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Two Theorems on Improving the SUP-INF Method

Abstract. The SUP-INF technique tests for consistency of a set T of
ground inequality literals, by computing and comparing the number SUP x
and INF x, for each term x appearing in T. A theorem is proved which
shows that when new entries are made to T, the computation of SUP x and
INF x need only be made for x's appearing in the added entries. A similar

theorem is proved about finding equalities implied by T.

In his paper "The SUP-INF Method in Presburger Arithmetic,” Bledsoce
introduced the algorithms SUP and INF designed to calculate the maximum
and minimum, respectively, of a variable subject to a set of linear constraints.
Both [1,2) and Shostak [3] have devised methods, utilizing these two
algorithms, to determine the validity, as well as the invalidity, of a class
of formulas that arise in Program Verification - Presburger formulas with
universally quantified variables. This article presents two theorems which
improve the efficiency of partof the method described in [2]. The theorems
apply to the case when new entries are made to a satisfiable set of linear
inequalities, to form an augmented set T. The validity of T can be
established by calculating and comparing SUP x and INF x only for those
variables occcurring in the added entries.

In the next sections the original procedure is described, and the

improvements. Following that, the theorems are presented and proved.

2. The Original Method

Given a conjunction of universally quantified linear inequalities,

L1 f*MfN, vo y\Li ﬁ’Mi’ and V, the set of variables that occur in the

inequalities, we first rewrite the inequalities as S, a set of inequalities

of the form
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LOWER (x) < % < UPPERG(x)

for all x € V. UPPERS(X) is obtained by solving all the inequalities

Lj SAMj in terms of x; consider the inequalities {x<vu

UPPERS(X) is then

1° s X E‘Ur}°

.. <

MIN(Ul, ees ’Ur) if 1< ¢

UPPERS(X) = Ul ifr=1
H

o if r =0

LOWERS(X) is defined similarily.
For example, the conjunction
Y<5Ax+2y<=-2p-1<y
would be converted into the set
§ = {-» < x <-2-2y,
-1 <y < MIN(S5,-1 - )}

The recursive agorithms SUP and INF calculate the maximum and minimum
values, respectively, of variables subject to such sets of linear constraints.
The algorithms are functions of the variable whose maximum and minimum value
is to be computed; the set of inequalities; and a list of variables initially

set to NIL. TFor instance, in the example above

INFg(x,0) = -3 SUPS(X,ﬁ) 0,
INF(y,0) = -13 SUP.(y,P) = 5.

Given a set S of inequalities in the desired form, we check for the
invalidity of S in two steps. First, SUPS(Vgﬁ) and INFS(V,@) are calculated
and compared for each v occurring in S§. 1If the interval

(1) n@§vﬁ),&wévﬁ)

is empty, we conclude that S is invalid. If no empty interval is found,

we proceed to the second step in the procedure.



At this point we check for equality occurring in S, by testing to see

if either

INF (v,0) = SUPS(V,¢>
(2)
or SUPS(UPPERS(V), {vh =w

is the case for any v occurring in S. Any equality units found are returned
in the form of a substitution ¢, which 1is applied to S to form the set
Sy. Again, as in the first step, INPQJ(V,@) and SUPSU(V,Q) are calculated
and compared. If an empty interval is found, then S dis dinvalid. 1If no
contradiction is found, we return So.

3. The Improved Method

The new method improved the old method's efficiencyin the following case:
Suppose an inequality is added to satisfiable set of linear imnequalities,
to form an augmented set T of inequalities. Let G be the set of variables
occurring in the added inequality. The first step in the procedure is now
to calculate and compare INFT(V,ﬁ) and SUPT(V;Q) only for those v in G. 1If
no contradiction is found, we conclude that for all v occurring in T, the
interval

INFT(V,G), SUPT(V,Q)

is non-empty, and proceed to the second part of the method.

In checking for equality (in the improved method), we check only
one u £ G, If for this one u equality is not detected, then T dimplies
no equality units that S does not imply. If equality is detected, we
proceed as the old method does, by finding equality units; substituting

equality units into Te, and checking each variable in TO for a contradiction.
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4. Preliminary Definitions.

Let V represent the set of variables (v Vo e ,vn), for some positive

19

integer n. The following definitions are taken from [3] .

Definition. A linear form in V is an expression of the form

r,v. + ... +r v +¢
11 nn ’
where T, is a non-negative real and ¢ is a real.

Defipition. A minilinear form in V 4is either a linear form in V,

an expression of the form MIN(LI,L . ,Lm) where m > 2 and each Li

29
is linear in V or one of © or -,

We assume all linear {(minilinear) forms to be linear (minilinear) in V.
Definition. An inequality is an expression of the form A < B, where A

and B are linear forms having no variables in common.

Definition. A point (with respect to V) is an assignment of reals to the

members of V. If P dis a point and Q is a minilinear form, the value

of Q at P, written Q(P), is the real obtained by evaluating Q in the
customary way with each variable by its assignment in P,

Definition. If r 1is a real, Q is minilinear, and S is a set of inequali-

ties, we say that Q can have the value r 1in § if there exists a

point P satisfying S such that Q(P) = r. We say that Q has the

unique value 1 in S if Q can have the value r in S, but no other

value.

5. First Major Theorem

Let S be a satisfiable set of ground inequalitites in V of the form

S < <
{2 Ay vy 2B

with Ai and Bi minilinear.
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Given an inequality of the form A <B with A and B linear, let
G = (vl, eeas vk), for k < n, be the set of variables occurring in A and

B. Further, suppose A and B have no variables in common. Intersect

A < B with S to form T. The first major theorem is then:

Theorem 1. 1If for some v ¢ V, the interval INTT(V,@), SUPT(V,ﬁ) is

empty, then for some u g G, INTT(U,Q), SUPT(u,@) is empty.

Before the proof of this theorem can be given, we need the following lemma:

Lemma 2 Let 0:G- Reals is a substitution; L EV; and A be minilinear.
Then SUPSO(AO; L) = SUPTG(AO; L).
Lemma 2 and its proof are similar to a theorem proved by Shostak \3-

which appears in this paper as Theorem 8.

Proof All cases reduce to the one in which A 1is a single variable with
Ad G. That is A0 = A,

The proof is by recursive induction.

SUPg (Ao, L) = SUPg (4, L)
(2) = SUPP(aA, Z7)
where Z = SUP (Qg_(4), LY (4)), and Qq(A) = UPPER (A)

By induction hypothesis it follows that
_ U

(3) 2z =sUP, (Qq (A), LY(A)).

A ¢ G, hence QS(A) = QT(A), and

(@) Qg (a) = o _(4).
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1t follows from (3) and (4) that
(5 7= SUPTO(QTO(A)’ L (A)).
Substituting (5) into (2),

SUPSéA,L)

i

SUPP(A, SUPTG(QTO(A), L (A

SUPTG(A’ L)

As asserted, by the definition of SUP

The proof of Theorem 1 can now be given.

Proof of Theorem 1.

The proof is by contradiction. Assume that for all u € G the interval
[INFT(U, ), SUPT(u, @] is not empty. We claim that for all x € V, the
interval [INFT(V, 2y, SUPT(V, #)lis non-empty, in contradiction to the hypothesis.

To see this, first, for each vis G choose ri so that

. < < .
INFT(vl, &) STy _‘SUPT(Vl, ¢y .
And define ©:G> Reals by O = (rl/vl,...,rk/vk).
g is contained in T Thence, it follows from Theorem 6 that
i < <
ri —-SUPT(Vi’ @) < SURg (v, )]
Similarly

<
INFS(Vi, gy < ..

Therefore, since S 1is gatisfiable, SO 1is satisfiable. And so, for v V-G
the interval INFSO(V, 8, SUPsg(v, ¢} , which by Lemma 2 is precisely the
interval INFTU(V’ 3y, SUPTO(V’ ¢) , is non-empty. Therefore, for all v € V,

the interval INFT(V, &, SUPT(V, $) is non-empty, which concludes the proof.
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6. Preliminary Theorems

For these first few theorems we assume that § and T are satis-
fiable sets of linear inequalities. Also, the algorithms SUP and INF
are mirror images of one another, so analogous statements hold for INF,
but those statements are not explictly givem. Lastly, when credit is not

given, the theorem is due to Shostak.

)

T if A can have the real value
r in S, but no greater value.
undefined otherwise.

Definition.

MAXSA':}

Definition. S bounds R, a linear form, if for some real r, maxSR is

defined and equal to r.

Definition. § minimally bounds R if 8 bounds R and no proper subset

of S bounds R.

Theorem 3. Suppose S minimally bounds R. Then any point P that satis~-

fies S such that R{(P) = maxSR also satisfies SE’ a set of equalities

obtained from S by replacing < with =.

The following properties of SUP are needed for the proof of the

second main theorem.

Theorem 4. (Bledsoe) 1If S is satisfiable, SUPS(R,ﬁ) < maxSR.

Theorem 5. (Bledsoe) SUPS(R,L) is a minilinear form in L.

Theorem 6. If T dis contained in S, SHFS(R,@} E_SUPT(R,Q).
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Theorem 7. If A is a linear form with a unique value r in S,

SUPS(A,ﬁ) = maxSA.

Theorem 8. Say L, L' are sets of variables, L' contained in L,
0:L-L' -+ Reals a substitution, A is minilinear, and SUPS (AC,L") # —oo,

4 —
Then SUP. (A0,L") = BUPS(A,L)} 0.

Definition. T imp%@egvgquality for v € V if either v has unique value

in T, or SUPT(QT(V), {v}) = v.

For the remainder of the paper, we assume that T is satisfiable, for
simplicity's sake. This assumption will have no effect on it's application
to the procedure described. Also, suppose that for some u € V T implies
equality for u, but S does not. Denote by R a subset of T such that
R implies equality for u, and no proper subset of R implies equality

for v. We need to develop two properties of R. The first is as follows:

Theorem 9. A point P satisfies R if and only if P satisfies RE.
Proof. Clearly, if P satisfies RE’ P satisfies R.

Suppose P satisfies R. If R minimally bounds wu, then
u(P) = MAXRU, and so by theorem 3, P satisfies RE' Consider the case
when SUPR(QR(U), {u}) = u. Let o:{r/u} be the substitution for u obtained
from P. From Theorem 8

SUPL(Qp(w),8) = SUPL(Q (u), {u})

{ulo = r.

I

Also, INFRO(QR(U),@) = 1.

That is RO minimally bound QR(U), hence P satisfies RGE’ and therefore RF'
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This theorem is not yet in the form in which we need it. The

following definition suggests an immediate corollary.

Definition. We write A = B, where A and B are linear forms, if for

all P that satisfy R, A(P) = B(P).

Corollarle.IfSUPR(A,L) # o, then A = SUPR(A,L)

Proof. All cases reduce to the one in which A is a single variable,

A ¢ L.

The proof is by recursive induction.

SUPR(A,L) = SUPP(A,Z) where Z = SUPR(QR(A),L“{A}). And, by inspection
of SUPP, Z # =.

Thus, by induction hypothesis, QR(A) z 7. Furthermore, it

it

follows from Theorem 9, that A = QR(A) = Z.

To complete the proof, we must inspect SUPP, to see that SUPP(A,Z) = A.
Assume 7 is linear, that is Z is not of the form MIN(B,C). SUPR(A,L) 4 oo
thus Z must be either linear in L, or of the form bA + C, where
b <1, and C dis linear in L. In the latter case, we know A T bA + C,
which impldes A = C/1-b. And, by definition, SUPP(A,Z) = C/1-b. In the

former case, SUPP(A,Z) = Z, which completes the proof.

7. Second Major Theorem.

Recall the assumptions made about T in the previous section; those
assumptions are carried over into these last two theorems. The second

major theorem is:
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Theorem 11. Suppose T is satisfiable, and T implies equality for v € V,
whereas S does not imply equality for wv. Then for all u ¢ G, T dimplies
equality for u.

We actually show a slightly stronger result.

Theorem 12. For each u occurring in R, T implies equality for u.

To see that this theorem implies the former, note that R is not a

subset of S, for otherwise, S would imply equality for v. Therefore,

for some g € G, either UPPERR(g)or LOWERR(G) is obtained from the inequality

added to S to form T. Hence, all u in G occur in R.

Proof. Pick u occurring in R. Note that if u has unique value in R,
the same condition holds in T. Similarly for the other condition of
equality. Hence, it is sufficient to show that R implies equality for
u.

Suppose, for r Treal, SUPR(u, @) = r. Then by lemma 10, u = T3
that is, u has unique value in R.

Suppose SUPR(u,Q) = o, Pick r real, and let o:{r/u}. Clearly,
INFRO(QR(U), $) = r. And, as we saw earlier, SUPROQR(u), #y = r. It

follows from Theorem 8 that

ESUPR(QR(u),{u})} o= r.
we alsoc know that
SUPR(w,SUP (Q (), {u})) = =

Therefore, SUPR(QR(u),{u}) = u,
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In a private communication, Robert Shostak reported a stronger result

than theorem 1 of this article:

It T 1is a minimally contradicting set of inequalities, then for

each variable v occurring in T, the interval [iNFT(V,ﬂ), SU?T(X7,®3 is

empty.



