #nd +herefore we can say the pure monadic second—order
case is equivalent to first-order logic.

Hote 2lso that if equality of individuals, the dyadic pred-
icate =, is added to this special case, all expressions sfill re=
main ecuivalent to first-order expressions. This is easy %o under-

stand when one realizes that the definition ¢f eguality is =2



monadic second-order expression, namely

x=y €—> %/ P(P(x) «—=>P(y)).

17



CHAPTER III

REDUCTION OF FUNCTION QUANTIFIERS

Section 1 ¢ One~place Functions znd Universal Variables

In this section we will assume that we are faced with the -
problem:
(1) 3£, 3f,... 3T, E(fl,fz,...:fm) (m2>1)
where the fi's are all one-place functioms, and 6 ig a first—=order
expression except for containing the fi's. Further assume that all
va‘.ria'bles in E are universally quantified and, for confenience,
ig in conjunctive normal form. We will consider extensiomns to this
probtlem in the next sectionm.

First we show that (1) can be written in the fundamental
forms
(2) Efl.e. afk VI},'“ Von?(xl,...,xn,fl(x;i),...,fk(xnk))
where mis a first-order expression in which the fi‘s appear ouly
ag shown, and the x, 's are a sequence of variables taken from
TypeoerTye (k2n and k2m) '

The process of getting this form involves two steps. We

s
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first use Rule R 1o make sure all the fi's are funciions of umiver—
sally quantified variables only. We nexi make each function mame
fi a function of a unicue variable name xni. In many iéétaﬁczes
¢his can be accomplished simply by renaming variables betweernn con-=
juncts. In tbose cases where it is impossible 1o do this, for
‘example £{x) and f(y) appear inside the same conjunct CZ ass

3¢( ... AV V3 C (2,5, 8(2), £(3)) Aeee )
then we introduce a new function name f', and rewrite the above as:

3¢ 3£°( ... A ¥z V5 C (x,5,£(x),£(5))

A ¥V ¥ylxfy v E(x)=fENA e oo )

whefe the added conjunct just says £=f%, We continue fhis process
of introducing new function names until all functions appear as

functions of unique variable names.

Now we claim this fundamental form (2) is equivalent %o
(3)  3f,... Jr, ¥xee- V3, Jy,eee A7y
‘ [_m (11""’xn’yl'".’yk)

l'yl) P ee@ Fa D(fk!xnk!ykﬂ

where the yi's are new variable names, and D(f,x,y) ig 2 new predi=-

cate Which ijs true if and only if f(x)=y. The proof of this claim
follows easily by substituting the definition of D into (3), and
¢hen using the dual case of Rule R, that is

3y, (MM () A fi(xni)=yi) <77 2'(fi(zni))

for i=l,...,k to obtain form (2).
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We can make this expression (3) a little simpler by using
the reverse of the procedure of introducing Skolem=functions. For
example, assume that in (3) fl,f‘z, and f’3 are all dependent on the

one variable x,, that is xn =X -x =x1 Then (3) is equivalent to

(4) 3f,... 31, Vx, gyl :_{;.—2 3y3 Vxyeoo ¥z, 374000 3,
[77/2 (x11'0011n7y190°07yk) V

A D(f4,zn ,y4)/\ coe /\D(fk,x ,yk.)-]
4 Pk

In other words, we can eliminate the function quantifiers and cor-
responding D-predicates for all functions dependent on one of the
xi‘s. Wben n )1, the choice of which functionms fo eliminate and
whivch to keep in D-form becomes a heuristic decision, which will be
discussed further in section 3 with the examples.

Note that 772:111 both (3) and (4) is completely first order
ip the sense that it contains no second;order variables. Instead
A these variables, the fi's, appear only in the first position of the
D-predicate, and :i.n a first-order prover they will be treated as

variable individuals. D is a higher—order predicate, but like

equality, it can be described by a set of first-order axioms.

The D—Axioms

(1) Naturally if £ is a2 ome-place function symbol in our domain,
Vz D(£,x,£(x)) should be added as an axiom for the D-predi-
cate, where f stands for the fumction A X. £f(z) and will be

treated as a2 constant by the first-order prover.
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Unfortunately not all one-place functions will appear as ne(x )™ in

the given problem. For example:

(2)

(3)

(4)

(5)

The identity funciion i(z)zz exists in all domains, so wWe need
¥ x p(i,x,x).

If £ and g are one-place functions in our domain, then the

compositions f-g, £-f, g-f-g, etc. are all one-place funciions

even though they may not appear explicitly. To handle compo-
gitions, we add the axiom:

V£ Ve 30 Vx Vy Vz(d(f,x,7) ~D(g,y,2)=>D(h,x,2) ).

If ¢ is a constant symbol appearing in our domain, them the

constant function g(x)=c can be considered a one-place func-

¢ion. Therefore for each constant appearing, we add the axiom
Wx D(gyx,c)e

Bach n-place function symbol g, n22, appearing in our domain
and depending on only one variable, can be considered a one=
place function. We thus add the axiom:

Yfl...‘v’f‘n 3b ¥z Vxl...‘v'xn(D(fl,x,zl)A coe A D(fn,z,zn)

——-'79(11(3)'1, g(zls sos 9xn)))

The validity of the above axioms is obvious, but to handle if-then-

else combinations of two one-place functions, we need a somewhat

more complicated axiom. First notice that when proving our form (3)

each xn becomes a constant functional of all the fi's and appears

i

in the D-predicate as D(fi’xn.(fl’”"fi"""fk)’yi)'

b 8
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(6) For each xn appearing in a D-predicate as above, we add:
' i
YVe£VYeg e 3aNVy Vs leeoo Vwi-l Vwi+l"' % W,

r ra z

L}}(fvin.iwlv-'Ovev'--9Wk)vy}""§§<cvxn.(le'°01év-°°vwk}1Y)
i i

/\D(gvxn (le-°~rd'-°-9wk)vz)"9n(dvxn (wlf""?d"",wk)’z)
i i

Azn.(wl"'.’c’...,wk)=xni(wl’.."d"..'wk)]

b

Proof Aiiom (6) is derived by eliminating the predicate P from
YP V¥ Ye e Vx((P(x)—rD(e,x,£(x))) A (F{x)=>D(c,x, £(x)))

which is true since we can let ¢ be A x. { £(x) if P(x
g(x) if PZI;.

First we bring the W¥x out fromt of Y P by making it a
function of c. After rewriting in disjunctive mormal form:
Y Ve ¥z VP | 3e(p(x(e)) A Dle,x(e),2(x(e))))
v 3e(FlE()) A e, xle),g(x(c))))
v 3e(D(e,x(c), £(x(c))) A D(e,x(e),a(x(c)))]]

Now the last disjunct just says that f=g, which we can assume is

false. We rename ¢ in the second disjunct d, and by using the dual
of Rule R, rewrite as
¥ Ve ¥z VP [ 32(p(2) A Jelz=x(c) A D(c,x(c),£(x(c)))))
~ Ja(FTE@) A p(a,x(a),e(x(2))))]
We eliminate P by letting P be A z. Je(z=x(c) A D(e,x(c),f(x(<c))))
Ve VeVx dc 3 al x(a)=x(c) A Dlc,x(ec),r(x(c)))
~D{d,x(d),e(x(d}))))
Te handle the variable functions f and g, we add two more D=terms

to finally get:



23

For any functional x,
Ve ¥e 3c Ja ¥y Ve [ =(a)x(e)
A~ D(£,x(e),y)=>D(c,x(c),¥)
A (g, x(d),2)—>D(a,2(a),2) ]
Now noticing that the only functionals to appear in a D-predicate

are the x  in fundamental form (3), we have axiom (6).
i

One may have noticed that if we let n=0 in axiom (5), that
is, let g be a constant, then we get axiom (4). A&lso if we let n=l
then we get a combination of axioms (1) and (3). Therefore an al-
ternate and shorter formulation of the D—é.xioms would ve (2), (6),
and
(5¢) For each n-place function symbol g, n20, then

. \,/fl.... an dn ¥x Vxl... Vxn(D(fl,x,xl)/\...AD(fn,x,xn)

—> D(b(g)sx,8(x) 5002 1x,)))-
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Section 2 ¢ Extensions to Section 1

Existentially=-cuantified Variables issume that not all variasbles

in 8 are universally quantified, for example

L. =k Vxl... Vzn Ay E,'(fl,...,fm,xl,...,zn,y)
where it is not possible to move y any farther to the left. This
case will cause no problem .in obtaining expression (3) of the pre-
ceding section, and also no problem when eliminating function
guantifiers that depend on a variable from xl,...,zn, to get form
(4). However if one wishes to eliminate functions that depend on a
variable to the right of Sy, then it will be necessary to replace
y by a n-place funciion g, as:

00 Ez“m e Vx ..o Vv 8(fl,...,fm,xl,...,xn,

g(xl,...,xn))

The solution of this problem, that is, how to handle a n-place
function, is discussed below.

Botice also that if y in the above expression were a ‘k-
plece function instead of & variable, we can still move it out in
front of the universally-quantified variables by replacing y by a

(n+k)-place function.

N-place Functions Assume we now have the problem:
Afyeee T, E(£5500008,)

where the fi's are all n, or less, =placed functions. We can con-

gider 21l the functions as n-placed, for example, £(x) is thongh-t
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of as £(xX,...,x), and then by the Lowenheim process we can reduce
2ll functions to one-placed. (This process involves transforming
the problem from the original domain of individuals J to the
Cartesian-product domain JXJX...xJ, see 1 and 10 for details.) Now
we can reduce the functioms by the previously-discussed procedures
over ithis new domain. Finally the reverse Loweheim process is wused
on the resulting first-order expression and thé D-axioms to get
back to our original domain. |

The above discussion is correct theoretically, but in prac-—
tibe, it is not necessary to go through this difficult procedure
explicitly. For exampI;; let us consider the n=2 case, where the
functions are all one or two—placed; For this case, the above just
means firstly that the steps used to get the fundamental form are
extended naturally, eg. if f(u,v) is to be renamed as £9(u,v), .then
cﬂe #dds +he conjunct

VzVy Yu Ve(xfu v yfv v f(x,y)=f(u,\;))
Now when converting to form (3) or (4), D becomes 2 four—pla;e
predicate and the definition becomes:
D(£,x,7,2) <2 £(x,5)=2.

Thus if we are letting v take the place of a two;ﬁlace function
glz,y) in 77?; then we add the comjunct D(g,x,y,v). Similarly if
w is to take the place of a one-place function f(x), then one adds
the term D(f,x,x,u).

The axioms for the n=2 case become:
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Phe D.—Axioms

(1) Ye 3n¥xVy Vz(o(ex,5,2)=>D(b,5,x,2))
(the symmetric function)
(2) V=xVy oli,x,y,x) (the projection function)
(3) For each n-place function symbol g, n20,
Vfl...an'ah‘q'x Yy ‘v'xl...\v’xn |
(D(fl,x,y,xl) A cee A D(fn,x,y,xn)
—D(B(g)s%,7, (%40 er% )
(4) Por each functional-pair (xn.,yn.) which appears in a D-predi-

i i
cate as

D(fi’xni(fl,.."fi’.‘.,fk),yni(fl,...'fi,..‘,fk)’ui)
we write as an axiom:

Vf Vg de ad Vu Vv le... A4 W V“i+1'" \y’wk
8 D(f'x (w geoegCoece W ),y (W geoegCooeegW, ),u)
n, 1 k n, 1 _ k
——%D(c,xni(wl,...,c,...,wk),yni(wl,...,c,...,wk),n)
, Ap(gtxn (wls‘-°9dv-=-7wk)vyn (wli""’d?"'?wk)!v)
i i
‘——”D(d'xni(wl”"’d’""wk)’yni(wl’""d"“’wk)’v)

A xni(wl, eoe ,39 e o0 ,wk)=xn. (wl’ o e e ,d, eee ’wk)

i
A Yn. (""17"-93700- v“k)=yni("lv--°ady--° vwk)]
b §

The extension to higher-placed functions and thus higher-

placed D-predicates proceeds naturally.
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Section 3 : Examples

(1) T ¥z Vz(3(s(x),£(2)) v Alx,£(x)))
This example is a continuation of (2) from secticn 2 of Chapter II.
He must first introduce & new function name, since T depends ©n
both x and z in the same conjunct:

I 36 ¢ x V2 [(B(£(x),8(2)) v A%, £(x) ) (22 vi(x)=g{z))]
Now this can be written in D—form as:

=t Yz 3v Y¥x 3u E(B(u,v) vA(x,u)) A (xfz vu=v) AD(f,z,u;l
or &as?

Fe¥xTuVzdv [(Blu,v)v Alxw)) A (xk2 ur)AD(E, 27 |

1% will make no difference which form of the result is used, since

the two functions T and g must be equal.

L]

The following examples are actual theorems which can be

proved with existing first—order proof systems:
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(2) ((BE4 ~B4¢) —> 3 £(£:4—>B A £ is onto))
Putting in the definitions of the symbols gives us the second-order
expression: (A(x) means x € &)
( Vx(3(x)=>4(x)) A 3b B(b) —»3( V¥ x(&(x)—>B(£(x)))
AV (B(y)—> J+(4(2) A £(+)=7)))
Now we put the conclusion in CNF:
It [Vx(E@ v 3(:(x))) A Yy F+(EG) v £(4))
A BT v £(£)=y)))]
We put a function in for %:
3¢ 3 [V v 5(e(2) A YyEGT v &(e))
~AYy(3(F) v f(g(y)%y—}
Using Rule R we make f depend on a variable in the last conjunct:
I Je [Vx(EE v 3(2(x))) A Y3EE) v 4le(x)))
ANy V(5] v £(z)=3 v &lz)¢=))
Fow by renaming we can make  and g depend on unigue variables:
3¢ Fe V= Vy (G v 3(2(x))) A B v 4el3))
A (BE) v )=y vx=g<y)>']
This can be written as either
(2) Je V= Tu ¥y Iv [ED v 3(w) A B v A))

A (BT v w3 v 2#%) A Dgyy,v) |

aT

(28) Fr ¥y dv Yz Ju [(I(_x-)-v 3(u)) A (B(y) v &(3))

A(B(F) v uv=y Vv x$v) A D(f,x,u)]
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Here the choice between (24) and (2B) does make a differ=
ence in the difficulty of the problem. (2A) can be proved with
only the addition of the identity function axiom. (2B) requires
alsoc the axiom for the constant b, and the axiom for if-then-—else

combinations involving the variable X.

Both of these theorems were proved on the University of
Northern Illinocis's resolution=type, firsi-order prover. The proof

of (24) took 3.46 seconds, while (2B) took 9.25 seconds.
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(3) Jf W x(f is continuous at x)

Jf Vx YeleYo—> 3d(a>0
AV y(|xvl € a—=e(z)-£(x)] L))
Rewri'l':ing in C¥F: ( G6(x,y) means x)y and a(x,y) means |z-y| )
3¢ ¥x Ve Ja Yy [(6(e,0) v &(g,0))
AETE70) v 6(alz,7),a) ¥ Ealz (@), 27)) )]
Since £ appears as a function of both x and y, we introduce e
3r 3¢ Vx Ve 34 Vy {(c e,0) v G(d,0))
A (8(e,0) v c(alx,y),d) v 6(a(f(x),e(y)) se))
Azt v £(x)=g(z)) |
This now reduces to :
Je V= Ju Ve 3d V5 BvY(c?(e,“CT) v 6(d,0))

A(6(e,0) v 6(alx,y),d4) v G(a(u,v),e))

/\(x#y v u=v) A D(Ev?av)]

This theorem can be proved by simply adding the axiom for
the identity function. It can also be proved by adding the axiom
for the constant O, which appears in the formulz, the anti-symmetry

property for G, and the fact that a(x,x)=0.



(4) Jr Yx(f is continuous at x A £(0)=0 A £(1)=2)

Using the definition of continuity from example (3}, we rewrite the
above using Rule R as
3 Y x(cont(£,x) A (x40 v £(x)=0) A (x41 v £(x)=2))
Phis reduces 10:
Je Vx I u Ye 34 Vy BvEm v ¢(a,0)) |
A (8(6:0) v G(alx,7),d) v G(a(u,v),e))
~ (xt7 v u=v) AD(g7,V)

A (x40 v us=0) A (xf1 v u=2)]

This theorem can be proved by adding the D—a;iozns for the
jdentity function and the constant 2. Also needed are the pTroper—
" ¢ies of multiplication (existence of jdentity, commutativiiy,
associativity, existence of inverse, and the D-axiom), properties
allowing us to multiply both sides of an equality or an ineguality,

and a property of a, namely, a(zex,z°5)=2-a(x,5) if 2 20.
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(5) The following example is from the paper 5, in which this
counterexample is wanied for a suspected false first-order formula.
e qr 32 Fv Fe [a <t A £(a)S0 A 0L 5(0)
AV:(a.‘. 2$b A0<E(x)—>g(x) <x AV s(g(x)<sx—=>0<1(s)))
A(0<1(e(3)) v g(3) S )]
Pirst we write it in CNF: (G{x,y) means x> y)
dg d¢ da Iv SCIG(a,‘n) A 6(£(2),0) A &0,£(5))

AVx(G(a,I) v G(I,b) £ G(f(x),O) 4 G(xvg(x)))

Az Vs(c(a,x) v 6(x,b) v G{f(x),0) v G(s,g(x))
v G(s,x) vc(r(s),0))
A (6(2(&(5)),0) v &(&(5),9)) ]
Using Rule R we make the functions dependent om variables:
Je 3r Jo Tv Jo ¥z ¥s [G@D) & (xfa v EED,0))
A (xdb v G(0,£(x)))
A (6(2,x) v o(x,b) v 6(£(x),0) v &(x,&(x)))

A(6(ayz) v 6(x,3) v B(£(2),0) v &(s,e(x))

~ G(sax) v G(f‘(s},O)}
A (x40 v sfe(x) v ¢(£(s),0) v G{gzx)gc)}j
Bow since f appears as a function of both x and s in the same

conjunct, we must initroduce a2 new function symbol h:



e 3¢ In Ja I T Vx Vs [6(a,5) A (xfa v &(£(2),0))
A(z#5 v EGT()) |
A(G(a,l) N G{I'b) v G(f<I},O) v G{x,g(x}})

/\(G(aax) v 6(x,b) Vv G(r(x),0) v G s,2(x))

v 6(s,x) v G(n(s),0))
A (xfb v sdg(x) v 6(n(s),0) v G(g(x),¢))
A(x#s Vf(x)=h(s))]
Finally we can rewrite it in first-order as:
3k J2 3b Je Vx JuJv Vs Aw |G(a,b) A (x#2 v 6(1,0))
A(xfp v 6(0,u))

A(c(a,x) v G(x,b) v G(u,0) Vv 6(x,v))

/\(G(a'x) v G(va) Vv G(u’G) h¢ G(S,V) g G(er)
~ G(W,O))
A(x#b v sfv v G(w,0) v G(v,c))

A(x;‘g v u=w) A D(h,s,w)]

A proof of this theorem, and thus a counterexample ioc the
original problem, can be found simply by adding the D—axiom for the
identity function, and the antisymmetry and antireflexive properties

for G.
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(6) An important example that illustrates the enAtire procedure
discussed in both Chapter II and Chapter III is Cantor's Theorem
from set theory:

Cantor's Theorem8 For any set S and function F:S-'%ZS

J4(ASS A Vx(x € 5—>44F(x)))
We first put in the definitiomns of & and £ for sets:
(s(x) means x & S)

31 [Vala(a)=>5(2)) A V(s(x) —>Z£((4(4)>TET))

A (EE=>F(z,1))))]

Fow we put this second-order expression in CNF:

2 [Va@G v s(2)) A V2 FeUEED v K v T=9)

A S v 24) v Fz,)]

We must introduce a function for t:
3g 34 [Va(@@) v 5(2)) A V(5@ v fe@) v {x52=)
' ANF(ET) v Aels)) v Plye(r))) ]

Fow we notice that the first two conjuncis are type }5 and the last

is type & , and both classes are unary. Therefore we can eliminate
L. Pirst we make A dependent on a variable in the X conjunct by
using Rule R: _

Je Tu V(@@ v s(2) A Y26 v @) v 7E5e0))

A Va(a(z) v Vylzfely) v 5(7) v F(y,g(y))))‘}

Then we let & be A z. Vy(zely) v S(y) v Py, ely)))

Je [Vz Vi(ataly) v 57 v Ply.e(x)) v 5(2))

AY 2 Vy(5@ v fmel=) v elx)tels) v 57 v Fly.alz)))]

e can simplify by using Rule % to eliminate 3z:
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3¢ V= Vs [GET v #r,e(e)) v s(ele)))
A (GG v FEaE) v s(xvels)v 5G) v F,ele)))]

Now since g appears as a function of x and y in the second conjunct

we must introduce a new function symbol h:
3¢ Ix V2 V5 [5G v 77.8()) v s(elx))
A (5 v Fma() v w(x)¢ely) v 5(3) v Flz,e(s) )
Alzhy v B(x)=g(r))]
We can reduce to first order:
Je¥x Ju Yy 3v [(5() v F(z,v) v 53))
A GE v Fmw) v wv v Fy,v) v 5()

A (47 v u=v) A D(g,7,7) |

We could have selected to eliminate the function g and write &
D-predicate involving b instead, but it makes no difference in this
problem, as g=h. |

Since no constants nér constant function symbols appeaT iz
¢his theorem, and no other properties are used in 4he proof, we
pneed to 2dd only one D-axiom, namely %z p(i,x,x). This thét:rem
was proved by the University of Northern Illinois's resolution-=type

first—order prover in 2.75 seconds.



APPENDIX I

PROOF OF CASE 3

We now want to show that gcase 3 (see page 10) always leads
to an infinite first-order expression under the general elimination
procedure of W. Ackermann} That is, we need to prove that whenever
(1) classes o (P) and /3(?) exist and are both non-unary,

or
(2) all three classes exist,

4+hen the elimination result is infinite.

Proof We will assume that the predicate to be eliminated, P, has
been reduced to a one-place predicate by the Lowenheim process.9
(This is required by the Ackermann procedure.)

We first show that hypothesis (1) implies hypothesis (2)
under this procedure. By hypothesis (1) we must have, at least,
4¢he two conjuncts:

: >
Wz ... ¥V (P(x)) veeo v P(x) v QUxpyeeex))) with m22
Vyl--- Vy,(°(y;) veee v P30 v B3yreee93,)) with n22

Pherefore we have Ackermann'’s fundamental-térms:

Oz < and Byl,-.e,yn
IR

whiech can be combine& te form 2 new fundamental-term:

36
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Z,y ’coo,y
z 2
V (az,xz,...,xm \V4 B n)
But this term has the general form

§2i63a7§n
2'oco, o

and since n22 and m22, this is the form of a fundamenial-term
derived from a conjunct of class X(P‘};), namely
sz... VImV Tpeos A4 yn(P(xz) Voeee V P(xn)
Py e VPO v O (xgreenrxpmyeesery,))
Therefore the results of hypothesis (1) are no different than if

one assumes (2).

Now to prove (2) leads to an infinite result, we first
golve the simplest case, that is, assume
Yx(P(x) v Q(x)) appears in class & ,
Vy(m v B(y)) aprears in class )8 , and
Vz ¥Yy(P(z) v P(z)v (C.(z,5)) appears in class \{ .
Then we will have fundamental-terms: |
a,;' B yv and Ci
which can be combined to give the infinite sequénce of terms:
L E X axlv C ;; v Cii veov Co1y B™n)
for all nZ1. ' -
Hc;w since these terms make up the resultant of Ackermann's

elimination, the resultant must be infinite.

If the problem given does nct have these simple conjuncts

appearing in &ll tkhe classes, terms of the same fom can always be
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built from more complicated terms by use of the combining rule.

For example, from the terms

Qe B wt CuZa wmese w31 ox w33

lglIQ’xm
we can generate ithe term .

Voo W, Vrpee Wyl R¥2v...v By cii:::::i”
m
Vayzv "-vayn)

which is of the form C'il .
1

%

By induction one can get proofs of similar reductions to

the simplest case for the other classes ¢4 a.nd/g o



APPENDIX II

THO PALSE SIMPLIFICATIONS

Since the name of the function that is substituted for f in
an instantiation of D-predicate D(f,x,y) is not importani, only the
fact that there is such a function, one might believe that it is
possible to simplify our definition of D by eliminating the € frox
4. That is, one defines D(x,y) to mean "the value of y is depen=
dent on the value of x", of in other words, D(x,y) is true if and
only if there exisis a function such thatvwhen applied to x, the
the value equals y. This makes the axiomization of D much simpler,
but it alse leads to counterexamples. For instance, We should be
able to say that the false expression
Jr V= Vyl£(z)éy)

is egquivalent to

Yx Yy au(ufy AD(x,u)).
Onfortunately in 2 domain with at least 2 individuals, eg. C and 1,
then we can prove this last expression is true by using the <two

D-axioms ¥ x D(x,0) and Y x p(x,1).

The author also tried another gimplification that wounld

have allowed us to eliminate the jf-then—else axioms, which are the
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most difficult and complicated to use. This was done by making
each x that appeared in‘a D-predicate as D(f,x,y) independent of
j4s own function f when Skolemizing, although it would still depend
on all other functions appearing, as 1is normally the case., This
means for the two-function case, that we should be able to say the
following for arbitrary expression 8 9
3r Jg V= Yy € (x,7,2(x),8(3)) |

> ¥i¥rIu JeIv][E (Xe)T(w)u,w) A NgT(w),v)]
where X is a functional and Y is a function. The (—?) direction
is always true, but a counterexample can be found for the other
direction. Namely, in a domain with only two individuals, 0 and 1,
we let € be the expression that is true for the following quad-
ruples:

(0,0,1,1), (o»,1,1,1), (0,1,0,1)

(1,0,0,0), (1,0,2,1), (1,1,0,1)
and false for all other guadruples. In this instance, the last
expression can be shown to be true by using the axioms Y x ﬁ(g,z,o}
and V¥ =z D(1,x,1), and the properiy % x(z=0 v z=1). On she otter
vand, the first part of the egquivalence can be shown to e false

for this i in this domain of individuals.
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