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ABSTRACT

A new solution of the uniform word problem for finitely
presented commutative gsemigroups is constructed from a
completion procedure for commutative-associative term
rewriting systems. The completion procedure transforms a
finite presentation into a uniformly terminating equivalence
class term rewriting system which is Church-Rosser (terminates
uniquely) and therefore decides equivalence of words in the
given finitely presented commutative semigroup. Words are
expressed in multiplicative exponential form, i.e., as finite
vectors, so that fixed uniformly terminating Church-Rosser
equivalence class term rewriting systems decide equivalence
of words in constant space. Since the uniform word problem
for finitely presented commutative semigroups requires
exponential space on jnfinitely many instances, a Church-
Rosser term rewriting system must be exponentially larger
than its presentation for infinitely many presentations.

This solution of the uniform word problem for finitely
presented commutative semigroups, in addition to being
conceptually simpler than previous solutions, is another
small step towards the systematic application of uniformly
terminating Church-Rosser term rewriting systems to the
gsolved and open decision problems of algebra.

copyright October 1979, all rights reserved,
may not be reproduced in any manner without the authors’®
written permission



INTRODUCTION

This paper consists of five parts--introduction, background,
main results, computer generated examples, and conclusions.

In the introduction we discuss the origin of the methods of
this paper and explain what we show. The section on background
summarizes the facts about commutative-associative term
rewriting systems which are needed to motivate the main

results. Several computer generated examples are given which

also illustrate the completion procedure.

The methods of this paper are applications of a general
approach to cgnstructing word problem decision algorithms for
arbitrary abstract algebras. The general approach, known aé
completion, was develéped by Knuth and Bendix [1970] for
ordinary term rewriting systems and extended to equivalence
class term rewriting systems by Huet [1977], Lankford and
Ballantyne [1977a,b,c] and Stickel and Peterson [1977]. The
general approach owes much to the pioneering work of Evans
[1951] who was one of the first to demonstrate the remarkable
effectiveness of applying the diamond lemma (Newman [19427]) to
word problems. The subsequent developments mentioned above are
kprimarily concerned with automatic and semi-automatic computexr
generation of word problem decision algorithms by methods based
on the diamond lemma. Equivalence class rewriting methéds have

also been developed and used by Evans [1963a] and Treash [19697.



In this paper we restrict our attention te the class of term
rewriting systems whose rewrite rules are formed from terms
over one binary commutative-associative function and a finite

number of constants.

A finitely presented commutative semigroup is defined by a

finite number of generators (constants) and relations (axioms

whose terms are constructed from generators and one binary
commutative-associative function). For brevity we express
relations in exponential multiplicative form with the
commutative-associative operator_om;tted. For example,

(a, b, ¢, d3 ac = abcz, 2%b = c, bc = cz) is a presentation.

A total order, the lexicographic order on vectors, is defined
on terms by clml...ckmk > cini...cknk iff mg 4 .e. +omy >
ng + ... 4+ My Or m +eeedm =N, F e by, Wy =ny o,
coe 9 My_q = Dy_go and ms > ns e The purpose of the total
order is to insure a priori that term rewriting systems with
l1eft sides of rewrite rules larger than correspending right
sides are necessarily uniformly terminating, and that the
completion procedure does not halt with incomparable relations.
This particular total order is used because it facilitates

our demonstration that the completion procedure halts

uniformly on finitely presented commutative semigroups.

The completion procedure begins by expressing all relations



of a given presentation as rewrite rules L —3> R which
satisfy L > R . (Trivial relations of the form t =t are
always deleted.) The completion procedure is based on an
algorithm which decides the Church-Rosser (unique termination)
property for uniformly terminating commutative-associative
term rewriting systems. For the moment it is not necessary

to know the precise details of the Church-Rosser decision
algorithm, but only that it halts if the term rewriting

system is Church-Rosser, and outputs a finite number of
equations (relations) if not. Any new equations are expressed
as rewrite rules L —>» R satisfying L > R and tﬁ;ﬂprocess
is iterated. For example, given the presentation above, the

completion procedure proceeds as'follows.

. ab02 — A0

1

2. azb —3 C relations expressed as rewrite rules

3. be —> ¢?

L. a03 e BC rule 1 reduced by rule 3, rule 1 deleted
5. cu —_— c2 ' new equation expressed as rewrite rule
6. azc R c3 new equation expressed as rewrite rule

The completion procedure halts with the Church-Rosser
commutative-associative term re&riting system consisting of
rules 2 - 6. Equivalence of two words is decided by
determining if their fully reduced forms are in the same
commutative-associative equivalence class. For example,

a2b3c2 and bcz are equivalent words in the above

3

commutative semigroup because both fully reduce to ¢~ .



The uniform word problem for finitely presented commutative
semigroups is shown to be solvable by the completion
procedure by showing that the completion procedure halts for
any input presentation. The main results of this paper are
two lemmas which reduce the uniform halting of the completion
procedure to the fact that there is no infinite set of
mutually incomparable vectors in N® under the ordering

(Xl""‘xm) > (yl.....ym) iff x; 2 y; for i=1,...,m.




BACKGROUND

In this section we summarize the facts about commutative-
associative (hereafter abbreviated C-A) term rewriting

systems which are needed to motivate the main results. We
emphasize again that the methods of this paper are applications
of much more general techniques. Many of the definitions

and theorems of this paper appear in greater generality
elsewhere, e.g., Huet [1977], Lankford and Ballantyne [1977a,b,¢]

and Stickel and Peterson [1977].

Terms are constructed from one binary C-A function f and a

finite number of constants. A congruence relation, denoted

= , is defined on terms by t = u iff 1t =u is an equality

consequence of the two axioms f(x,y) = f(y,x) and f£(£(x,y¥),z)

£f(x,f(y,z)). Let [t] denote the equivalence class of 1

. A C-A term rewriting system, denoted 6{ , is a
finite set of expressions [L] —> [R] where L and R are

under

$id

terms. We say that [u] is an immediate reduction of [%]
(relative to (X ), denoted [t] —> [u] , in case there is
a member [L] —> [R] of ® and members t*, u*, L', and

R® respectively such that u® is the result of replacing one

occurrence of L' in t' by R° . A C-A term rewriting
system is uniformly terminating in case there is no infinite
sequence [t;] —> [t;] —> [t3] —> ... of immediate

reductions. We say that [t] is irreducible in case [t]




has no immediate reductions. A uniformly terminating C-A
term rewriting system is Church-Rosser (uniquely terminating)
in case for any two sequences [t] —> ... —2 [u]l and

[+] —> ... —> [v] with [u] and [v] dirreducible,

[u] = [¥v] -

Diamond Lemma (Newman [19427]) A uniformly terminating relation

—> is Church-Rosser iff for each t, u, and v, if t —> u
and t —> v then there ig an irreducible w such that

uw—> ... —> w and Vv — e =P wr.
Proof See Huet [1977].

We haven't said what an arbitrary uniformly terminating or
Churéh—Rosser relatioﬁ actually is, but those notions should
be clear after a 1little reflection on the definitions above.
As we have said, the completion procedure upon which the
solution of the uniform word problem for finitely presented
commutative semigroups is built is in turn built on a

decision algorithm for the Church-Rosser property.

The Diamond lemma is the basis of Church-Rosser decision
algorithms (when they exist), see, e.g., Huet [1977], Knuth
and Bendix [19707, Lankford and Ballantyne [1977a,c], and

Stickel and Peterson [1977].




Before we get involved in the details of how a Church-Rosser
decision algorithm for finitely presented commutative
semigroups is constructed from the Diamond Lemma, we

explain why Church-Rosser decision algorithms are interesting

to those who study word problem decision algorithms for
arbitrary abstract algebras. The crux of the matter is that

a uniformly terminating Church-Rosser equivalence class term
rewriting system R with a decidable equivalence relation

and for which irreducibility is decidable decides the word
problem for E(&®) , the equational theory whose axioms

are obtained from K by replacing "—>" by =" together with
the equations which define the equivalence relation. For
uniformly terminating Church-Rosser 6{ ‘, two words are

equal in E(K) iff [t] and [u] fully reduce to equal
equivalence classes. If there were no interesting examples

of uniformly terminating Church-Rosser term rewriting systems,
this characterization of decidable word problems would be only
a mildly interesting mathematical result. But many of the
common equational theories with decidable word problems are
decidable by uniformly terminating Church-Rosser term rewriting
systems, e.g., the free group on no generators and no relations,
central groupoids, L-R systems, see Knuth and Bendix [1970];

the free Abelian group and the free commutative ring on no
generators and no relations, see Lankford and Ballantyne [1977¢]
and Stickel and Peterson [1977]; a fragment of recursive

function theory (which is a new subclass of recursive functions




with a decidable word problem), see Degano and Sirovich [19797;
finitely presented loops (quasigroups, groupoids, inversé
property loops, etc.), see Evans [1951]; finitely presented
trees, see Evans [1963a7; finitely presented Steiner loops,

see Treash [1969]; finitely presented groups whose word problems
are solvable by Dehn's algorithm} see Bucken [1979]; and finitely

presented commutative semigroups (this paper).

Throughout the remainder of this paper we think of words in
a finitely presented commutative semigroup interchangeably
as terms over one binary C-A function and a finite number of
constants ¢y, cee s Cp o denoted in multiplicative form
clml...ckmk , or as k-tuples (vectors) of non-negative
integers (ml,...,mk) . The term formulation of words is
necessary to apply the term rewriting methods, while the
vector formulation seems to be the most efficient for

computer implementations.

In the vector formulation, two C-A equivalence classes are

equal iff the representative vectors are equal. Irreducibility
also has a simple characterization--a word (pl,...,pk) is
reducible by a rewrite rule (mi,...,mk) —_— (nl,...,nk)

iff p; 2 my for i =1,...,k. Moreover, immediate reductions
(when they exist) are easy to compute, e.g.,(py-my+n,, ..., py-my+ny)
Thus, it is clear that there is an algorithm, which we denote ¥,

that reduces each equivalence class [t] to an irreducible f[t]J*.

1. +this is not quite accurate, and will be revised
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Given two C-A rewrite rules (m1""'mk) —— (nl""’nk)

and  (py,..0,pp ) —> (q4,...49,) , they produce a
critical pair (al,...,ak) . (bl”"'bk) provided the vector

(Xl”"’xk) = (min(ml,pl),,..,min(mk,pk)) is not the zero

vector, where

i

(al,...,ak) (n1+p1-x1,...,nk+pk-xk) and

(bl""'bk) = (q1+m1-x1,...,qk+mk—xk)
Thus, critical pairs are formed from rewrite rules by
substituting on left sides with "maximum overlap.” For
example, the critical pair of ab02 3 aCc and a2b —_— O
is a2c R c3 « Each pair of rewrite rules has at most one
critical pair. The following Church-Rosser theorem shows
that the critical pairs are the vector representatibns of
terms u and v from the diamond lemma which must reduce to
a single term w ; and, moreover, that not every pair u , v

must be tested to verify that the Church-Rosser property holds,

but just the critical pairs.

Church-Rosger Theorem A uniformly terminating C-A term

rewriting system (over one binary C-A function and a finite
number of constants) is Church-Rosser iff for each critical

pair X , ¥ , X% = Y% |,
Before we prove the Church-Rosser Theorem we
point out that it at once provides us with a Church-Rosser

decision algorithm--form all critical pairs and see if they

10



reduce to the same vector. For simple examples, like the

one given in the introduction, the algorithm can be performed
by hand. The example critical pair above satisfies the test
since (azc)* = cJ = (cB)*. This is not actually one of the
critical pairs that must be tested for the example in the
introduction, since it is rules 2 - 6 which are Church-Rosser.
However, there are only 14 critical pairs that must be tested
to show that the example is Church-Rosser, and the reader may
wish to check a few to get a better idea of what the Church-

Rosser test involves.

Proof (=») It is easy to show that there exists a vector
Z such that Z —>» X and 2 —> Y , hence Z —3> ...
—> X% and Z —> ... —> Y*. Since the term rewriting

system is Church-Rosser, it follows that X¥* = Y*,

(&) Let T —> U and T —> V . If the rewrite rules
that produce these two immediate reductions do not *interact” ,
then there is clearly a W such that U —> W and V —> W ,
hence U —3 ... —> W¥ and V —» ... —> W¥ . If they

do "interact™, let Ml be the common part, let L1 — R1

and L2 — R2 be the two rewrite rules, let L1 = Ll'Mim2

and L, = L,'M,M, where M/N,. is the maximum overlap, and
observe that T = ALi’LZ'Mlmzmz so that U = AMZLZ'R1 and

V = AMle'RZ . Since the critical pairs test holds, it

follows that (L,"Ry)* = (Ly°Ry)¥, hence U —> ... —>

11



(AMZ(LZ'Ri)*)* and V —> ... —> (AMZ(Lz'Ri)*)* . This

completes the proof of the Church-Rosser Theorem.

This Church-Rosser theorem is a new result, but we include it
in the section on background because it is suggested by the
more general results of Lankford and Ballantyne [1977] and
Stickel and Peterson [1977].

We conclude the section on background with a description of
the completion algorithm.

Completion Algorithm

1. Express a given presentation as a uniformly terminating
set of rewrite rules G{ . (Relations are converted to
rewrite rules via the lexicographic order on vectors, see
the introduction.)

2. Reduce G{ .

3. Generate and test critical pairs of R .

(1) 1f @® is Church-Rosser, halt.

(i) If not, add new rewrite rules (the non-equal
critical pairs ordered by the lexicographic order
on vectors) to & and go to step 2.

As one can see, the informal description of the completion

procedure given in the introduction is accurate only to a

first approximation. The aspect not previously mentioned

is step 2, where 62 is reduced. This aspect is crucial %o

our proof that the completion procedure halts uniformly.

12



R is reduced in the completion algorithm above as follows.
Each rewrite rule L —>» R 1is considered in turn. If L or
R is not irreducible relative to 02 - {L —_— R} , form

L** and R** (where *¥* 1is reduction to irreducible form
by 6{ —'{L — R} ), and return L¥** —> R¥*¥* or R¥#%
L** depending on whether L** > R¥% or R¥¥ > L¥¥
respectively (if L*¥* = R** reduction is continued on

R -~{L — R}). Eventually (R 1is “"reduced” so that no
rewrite rule is reducable by any of the others. (When a
reduced rewrite rule is returned to 02 , the rule it is
obtained from is deleted.) An example of the completion
algorithm is given in the introduction and in the section on

computer generated examples.

13



MAIN RESULTS

Lemma 1 (Hack [19747) Any set of mutually incomparable

vectors in NT 38 finite.

Lemma 2 If the completion procedure did not terminate
uniformly on finitely presented commutative semigroups, then
there would be an infinite set of mutually incomparable

vectors in N,

Proof Suppésevthe completion procedure did not terminate for
 some presentation, and let 0{1, 6{2, 6{3, ... be the infinite
sequence of rewrite rules pfoduced at step 2 of the completion
procedure. The rewrite rules are totally ordered by

L1 — Rl > L2 — R2 iff L1 > L2 or L1 = L2 and

R > R, . Eventually in some 6{. the least rewrite rule is

1 i
ﬁroduced. Eventually in some sz , 1 £ j, the next least
rewrite rule is produced. Continuing in this way, we get
the infinife sequence of rewrite rules Ll —— R1 y Ly —> R,,
... and hence an infinite sequence L1 v Lo 5 oo whose

terms are mutually incomparable, which is impossible.

Corollary The completion algorithm solves the uniform word

problem for finitely presented commutative semigroups.

14



COMPUTER GENERATED EXAMPLES

The completion algorithm was programmed in LISP on a DEC 10

at the University of Texas at Austin. The program was about
three pages of LISP code. Several random presentations were
given to the program, including the example in the introduction.
Since the example in the introduction illustrates most aspects
of the completion procedure, we show its derivation in detail.

2 2

Example 1 Presentation: ac = abec™, a™b = ¢, bc = 02

1. abc? —> ac

2. a’b —> ¢

3. bc —p 02

In steps 1 - 3 above the presentation has been expressed as

a uniformly tefminating set of rewrite rules, step 1 of the
completion algorithm. Now step 2 is performed, and rule 1 is
reduced by rule 3, so rule 1 is deleted and a new rule is added.
b, acd —> ac

Now step 3 of the completion algorithm is perfbrmed, three
critical pairs are formed, and two fail the critical pairs
test and are added as rewrite rules.

5. a202 — c2 by 2 and 3

6. cu —_— c? by 2 and 4

The procedure returns to step 2, but 2 - 6 are already reduced,
so the procedure returns to step 3 where six critical pairs are

formed, and one fails the critical pairs test and is added

15




as a rewrite rule.

7. a%e —_— 3 by 3 and 5 (also by 4 and 5)

The procedure returns to step 2, where rule 5 is deleted.
Rules 2, 3, 4, 6 and 7 are tested again in step 3 of the
completion procedure and found to be Church-Rosser. The
actual computer program does not not follow these precise
steps. The difference is that instead of generating all
critical pairs at step 3 of the stated completion procedure,
when a critical pair is generated which fails the test it is
immediately added to G{ and the procedure is restarted at
step 2. Empirical evidence suggests that this is often a
more efficient procedure than the one stated. In this
example, rule 5 was not generated by the computer program.

Example 2 Pregentation: a b c5d3 = ab302d2, a8bc3du = abBChdz,

a2b2 2d2 = czd, ab c3 =D d3 7d7 = 08.

Church-Rosser term rewriting system:

i. a2b2 2 2 -——9 c d
3 3 : NOTE: This example is
2. ab ¢ > b d wrong because of a “"bug”
in Mike's program, see
3. [QEENPS Addendum 2/13/85.

a6b03d3 — predd

L4

5. apdcfa’ —3 adcta?
6. 25842 — a®bcla?
7. a2pdcd® —> abcla?
8. a763a% — 3 vlokal
9. al%74 — a®pca?

16




10.
11.
12.
13.
14.
15.
16,
17.
18.
19.
20.

21.
22.
23.
2k,
25.
26,

6d3 o ach2

9b202d

azbc
a708d —> 2a
p0cta5 —> adela
a*be%a —> a®pea
a5b2c6d — a6b303d
abcl2d? —> a®b%c?d
ap7edd* —> a*vela
abc’a> — abe’a’
alobczd —> abcld?
a’*bcad2 —> a*bc?a
a’beld —> pIctal
v7c3a5 —s advcla?
azbucd6 —_— v2cd”
abc;hd5 — a®b%cd”
b50d? 4 au03du
a7bczd3,-—€> ISTELE
v2c542 —> ablcla®

17



CONCLUSIONS

There are at least seven other solutions of the uniform word
problem for finitely presented commutative gsemigroups--see
Biryukov [1967], Emelichev [19587, Hermann [1926], Malcev (19587,
Rabin [1965], Simmons [1980] and Tseiten (Redei [1965]). A
modern treatment of Hermann's work, with some corrections, is
found in Seidenberg [19747]. It is said that Emelichev [1958]
and Malcev [1958] were the first to explicitly state the
decidability of this problem, though in retrospect the solution
can be seen to be contained in the work of Konig [1903] and
Hermann [1926]. The connection with Hermann's work on
polynomial ideals is made explicit by Cardoza, et al. [1976],
who also established the exponential complexity of the

uniform word problem fof finitely presented commutative
semigroups. From comments in Cardoza [1975] we suspect there
is a close relationship between our approach and Biryukov's,
but we also suspect there are significant differences since
Biryukov®s approach seems to be a classical basis constfuction,
while ours might be thought of as a construction of the
»fundamental identities”. In any case, we think it is fair

to say that of the commonly known solutions, ours is

conceptually simpler than the others.

As we have said, one of the main reasons for studying

uniformly terminating Church-Rosser term rewriting systems

18




is that the completion procedures offer a systematic approach to
decision problems of algebra. The 1ist of problems solved in
this way (see the background gection) is almost certain to

grow (finitely presented Abelian groups?, nilpotent groups?,
commutative rings? , boolean algebras?, etc.). And for each

new application, we anticipate that the classical solution

will be modestly extended (Bﬁcken [1979] properly extended
Dehn's algorithm, and we could extend the results of

this paper to finitely presented commutative semigroups "with
operators”). We also think that many of the other commonly
studied decision problems for abstract algebras can be profitably
analyzed by extensions of the term rewriting methods (e.g.,

the isomorphism problem, the triviality problem, the finiteness
problem, the subalgebra membership problem, boundedness
problems, regularity problens, etc.). Indeed, a version of the
completion algorithm has been used to solve the isomorphism
problem for finitely presented loops, quasigroups, groupoids

and loops, see Evans [1963b, 1980].
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ADDENDUM
March 1980
Finitely presented commutative semigroups do not in general
possess complete T-unification algorithms. For example, the
—_commutative semigroup defined by ab —> b does not have a
complete T-unification algorithm since the terms ax and a

have infinitely many "mgu‘’s": {b/k}, {bb/k}, {bbb/x}, cee .

We have subsequently learned that a similar overlap method
has been used by G. M. Bergman, "The diamond lemma for ring

theory," Advances in Math. 29 (1978), 178-218 to solve the

uniform word problem for finitely presented commutative semigroups.
However, Bergman does not implement his method on a computer,

and his proof of uniform termination of the completion procedure

is quite different. It appears that our method of establishing
uniform termination of the completion procedure may have some
advantages over Bergman's method since, for example, it is not
difficult to extend the results of our paper to the case of
finitely presented algebras satisfying f(x,f(y,z)) = fly,flx,z))
as well as finitely presented semigroups satisfying the above

identity.
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POSTSCRIPT
7/23/1980

We have recently learned that Hack's Lemma might just as well
be called Dickson®s or Hilbert's Lemma. This we learned from a
comment in Biryukov [1967] which led to a comment in Redei [1965]
which led to L. Dickson's paper "Finiteness of the odd perfect

and primitive abundant numbers with n distinct prime'factors,"

 Amer. J. Math. XXXV (1913), 413-422. There Dickson's Lemma A or
Lemma B yields Hack's Lemma as an easy Corollary. Moreover,

Dickson points out that his Lemma A is an easy Corollary of

Hilbert‘'s Basis Theorem. Thus the differences between the termination
proofs of this article and Bergman [1978] are superficial, though
these superficially different approaches may each have their |

advantages in different settings..

ADDENDUM
2/13/85

Example 2 is incorrect because of a bug in Mike Ballantyne's
vrogram. This was suspected in the summer of 1983 when programs
written for the Abelian group uniform word problem at Louisiana
Tech generated different complete sets than were gotten by a
modification of the commutative semigroup program which Mike
had done. Mike subsequently determined in the fall of 1983 that
his commutative semigroup program was indeed incorrect, but Mike
never communicated the correction to me. The error was found
independently by D. Kapur in the fall of 1984. The following
correct complete set for example 2 was generated by the Grobner
basis program of Kandri-Rody and Kapur:

1. aczd —_— ch L, c2d2 — 02d 7. clo —_— czd
2. bcfd —> c2d 5. b2a* —> %4 8. abBed —3 1243
3. ¢4 —> o4 6. v2c® —5 cfa 9. o737 —s 8
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