VARIABLE ELIMINATION AND CHAINING
IN A

RESOLUTION-BASED PROVER FOR INEQUALITIES
by

W. W. Bledsoe and Larry M. Hines

April 1980 ATP-56A

This work was supported by NSF Grant MCS 77-20701.

This paper will appear in the proceedings of the 5th Conference on Automated
Deduction, Les Arcs, France, July 8-11, 1980.

Variable Elimination and Chaining

in a

Resolution-basced Prover for Inequalitics

By

W. W. Bledsoe and Larry M. Hines
The University of Texas, Austin

Abstract. A modified resolution procedure is described which has been designed to
prove theorems about general linear inequalities. This prover uses "“variable elim=
ination", and a modified form of imequality chaining (in which chaining is allowed
only on so called "shielding terms"), and a decision procedure for proving ground
inequality theorems. These techniques and others help to avoid the explicit use of
certain axioms, such as the transitivity and interpolation axioms for inequalities,
in order to reduce the size of the search space and to speed up proofs. Several
examples are given along with results from a computer implementation. In particular
this program has proved some difficult theorems such as: The sum of two continuous

functions is continuous.

1. Introduction

The purpose of this paper is to describe a resolution-based theorem prover
which has been designed to prove theorems about linear real inequalities. It is an
improvement of the prover described in [1] with a different, more powerful, concept
of chaining.

An important motive for building special inequality provers is to avoid the ex-

plicit use of axioms such as

TRANSITIVITY: ¥x ¥y Yz x<yAy<z>x<z)
INTERPOLATION: VWX Wy x<y> Jdzx<z<y)) .

Such axioms tend to lengthen the proof search because they can match with other
formulas in so many unproductive ways. Also, the explicit use of the field axioms
for the real numbers present similar problems.

To avoid these difficulties special "built-in" procedures have been suggested

and used with varying degrees of success. Some of these procedures are

(1) the built-in partial ordering of Slagle and Norton [27;

(2) the ground inequality packages of King [3], Oppen, etal. [4], Shostak [5],
Bledsoe, etal. [6] (these tend to be in the Presburger mode);

(3) the methods of Hodes [7];

(4) the Restriction Intervals Method [6].

Even though these provers have met with a degrec of success, still further
changes are necessary to handle more difficuit incquality theorems. Two such

changes are the inequality chaining and variable elimination described below.

The class of formulas dealt with here are those from the theory of dense
linear order without endpoints. This theory is decidable. But, we also permit ar-
bitrary quantification and uninterpreted function symbols and therefore can encode
all of predicate calculus. Our intention, however, was not to provide a genceral-
purpose prover for first-order logic but rather to be able to more easily prove
naturally arising inequality theorems.

We also permit the + sign with its usual semantics, but we do not, in this
version, allow the + sign to occur within the arguments of an uninterpreted
function symbol {(e.g., x-%f(xo) is allowed but f(x-%xo) is not). (Such cases could
be handled by including an algebraic unifier such as [8].)

The strategy used by this prover is to eliminate variables from literals, so

that these ground literals can then be split off and proved by a ground inequality

prover. However, in order to eliminate a variable from a clause, it must be eli-
gible in that clause (see Section 2.2), so a first objective is to make variables

eligible by removing shielding terms (see Sectiom 2.3). This is done by chaining

(only) on shielding terms.

The use of this principle in difficult examples like Example 17 (sum of two
continuous functions is continuous), Example 13, and others, apparently makes the
difference in whether or not a proof will be obtained in reasonable time.

Except for the ground inequality prover, where equality substitution is used

[6], we have avoided the use of the equality symbol by substituting (a < bAD < a)

for each instance of a=b.

2. Resolution <
Resolution< is much like ordinary resolution [9], except that in addition
to the traditional clauses there is a special clause (only one) called TY which is

essentially a conjunction of ground inequality literals, and three different types

of resolvents are used. These are

e TY-Resolvents
® Variable-elimination Resolvents

® Chain Resoclvents

Ordinary resolvents are not explicitly computed. llowever, they can be implic-

itly produced by SELT~CHAIN (see below).

2.1 TY-Resolvents

A TY-Resolvent is obtained by conjoining a ground inequality literal with the
special clause TY and checking the result for consistency by calling the routine,
GROUND-PROVER. If GROUND-PROVER succeeds, then the resolvent is [J; otherwise,

it is the augmented TY.

2.2 Variable~elimination Resolvents

A literal, x < a, 1is called an RL-literal if x is a variable which docs not
occur in a, and the variable x 1is called an RL-variable for that literal. This
definition is extended to include the cases x < a, a <%, a<x, 1in a similar way.
(As an example of a variable which is not an RL-variable, consider the x in
f(x) <c or f(x)<x.)

If a variable x occurs only as an RL-variable in a clause, it is said to be
eligible (and can be eliminated from the clause, as we will see shortly).

We will assume the following interpolation axioms.

:3 x (x < a)
:3><(a <x<b)e—sac<gh

Hx(a<x<bAx<cde—>a<bAac<ec

etc., where x does not occur in a,b,c. We also assume the appropriate modifi-

cations of these axioms, such as
EH}{(a <x<b)e—sma<b,

when some or all of the < 's are replaced by <'s.
We will (implicitly) use these axioms to eliminate eligible variables in

clauses.

Variable Elimination Rule

If x is eligible in a clause C and x occurs in C only in the literals

a, £ x : i=1,n
1
X ébj : j=1,m

then C 1is replaced by its '"resolvent" C' which is gotten by removing the lit-
erals (1) from € and replacing them by the literals

aiibj; i=1,n ; j=1,m .

It should be noted that if either n or m 1is zero, thennoliteral is added tore-
place those deleted. The rule is extended appropriately to include the symbol

<", It should also be noted that C' would have been obtained by resolving C

against the clauses from one of the interpolation axioms.

Example. C =adxVx<b Example. C =af£ xVb<xVy
C'=adb. ¢t = ¢
Example. € =af£xVx<bV i) <c

x is not eligible so it cannot be eliminated.

When an RL-variable is not eligible, as in clause C of this last example, the
variable cannot be climinated. However, it might become eligible in a later resolv-
ent, as, for example, when C is resolved with the clause (f(x') £ ¢ VvV D) where

x' does not occur in D.

2.3 Shielding Terms

If L 1is a literal which is equivalent to t <A (or t <A, A< t, A< t)
and t is of the form f(tl’ t2,..., tn)’ where f 1is an uninterpreted function
symbol, and t contains at least one variable, then we say that t 1is a shielding
term of L. 1In the examples of Section 2.2, the shielding terms are f(x) and
f{x"). A shielding literal is one that contains a shielding term.

The chaining procedure below is designed to remove such shielding terms from

clauses.

2.4 Chain Resolvents

Chaining is a procedure which effects a limited application of the transitivity

axiom

Vxyz(x < yAy<z>x<z)
so that if b and b' are unifiable, with mgu 6, then (a < ¢)8 is inferred
from a< b and b' < c.

The chaining procedure in this paper 1s applied only when b 1is a shielding

term.

If € and C' are the two clauses

A<BVP

and

B'<CVQ,

where B or B' 1s a shielding term, and B and B' are unifiable with mgu 8,

then

(A< C)evPrPevVvQe
is called a chain-resolvent of clauses C and C'. (Similarly for A< B, B' < C,
etc.)

For example, f(y) 1is a shielding term in the clause
C=f) <fy) vy
which can be removed by resolving C against thg clause
f(s) <AV D <s

to obtain the chain-resolvent

R=f(A)<AVYy<2VDb<y.

Although vy was not eligible in C, it is in R and, therefore, can be

eliminated to obtain

fU)<AVDD<IL.
Another example is found in Example 17 below, where clauses

c

1

1 f(zy) -+ g(zy) < f(xo) + g(xo) +e Vy<O0,

0

C

) f(xo) + e < £(s)

are resolved to obtain the chain-resolvent

f(xo) + &g + g(zy) < f(xo) + g(xo) +e Vy<O0.

0

(Actually, in order to use the definition of chain-resolvent as given above, we had
to first rewrite C1 in its equivalent forms f(zy) < —g(zy) + f(xo) + g(xo) +
£y Vy<0.)

We also allow "self-chaining" resolvents (see SELF-CHAIN) whereby the resolv-
ent (P6) is obtained from the clause (a < a' Vv P) if 6 1is the mgu of a

and a'.

2.5 Processing Resolvents

0f the three types of resolvents only one, chain resolvents, are comstructed
during the regular resolution cycle; the other two, TY-resolvents and variable-
elimination resolvents, are produced by processing other resolvents and prepro-
cessing the initial clauses.

A "splitting" procedure is also used (see below) which insures that, among
other things, ground literals occur only in unit clauses. This greatly enhances
the usefulness of the TY clause.

When a new resolvent, R, is formed:
1. If R is L[] the proof is successfully terminated.
2. If R is a unit inequality ground clause it is "resolved" with TY.

3., If R has an eligible variable, that variable is eliminated by the methods

of Section 2.2,

4., Otherwise R 1is simplified and added to the set of clauses (with new standard-

jzed apart variables). Ordinary subsumption and tautology removal are used.

5. If R can be split into two or more independent (no variables in common) sub-
clauses Rl""’ Rn’ the process is continued for cach of S U {Ri}, for

i=1,2,...,n.

2.6 Sequencing

At the beginning of a proof, the theorem to be proved is converted to clausal
form. All unit ground inequality clauses ave “'conjoined" together to form the
special clause, TY. These unit clauses are also retained as separate clauses. TY
is checked for consistency by a call to the function GROUND-PROVER. 1If it is in-
consistent, the proof is successfully terminated.

Also, at the beginning, any variable x that is eligible in a clause is elim~
inated in that clause by the procedure of Section 2.2. And splitting is performed
where possible. (It should be noted at this point that ground clauses can be split
completely, and that this causes an excessive amount of splitting when the set §
contains only ground clauses. However, this prover is designed to handle difficult
non-ground theorems where very little splitting takes place. See the examples of
Section 4.)

The procedure is to compute resolvents by a method similar to linear
resolution.

A top clause C is chosen from S which is not ground. There is such a ¢C,
since otherwise S 1is a set of unit ground clauses and would have already been pro=-
cessed by GROUND-PROVER. Furthermore, at least one shielding term occurs in a lit-
eral L of C.

Loosely speaking, such an L 1s selected from C and the chaining algorithm
is applied to the shielding terms of L. As variables become eligible, they are
eliminated. TIf ground literals arise they are split off and resolved against TY.
Also, each new resolvent R 1is simplified by REDUCE and duplicate literals are

merged, and the process is repeated with R as the new top clause.

3. The Principal Parts

(RESOLUTIONS Th)
This is the top-level function, where Th is the theorem to be proved. It re-

turns T or NIL.

1. Convert Th to clausal form, getting the set S of clauses.

2, Call INITIAL-RL
This eliminates any eligible variables from the original clauses. Then each
clause is REDUCED and then ordered, with RL-literals last. If [J is obtained,
- the calculation is successfully terminated. The result is a set S of clauses.

Subsumption and tautology removal are also used.

3. Call (SPLIT S)

If L 1is a literal of a non-unit clause C of S, and 1 has no variable

in common with C ~ {L]}, then call both

(SPLIT (8 ~ {C} U [{LI}M

and

(SPLIT (5 ~ {C} U {C ~ {L}]}))

4, Call INITITAL-TY
This constructs the special clause TY (not a member of S). If TY is [] the

calculation is successfully terminated.

5. Return (REMOVE~SHIELDING-TERMS S).

Once the splitting of S (if any) is completed in step 3 above, and the TY is
initialized, the program trys to produce "chain resolvents" which are processed to
produce, in some cases, TY-resolvents and variable elimination resolvents.

The algorithms presented here in the routines REMOVE~SHIELDING-TERMS, CHAIN,
and SELF-CHAIN, are given to show one way that these new resolvents can be used in
an actual prover. This implementation resembles linear resolution with ordering of

literals. Completeness is not claimed.

{(REMOVE~SHIELDING-TERMS S)
This is called by RESOLUTIONK and by PROCESS-RESOLVENT. S has at least one
non-ground clause. (Otherwise, GROUND-PROVER would have already handled such a case.)

1. While § # NIL do

1.1 Select a non-ground clause, C from S (a new one not yet chosen). C
has at least one shielding literal. (Otherwise C is either ground or
any variable occurring in it would be eligible and hence would have been

eliminated.) Put S =85S ~ {C}. Put C' = C.
1.2 While C' # NIL do

1.21 Select a mew shielding literal 1L from C'. Put C' =C' ~ {L}. ZLet STR
be the set of shielding terms of L. Let LE be the predicate of 1L (i.e.,
<" or "<"). Let LS be the "left side" of L. (i.e., LS is such that
(LE LS 0) is equivalent to L).

1.22 While STR # NIL do

1,221 Select a new shielding term TR from STR. Put STR = STR ~ {IR}.
1.222 Call (CHAINTR LS LEL C 8). 1If it returns T, return T.
END;
END;
END;

2. TReturn NIL.

(CHAIN TR LS LE L C 38)
This is called by REMOVE-SHILLDING-TEEMS. The literals in each clause have al-

ready been put into a "left side" form (e.g. A< B is transformed to A -7 <).
Y i s > Y

~

1. Set 8S =S ~ {C}.
2. While SS # NIL do

2.1 Let CC be the next clause in SS. Put SS = SS ~ {CC].
2.2 While CC 4 NIL. do

2.21 Let LL be the next literal im CC. Put CC = CC ~ {LL}. Let TRS be the
set of terms in LL which are not variables or numbers. Let LEE be the
predicate of LL. Let LSS be the "left side" of LL (i.e., LSS is such
that (LEE LSS 0) 1is equivalent to LL).

2.22 While TRS # NIL do
2.221 Let TRR be the next term in TRS. Put TRS = TRS ~ {TRR].
2.222 Put © = (UNIFY TR (- TRR)).

If 6 # NIL then

2.2221 Let LE be "<" if both L and LL have "<" as their predicates.
Else let LE be "«". Let New-L be (LE (+ LS6 1LSS6) 0). Let R
be {New-L} U (Rest of C)8 U (Rest of CC)®. Call (PROCESS ~RESOLVENT R).

If it returns T, then return T.
END;

END;
END;

3. Return (SELF-CHAIN C 1 TR).

(SELF-CHAIN C L TR)
Called by CHAIN. _
1. Let TRS be the set of terms in L which are not variables or numbers. Put
TRS = TRS ~ {TR}.
2. While TRS # NIL do
2.1 Let TRR be the next term in TRS. Put TRS = TRS ~ {TRR]}.
2.2 Put 6 = (UNITY TR (- TRR)).
2.3 If © +# NIL and (PROCESS-RESOLVENT CO) # NIL then return T. END}

3. Return NIL.

For example, if C=:(f(x)-f(x0) <0V x<a), L==(f(x)—f(x0) < 0), TR=£f(x),

then R::(f(xo)nf(xo) < OV Xy < a) which ig simplified to %, < a.

{PROCLESS -RESOLVENT R)

This is called by the routines CHAIN and SELF-CHAIN, when a now resolvent R

hias just been produced.

& Put R= (REDUCE R).

e If R= [, return T.

e If R is a ground inequality unit, call (GROUND-PROVER TY R).

® Put R= (ELIMINATE~VARIABLES R).

e If R={[] , return T.

e If R 1is a tautology, return NIL.

¢ If R can be split on L (i.e., C ~ {L} 1is not empty and L and C ~ {L}

have no variable in common).

(PROCESS=RESOLVENT {L})
and

(PROCESS ~RESOLVENT (C ~ {L})).

8 (SUBSUME R S).
Returns NIL if R 1is subsumed by S, and removes from S clauses subsumed
by R.

e Put R= (SORT R).
Sort the literals of R so that RL-literals are last.

e Replace C 'by R in S (but leave C in S).

® Return (REMOVE-SHIELDING-TERMS S).

(REDUCE R)

This is a procedure which rewrites certain formulas as others [10]. For ex-
ample, each of the formulas (0 < 1), (A+5 < A+6) 1is rewritten as T, whereas
each of (2 < 1), (£(x)+1< £(x)), is rewritten as (] , and (2< 1)V (A< B))
is rewritten as ((A < B)).

An algebraic simplifier is used in various parts of the program.

THE SPECIAL CLAUSE TY

TY is a conjunction of ground inequality literals which may be altered, as the
proof proceeds, by conjoining onto it additional ground inequality units. The
initial value of TY is gotten by a call to INITIAL-TY which combines all the ground
inequality unit clauses of § into one conjunction. If TY is or becomes contradic-
tory, then the proof is successfully terminated. A function (GROUND-PROVER TY L)
is called to determine whether TY is indeed contradictory. If L is not NIL, it is
first conjoined onto TY before the determination is made.

GROUND~PROVER is called by INITIAL-TY and called as (GROUND-PROVER TY R) by
PROCESS-RESOLVENT in the case when the resolvent R is a ground inequality unit
clause. 1In that case TY is augmented, and this new value of TY is retained in the
remainder of the proof. Tf GROUND-PROVER does not return {] , i1t might infer from
TY a set E of equality units {(as, for example, would be the case if R was the

unit (< A B) and TY already had the conjunct (< B A)). In this case, these

equality units ave applied to TY and all of S by a special equals substituting
routine.

Any ground inequality package such as those described in [4,5,6] can be used
to handle the functions of GROUND-PROVER. Our implementation has used the one des-
cribed in [6, pp. 7-8].

(ELIMINATE-VARIABLES C)

This is called by INITTAL-RL and PROCESS~RESOLVENT. If the clause € thas
variables which are eligible in C (see Variable-Elimination Resolvents, Section
2.2), then they are removed from C wusing the methods of Section 2.2, the resultant

clause is returned, and C is discarded.

4. Examples
Here we list some examples which have been proved by our LISP program. Inmost

cases, the prover follows closely the presentation given here, with few non-useful

resolvents being generated.

The first few examples are trivial and are listed only to illustrate the

methods.

Example 1. (a a<b)
1. a<b
2. b<a

original set of clauses

TY: [a< b, b < a] added by preprocessing.

Since TY is inconsistent, O is obtained during preprocessing and the proof

2

is complete.

Example 2. (¥x (f(x) < c¢) > f(a) < c A £(b) < ¢)
1. £fx)<c
2. ec< f(a) ve<).

Preprocessing splits clause 2, getting the two cases 2.1 and 2.2.

Example 2.1. Example 2.2.
1. £(x) <c 1. £(x) <c
2. ¢ < f(a) 2. ¢c< £f(®)
3. O 1, 2, a/x 3. O 1, 2, b/x

Example 3. a 9x(x< a)
1. a<b
2, a<x

3. O 2, variable elimination (note that x is eligible in clause 2 and that

clause 1 is not used).

Example 4. (a <b ~>3 x (a < x < b))
1. a<b

2. x<aVvb<x

b<a 2, variable elimination (x is eligible in clause 2)
4. O 1, 3

In this example we omitted writing the special clause TY since it was the

single clause 1. The actual procedure is as follows:

TY: [a < b] Preprocessing
3. b<a 2, variable elimination

TY: [a<b, b < a],[] process-resolvent, 3.

Example 5. (¥x ¥y (£(x) < fy) »x<y) AN f(a) < £(b) » a < b)
1. £ < fx) Vx<y Y: [b < a, f(a) < £(b)]
2. f(a) < £(b) 4, fa) < fx) Vvx<b 1, 2b/y (removing f(y))
3. b < a 5. a<hb 4, Self=-chain
TY: [b<a, f(a)<£f(b), a<b]l,[] process-resolvent, 5.

Notice that we did not resolve upon the literal x <y of clause 1 (because

it is an RL-literal), but did chain on the shielding term £(y).

Example 6. (f(#) <OAO<EMB)AL<cADLL
> Jylvz(z<bA @) <0>2z<y) Ay <L)

1. £#) <0 TY: [f(8) <0, 0< £(b), £ < c, b < £]

2 0 < £(b) 8. y<bVi<y 7, 5 (removing zy)

3. I<c¢ 9. £ <b 8, variable elimination
b b <2 10. [J 9, TY.

5 zy_<_’o\/ﬁ<y

6 f(zy) <0V I<y

7 y<z V i<y

Here Zy is a skolem expression, i.e., a skolem function applied to the vari=-
able y. We will use this method of representing skolem expressions throughout
this paper. The reader can determine which symbols are variables by the quantifi-
cation in the statement of the theorem.

Note that when clause 9 is added to TY, the program first infers that b=/

and then uses that to reach the contradiction, 0 < £(b) < O.

Example 7. a§_2<_i_b'>3x(0<__:_x§5/\a§_
1. a<?2 TY: f{a< 2, 2
2. 2<b 4. 045V a
3. O{_xVxéSVaixT . a<s

6. [
Example 8. (¥Wy(y< 4> Jdz(@F<z<b))Aa
L.z <bV ISy TY: [a< 8, b
2.y<zyV£§_y 5. y<bV 2
3. a<? 6. 12 <b
4. b<a 7. 0O
Example 9. (ve (0 < e>A<B+¢g)>A<B)
1. A<B+eVe<0 (¢ is a variable)
2. B<A

Example 10. 36[(O<s~>A§_B€+e)/\B€
1. AS_B8+€\/8_<_O TY: [C < A]
2. B_<C 4. A< C+eVe <O
3. C<A 5. A<C
6. [

x)

< b

£ 5 , variable elimination
4, REDUCE
5, TY.

< 4> a<b)

< aj

<y 1, 2 (removing zy)
5, variable elimination
6, TY.

TY: [B < A]

3. 0<B-A 1, eliminatevariablece

0 3, TY.

< C+A<gC]

1, 2 (removing Bs)
4, variable elimination

5, TY.

Example 11. 38 [(0<e > A <B_te)A B.<C>aA < C] (Not a Theorem)

1. A <B +eVe<i

€~ ¢
2. B <¢C

e =
3. C<A

€

4. Ae <C+e , 2 (removing Ba)
5. C<C+eVe<o 4, 3 (removing As) (Tautology)
4, C< Bs +eVe<g<O , 3 (removing Ae)
5. C<C+eVe<gO 4, 2 (removing Be) (Tautology)

FATLURE.

T

lent y < x, and x ¢y instead of

In this presentation we sometimes use the notation

Yy <X

x £y instead of its equiva-
but the program always converts such

expressions so that no negations (of inequalities) are used.

Example 12. [wele>0> (L) g.f(zs)-%z A f(zs) S.f(to)) > £(8) S-f(to)]
1. f(l&)gf(zg)+a\/a§0 4, f(ﬁ)gf(tg)—‘rc\/ef_O 1,2(removingf(z€))
2. £(z) < (e Ve<O 5

6

3. f(to) < £(4)

£y < f(to) 4, variable elimination
O 5, TY.

TY: [f(to) < £(8)]

In Example 13 and later examples, we often indicate the literal being resolved
upon by outlining it with a rectangle, @ . This is usually the first literal of
the top clause after it has been processed and sorted.

Example 13. [a<f<DbAagt,< L
AVe (>0 Jr(x<fAV¥s(@E<s<L> W) <E(s) +€)))
AVy (a<y<i> dJz@y<z<lAvt(agt<z> £(z) <)
> £(8) < £(ty))

a</t 2., £ <b 3. a<t, 4. t0<,8
rE<E\/€§O

f(,@)gf(s)+EVE§_O\/s<r€\/,@<s

. y<zyVy<aV£§_y

zy_<_;2\/y<a\/,8_<__

00 =~ Oy W

y

9. f(zy)g_f(t) Vy<a\/i7,§y\/t<a\/zy_<_t

10. £(8) £ £ty

TY: [a< i, £<Db, a<t

O’t0<z’ f(to) < £()]
11. £(0) < f(t)+e V zyg_t vi<avi<y 9, 6 (removing f(zy), zy/s)
Vy<asz<revz<zy\/e§_O
12, y<tV i) <f(®)+eVvVit<avi<y’ 11, 7 (removing Zy from
A
Vy<aVvijiz <r {(Vi<z Ve<O0 (Zygt))
Yy €1 Y -
13. y<r€\/f(,6)§_f(t)+8Vy<t\/t<a\/,{Z§y 12,7(removingzyfrom
Vy<avV £i<zy Ve<O (zy<r€))
14, y<ra\/y<t\/ £ < £(v) +¢ 13, 8 (removing zy from
Vi<avi<yVy<ave<oO (E<zy))

IN
o

14, variable elimination y

15. zg_rCVf(/&)gf(t)+svz§_tv b
vi<ave<g<O

Clause 15 splits on (f < a) into clauses 16.1 and 16.2.

16.1. £< a 7. O 16.1, TY

16.2, £_<_r€Vf(ﬂ)_<_f(t)+e\/£§_t\/t<a\/€§0

17. f) < f(®)+tevi<tvi<avegO 16.2, 5 (removing re)

18. f@) <f()jvi<tve<a 17, variable elimination ¢
19. L < to \% to < a 18, 10 (removing f£(t))

Clause 19 splits on (4 < tO) into clause 20.1 and 20.2.

20.1. %<t 20.2 t, < a
21, [J 20.1, TY 21, [0 20.2, TY.

Examples 14 and 15 arise in the search for counterexamples in a proof.

Example 14.3331} Y x 3u([(x<b+u_<_a)/\x_<_u]/\ (u< aVvxd#b))
x<b\/xos§u\/uq_fa)

1. 0
2.1. x0<beO§t_u\/xo_<_b
2.2. x0<b VX0£“Vb—<—Xo ! a, b, u are variables, Xy stands for
3. uéa\/xof_u\/ufa the expression X b
4.1. uqfa\/xoiu\/xogb
4.2, udavx, £uVvb<x
0% = %o)

Clauses 4.1 and 4.2 are subsumed by clause 3, and clause 2.2 is a tautology.

5. xo < bV x, 4 a 1, eliminate u

6.1. x,<b 2.1, eliminate u

7. X £ a 3, eliminate u

8. a<b : 7, 6.1 (removing xo)
g, D 8, eliminate a (or b)

Example 15. Ja db d2 Jw w¥s Ju
(a<bA[u<O0Vs#al A[0<uVs#¢b]l A[s<wVO<ul Awc<g)
The proof of this exémple, which is like that of Example 14 but longer, shows

the power of variable elimination in reducing a messy, but not hard, problem to

manageable size.

Example 16. a“(zo) < b"(zo) Avu{a(u) <bl) A a'@w) < z, < b'{u))
> 3x Ey 32(a‘(y)<z<b'(y)/\ (a(x) <y <b&x) A
a'(z) < x < b (2)))
Llagyda|vedb @ vam £yvy b valls£xv x4 b(z)

o1

2. a" (20) < b”(zO) 4, a'(u) < z
3. af{u) < bu) 5.

0
Zg < b'(uw).

%, v, z, and u are variables. Notice that no variable is eligible in clause 1.

6. lz4b'(y) IVax) £ yVy<L£bx)Vz< 2, 1, 4, y/u, (removing a(y))
Va'(z) £ x V x £ 5" (2)
7. ax) Ly VyL£bE)Va(z) 4 xVxLbi(z) 6, 5 (removing b' (y))

\/zo<z\/z<z0.

Now vy 1is eligible in 7.

8. a®) £ bx) |V a'(z) £ xV x < b'"(2) 7, eliminate y
» vV Z4 <zVzL zO
9. a"(z) £ xVx<b"(z)V zp < zVz< 2, 8, 3, x/u (removing b(x))

Now x is eligible in 9.

10. a"(z) 4 b (z) Vv zg< 2V z<zg 9, eliminate x
1. Q4 s 10, 2.
Example 17. (Sum of two continuous functions is continuous.)
1f lim f(x) = f(x) and lim g(x) = S(X)
x~>x0 x—>x0

then

lim [£(x) +8(0] = £(x)) + 8(xy)

X > X

0

ot we(e>0> 48 (B >0AVy (fxo-y! <3 >]f(xo)-f(y)j < €)))

Ave(e>0> J8(® >0AVy ([xO-y[<B® > [g(xo)-g(y)[<))
A eo>0~>35 & > OAVX(IXO-XI<6 >](f(x)+g(x))-(f(xo)+g(x0))]_§£0)).

In the following we have used (-E < A A A< E) instead of (]A! < E), in order to

avoid the use of the absolute value sign.

1. f(x6)+g(x6)+so< f(xo)-!-g(xo)\/f(xo)+g(x0)+ao< f(x6)+g(x8)\/8so
2. 0<ao
3. 0<8€\/e_<_0
l+..0<6;,\/e'~_<_0A
5. f(xo)g_f{y)+e\/8€+x0<yVS£+y<xOVe§O
6. f(y)gf(xO)+8V6£+x0<yV6€+y<x0Va§_0
7. g(xO)_<_g(y)+£'\/6é,+x0<y\/6é,+y<xo\/5'_<_
8. g(y)<g(x0)+e'VBé.+x0<y\/5é,+y<x0\/a‘§
9. 0_x8+6\/6_<_0
10, x <X, +OVELO
11. g(xﬁ) + ey < g(xO) + eV f(xO) +g(xo) +oey < f(xg) +g(x6) Va<o0
\/E>€+x0<x6\/6€+x8<x0\/e_<_0
— .
1

; . - - \ ;
i, 5 }\G/Y (removing 1(x6) from (f(x&; + g(x@) + €y < f(xo) + g(xO)))

12, e, <e+e' Vi) g e, <) Feg)VECOVa
0 0 0 O O -

0
EH . \ i H —
\Y% 88, + L < Xy Y bs‘ + X <x.Ve <0

g 0

1

L

69

2
11, 7 x6/y (removing g(x6) from (g(xé) teg < g(xo) + €))

-~ 1
13. g(xo) + €5 < g(xb) + eV £0 <ege+e Vd<OV ay \YJ Gy

12, 6 XB/Y (removing f(X6> from (f(xO) + g(xo) + £, < f(XS) + g(x6)))

. + €' : -
14 80 < & e V<oV bE + X < 38 \J 68 + x6 < XO Ve<0Va

13, 8 x,/y (removing g(x,) from (3(xy) + €5 < 8(x,) + €))

2

15, 6. <e+e' VB<OVD <BVSH +x <x-Ve<0Va
0 - € € 3 0 - 2

1 i :
14, 10 (removing X from (6E + Xy < X6>)
16, g, <e+e' V<OV <BVe<c0OvVy,<bdVE, +x. <x,.Ve' <0
0 - € - € € 3] 0 -
15, 9 (removing %y from (be + g < XO))
17. g, <e+e'VBK<OVDE <BVe<cOVy,<dBVE, +x <x, Ve <0
6 - € = € € o) 0 -
16, 10 {(removing e from (6&, + X < Xg))
18. ao<e+a'v5§OV6£<6Ve§_0v5é,<6\/s'§_0
™ 4 o '+
17, 9 (removing %y from (58, Xg < xo))
19. gy<e +e' Vv 5, <0V 6é. <0VvVe €0VegO
18, variable elimination
20. €0<s+c'\/0<OV6é.§_O\/a'§_O\/s§_O
19, 3 (removing 88)
21. &4 <e'V 6;. <0ve' <O 20, variable elimination
22. £ <eg've <0 21, 4 {(removing 6;,)
23. £y <0 22, variable elimination
24. [23, TY.
5. Comments
The Special Clause TY
TY is used to collect together all ground inequality literals. (Because of

splitting, ground literals can only occcur in unit clauses.) One could get the

same effect by not using TY at all but instead collecting together all ground in-
equality litersals each time a new ground inequality is produced as a resolvent and
checking for a contradiction. We prefer the TY arrangement because it lets wus use
the sup=inf procedures of [5] to speedily process ground incqualities. A similar

speed advantage can be obtained by the use of the ground inequality package of [4].

In any of these methods, a set of ground equality units might be inferred by
TY, and these are applied to TY and S by an equality substitution mechanism.
If one did not use splitting, then a method could be devised whereby special

TY-literals (a conjunction of ground inequality literals) would occur in clauses.

Chaining
The chaining we employ is, of course, similar to that used by Slagle and Norton
[2], except that we do not chain across variables. 1In fact, we chain only across

shielding terms, (see Sections 2.3, 2.4), thus greatly reducing the search space.

Completeness

This system is not complete. However we believe it will become complete is we
add paramodulation [11] to handle equality substitutixngAEiﬁf%;;SE,er inference rule
whereby the clause (a=bVPVQ)8 is inferred from (a < bVP) and (b' < a'VvQ),
if @ 1is the mgu of - {b,b'}. (This rule is like Slagle and Norton's modification

of Rule 3 [2].)

No Added Axioms

Each of the proofs related here was done completely automatically, without
human intervention. Also, no additional axioms or lemmas were added or needed,
just the statement of the theorem in each case.

Example 17, on the sum of continuous function, was proved automatically several
years ago using a special limit heuristic. Also Wos, Overbeek, Lusk and Winker,
have proved a simplified version of it with their hyper-resolution program at
Argonne Laboratory. But, it appears that this is the first time that a general
purpose prover, without special heuristics, has proved this theorem or other in-

equality theorems of like difficulty.

Limitations

We were surprised by the fact that no non-used clauses (except tautologies
which were immediately discarded), were generated in the proof of Example 17, or
any of the other proofs in this paper.

However, it would be misleading to claim too much since the family of theorems
dealt with includes all of first order logic, it is not surprising that this prover
(any prover) will inevitably find difficulty in proving a wide class of theorems.

Indeed, many non-used clauses are generated in some recent proofs of other (harder)

theorems. So there is much to be done.

Resolution vs Natural Deduction

Resolution is particularly suited for the "variable elimination' method be-
cause each clause has its own unique variable. Some other advantages of Resolution

are that no substitution needs to be returned from the proof of a subgoal, no biacie-

tracking is mneeded, the clausal data type is uniform and simple, and completeness
results are easier to obtain. It remains to be seen whether these advantages off-
set disadvantages that have been articulated elsewhere, but it seems a safe bet
that a well-tailored resolution system will be best for inequality theorems of
limited difficulty where human interaction is not required, and it is hoped that
such a limited capacity prover can be coded on a mini-computer to work in parallel

with and support a larger system.

Acknowl edgment

This work was supported by NSF Grant MCS77-20701. We wish to thank Mike
Ballantyne and Peter Bruell for their ideas and help.

References

1. W.W. Bledsoe. A Resolution-based Prover for General Inequalities. University
of Texas, Math Department Memo ATP-52, July 1979.

2. J.R. Slagle and L. Norton. Experiments with an Automatic Theorem Prover Hav=-
ing Partial Ordering Rules. CACM 16(1973), 683-688.

3. J.C. King. A Program Verifier. Ph.D. Thesis, Carnegie-Mellon University,
1969.

4. Greg Nelson and Derek Oppen. A Simplifier Based on Efficient Decision Algor-
ithms. Proc. 5th ACM Symp. on Principles of Programming Languages, 1978.

5. Robert Shostak. A Practical Decision Procedure for Arithmetic with Function
Symbols. JACM, April 1979,

6. W.W. Bledsoe, Peter Bruell and Robert Shostak. A Prover for General Inequali-
ties. University of Texas, Math Department Memo ATP-40A, February 1979. Also
IJCAI-79, Tokyo, Japan, August 1979. .

7. Louis Hodes. Solving Programs by Formula Manipulation in Logic and Linear
Inequality. Proc. IJCAI-71, London, 1971, pages 553=-559.

8. M.A. Stickel. A Complete Unification for Associative-Commutative Functions,
" IJCAI-75, Tbilisi, USSR, 1975, pages 71-76.

9. J.A. Robinson. A Machine-oriented Logic Based on the Resolution Principle.
JACM 12(1965), 23-41.

10. W.W. Bledsoe. Splitting and Reduction Heuristics in Automatic Theorem
Proving. AEJ 2(1971), 55-77.

11. L. Wos and G.A. Robinson. Paramodulation and Set of Support. Proc. Symp.
Automatic Demonstration, Versailles, France. Springer-Verlag, New York, 1968,
276-310.

