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Some Completeness Results for a Class of Inequality Provers
by

W. W. Bledsoe, Robert Neveln and Robert Shostak

Abstract. A modified resolution procedure, RCF, which uses a restricted form of
inequality chaining and variable elimination is proved to be complete, for first

order logic. RCF allows chaining only on terms of the form f(tl"' s tn) where

f 1is an uninstantiated function symbol and n > 1. (E.g., we never chain on

variables.) Other results are given. A prover using RCS+, an extension of RCF,
has been implemented and used to prove several moderately difficult inequality

theorems, not proved earlier by general purpose automatic provers.



‘1. Introduction
One of the most effective procedures used in our inequality prover [1] is

that of variable elimination, whereby a variable which is "eligible' (see below)

in a clause, can be eliminated from that clause. For e#ample, the clause

Q) adxVxx<LdbVegd

can be replaced by the clagse

- (1'5 | atdbvegd

by elimination of the variable x (assuming that x does not occur in a,b,c, or d).

Also, the variable x (which does not occur in a,b, or ¢) can be eliminated from

the clause

@ .vé<ﬁXVb§_c
to producg the clause
2" b<ec.

* In general, the variable x (which does not occur in a,, b,

i 50 or E) can be

~eliminated from the clause

'n m
(Vv a; 4£4xV Vx4b,VE)
i=1 3=1 J



to produce

n m
(v Va, ¢ bj V E)
i=1 §1

A variable is eligible in a clause if it does not occur within the arguments

of an uninstantiated function symbol. Thus x is eligible in (1) but not in 3).
3) atxVxgdbVvViIix)Lce,

because it occurs as an argument of the uninstantiated function symbol f£. The

term f£(x) is called a shielding term because it "shields" the variable x,

thereby ﬁreventing it from being eligible in (3).

The principal objective of the inequality prover [1] is to remove such shield-
ingAterms, by inequality "chaining" and other procedures (see below), so that vari-
ables can be eliminated.

The clause
R=(agcVE \ ?2)0

is said to be a chain-resolvent of clauses

[}
L]

(a<bVE),

and

(e}
[}

®' <cVE) ,

if o is the Mgu of ({b,b'}. We also allow "self-chaining' whereby Eo is

inferred from (b <b' VE).



We will designate by RC ("'resolution chaining") a procedure which only uses

chaining (as described above) and factoring. RC was shown to be complete by Slagle [2,3].

(See alsé Leﬁmé 4, Section 3.) Unfortunately RC alome is not very powerful as a
provér. In order to strengthen RC, we have added VE (variable elimination, as
described above), and have imposed restrictions on the chaining process, whicﬁ
helb control proof search tree.

Two such procedures are RCF and RCS, which are described as follows. Both

RCF and RCS use VE, and both restrict chaining as follows: Let
R= (a<cV E, Vv EZ)U
be the chain resolvent of
- = {
.C1 = (a<byv El) and 02 ®'<cV EZ) .

where o = Mgu(b,b'). We accept R as an RCF chain resolvent if

(1) all of a,b,b',c are ground terms (and hence b=b'), or
(2) b and b' are both of the form f(tl""’ tn) where

f is an uninstantiated function symbol, and n > 1.

And we accept R as an RCS chain resolvent, if additionally, in case (2), either b or

is non-ground, i.e., either b or b' 1is a shielding term.
Other restrictions on RC include RCM and RC+. RCM uses "multiple cuts",

where, for example, two clauses

@]
]

1 (ag_chgc\/El)

and

C,=(c<dVec<eVE)



are chained, in one step, on both c's in C1 and both c¢'s in C2 to obtain

(agd\/ageng_dvbg_eVElsz) .

RC+ permits literals of the form

where the a, and bj are traditional terms (with no occurrence of +). Two
such literals are chained by cancelling like terms (after unification). For

- example,
£(x) + a < hx)
and
b < f(ec)
are RC+ chained to obtain

b + a < h(c)

By combining these restrictions we obtain the following diagram

FCP+
~

- RCF RCS . RCS+
RC
\RCM-—-—- RCMF ——— RCMS ————RCMS+
RCMF+

where more restrictive (stronger) procedures are shown to the right.



>It is the purpose of this paper to prove that RCF, RCF+, RCM, RCMF, and RCMF+
are complete.
It is comjectured that RCS is also complete, as well as RCS+, RCMS, and
RCMS+.
RCS+ is the procedure described in [1]. But RCF+, which is proved complete
here, is equally as strong as RCS on the examples given in [11. Since we allow
quantification and uninterpreted function symbols, we can encode all of first order

logic. For example, the atom P(x,y) can be written as
f(x,y) <0

where f ié a new uninterpreted function symbol associated with P. Hence our
procedures RC, RCF, eté. are complete for all of first order logic.

In each of RCF, RCS, RCM, etc., it is required that variable elimination
(VE) be applied immediately when a variable becomes eligible in a clause C,

and that C be discarded and replaced by its VE-resolvent.

The reader might prefer to skip to Section 3, page 19, and refer back '

to Sec¢tion 2 as needed.



2. Definitions and Logical Basis

2.1. Axioms for total (linear) order: T

1. x4 x Anti-reflexive

2. x<vy >y 4 x Anti-symmetry
3. x<yNhNy<zrx<z Transitivity

4, ytxnhnzdyrzdx \!

It is convenient (but not necessary) to also use the symbol "<, where

a<b is equivalent to b ¢ a. Then axioms l1-4 can be written

1. x< X
2. i<y->x§_y
3, x<yAy<z¥rx<z

4, x<yNy<zH+rxg2

The axioms of 1 =4 are also called the inequality axioms.

Definition. Let §S_ be the set of clauses corresponding to the inequality axioms,

<

S<={‘x'§_x,yngxgy,ygx\/zgy\/x< z, y<xVz<yVzx<az}.

2.2. Interpovllation Axioms: I

1. ¥x 4y (0 <x)
2. any xz<vy)
3. WXy (x<y—>3w(x<w<y))

4, vwxyz x<zAy<zH> Jw E<w<zAy<w<z))



Using, '" <", these can be expanded to include

¥x Jy (¥ < %)
vx Jy (x<¥)

vxy (x<y > Jw x<w<y)

wxyz (x<zAy<z> qw (x<w

IA

zAy < w< z))

vxyz x<zAy<z> Jw x<w<zAy<w<z))

More precisely, let I, the interpolation axiom, be the infinite set

I=(P: IneN JdmeN JL
(L is a function on {0,1,...,n-1} x{0,1,...,n-1}
to {<,<} AP is

n m
le...xn \,{Yl...\v{m (/: /-\ (XiLijyj
RO C

> Jw(A AxL . wAwL yIN},
=1 j=lilj . 1]

)

3
where N = {0,1,2,...]}.
Definition. Let SI be the (infinite) set of clauses corresponding to I, 1i.e.,

‘ = t !

,SI {wlo(x) < X, WlO(x) <x, x< w01(x) , X _<__w01(x) .
x<w11(x,y)Vy_<_x, xgwil(x,y)\/y<x,
x<wn(x,y)\/y<x, xg_wil(x,y)Vy<x,

wn(x,y) <yvy<x, wil(x,y) <yVvVy<zx, (continued)



x < w21(x,y, z) V z

IA
»
<
N

IN

<

y < w21(x,y,z) vz<xVz<y,
w21(x,y,z)<sz§_x\/zgy,
X s_wél(x,y,z) Vvz<xVz<y,
y g.wél(x,y,z) Vz<xViaz<y,
yél(x,y?z) qu Vvz<xVz<y,

A
«

X g_wal(x,y,z) Vz<xVz

. )

More precisely, let

SI={C:3neN3meN3keN3£eN Ji
(L is a function on {0,1,...,n-1}x{0,1,...,m-1}

to {<,<}Ak<nAZ<mA

n m

[c=(V V~ (x,L..y.) VxL vy,
=1 j=1 i7iy j ke’ s
n m

ve=(V V~ &xL,y)VyL X))}
i=1 §=1 i"ij’j 2k

The axioms for total order plus the interpolation axioms define the theory
of dense linear order without endpoints [5]. This theory is decidable [6]. How-
ever, the class of formulas we are investigating contains quantification and un-
interpreted function symbols and hence is undecidable (since any formula in first

order logic can be encoded).



2.3. Equality Axioms

Definition. If S 1is a set of clauses then §

E
to the equality axioms for S. (See [8].)
2.4, Axioms for +
1. x+y)t+tz<x+ (y+2) Associativity
2. x+(y+z) < (x+y)+z Associativity
3. x+0<x Zero
4., x §_:1§+0 Zero
5. x»+y <y+x Commutativity
6. x+ty<x+z>y<z Cancellation
| 7. x+y<x*>y<0©0 Cancellation
8. x+y<x>+y<0 Cancellation

10.

is the set of clauses corresponding

Definition. Let S, be the clauses corresponding to the axioms for +,

S, = {x+y)+z<x+(y+2) ,

x+(+z) < G+y)+z,

x+y§y+x »

x+z<x+tyVy<z,

x+z< x+yVvVy<z,

x+0< x ,
x < x+0,
x<x+tyVy<©0,

x<x+y Vy<o0).
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2.5.kAdditiona1 Definitions

Definition. Let S be a set of inequality clauses.

A term t 1is said to be isolated in a literal L of S if t occurs in
L not within the arguments of any uninterpreted function symbol. t 1is isolated
in S if it is isolated in a literal of S.

Thus t 1is isolated in each of t < a, b< t+c, t < £(t).

A variable x 1is said to be eligible in a clause C (and in S) if it is
" isolated in C and does not occur within the arguments of an uninstantiated

function symbol.

A term t 1is a shielding term of a clause C (and of §) if t has the form

f(t:1 s e ey tn)

where f 1is an uninstantiated function symbol, and t is isolated and not ground.

For example, x 1is eligible and f£(y) is a shielding term in the clause
x+ta<bVv f@F)<c.

t and t' are called half literals of the literals t<t' and t < t'.

Definition. A set S of inequality clauses is said to be:

" RC-unsatisfiable if (SKJS<) is unsatisfiable, and we write § Fég J.

Definition. If C is an inequality clause of the form

n m
V (a,Llx) V V (') VE,
g=1 P17 g 33



12,

where X is a variable which does not occur in E or one of the a; or b,,
’ 3

and for each 1i,], L]I_ is either < or <, and L’é is either < or <, then
n =0

R= V V (@,/L..,b
i1

) VE,
i=1 j=1 3]

is called a VE-resolvent of C upon x, where Li' is < 1if both L‘i and L'__!,

are <, and Lij is < otherwise.

Note that x 1is eligible in C.

Definition. If € is an inequality clause of the form

n m
¥ 1 1 1"
i\il(aiLix-i-ai) A% j\=/’1(x+bijbj) +E,

where x 1s a variable which does not occur in E or one of the a; s all_ s bj or
b_-‘j" and for each 1i,j, L%-’L_;l e {<,<}, then

n n
R= V V (a,+b! L b .+al) VE,
=1 §=1 ¢ 3P

is called a VE+ Resolvent of C upon x, where Lij is < vif both Li and

L‘:‘j are, and < otherwise.

Definition. If C1 and C2 are inequality clauses of the form

[}
L]

(alL'b V El) .

@]
[

GB'L'e VvV EZ) ,
where L' and 1" are in {<,<}, and b and b' are unifiable, then

R= (ALc VE VEZ)O'

1
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is taid to be a chain resolvent of C1 and C2 upon b and b', where

o =Mgu{b,b'} and L is < if either of L' or 1" is <, and < otherwise.
Definition. If C 1is an inequality clause of the form
c=(b<b' VE)

and o=Mgu{b,b'},. then Eo is said to be self-chain resolvent of C upon

b and b', Eo 1is also called a chain-resolvent of C.

pefinition. If R is a chain resolvent of C1 and 02 upon b and b' or

a self-chain resolvent of C upon b and b', and.

(1) b and b' are both ground, or

(2) b and b' both have the form

'f(tl s ey tn)

where £ 1is an uninstantiated function symbol with n > 1,

then R 1is called an RCF=-chain resolvent of C1 and 02

upon b and b', (or of C upon b and b').

Definition. If R is an RCF-chain resolvent of C; and C, wupon b and b',

and either b .or b' is a shielding term then R is called an RCS-chain

resolvent of C1 and C2 upon b and b', (orof C wupon b and b').

Definition. LetA C and 02 be inequality clauses of the form

1
)
c, = (aL’ b.) VE ,
1 jop & 1
m
= tyn
c, (ZbiL c) VE, ,

3=1



14.
wher L', 1" e {<,<}, ke (1,...,n}, £ e {1,...,m}, 0=Mgu{bk,bk}, and let

m n

R= ((a+ 2 Lc+ 2)VE
j=1 i=1
j#L i#k

1 \% Ez)c s

where L is < 4if both L' and L" are, and < otherwise, and let R' be
obtained from R by algebraic simplification whereby like terms on oppositeA sides

of L are cancelled, (if all terms on one side of L are cancelled that side is

replaced by 0). Then R' 1is called an RC+ chain resolvent of Cl and C, wupon

the literals bk and bé . Also (the self-chaining case) if

: n 'm
c = ( Z«aila Z.bj) VE,
i=1 j=1

where L e {<,<}, G=Mgu{ak,bz}, then

n m
R=((ZaiL Zb-)+E)G’

i=1 * j=1 7

i#k j#s

(algebraically simplified), is called an RCt+ chain resolvent of C wupon a and
b'(z .

RCF+ and RCS+ chain resolvents are defined similarly, where the appropriate

. restrictions are maintained on b, , b and a
k?* 78
We note that, in all of these cases, we do not chain-resolve two clauses unless
at least one term is cancelled. Thus we would not chain-resolve a+b < c and
d+e< f toget at+b+d+e L c+f, unless c=d, c=e, f=a, or f£=b. Also
when an intermediate resolvent R 1is obtained which is simplified to R' by

cancelling like terms, we keep only R' and discard R.
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Definition. ~If C 1is a clause let
'<' if every literal of C has the predicate '<',

LE(C) =
'<' otherwise .

Definition. If Cl and C2 are inequality clauses of the form

n
- 1
N ('\—/ a,Lib) VE, ,
i=1
m
Cc,= (VvbiLlle,) VE, ,
2 =14 3 3 2
where L! ,L"% e {<,<}, {bl’”"bn’bi""’bm} is unifiable with Mgu o, then
n n
R=(((V Va,L,,b)VE VE)o
i=1 j=1 R 1 1 2

is called a multiple cut chain resolvent of C1 and 02 upon bl yerey D

n’

bi,...,bt;‘, where | L

Cl andA C2 .

or RCM~chain resolvents.

=LE (Li s Lj)’ It is also called an RCM-chain resolvent of

ij

Also Self-Chain Resolvents are called multiple cut chain resolvents,

RCMF, RCMS, RCMF+, and RCMS+ chain resolvents are defined in a similar way .
Definition. Let C be an inequality clause,

c=C'vD, C (aliblv...\/an:bn),n?_z,

where < is either < or <, and let o be a Mgu of {a1_<_b1,..., ang_bn},
i
with the restriction that



@

(2)

16.

if one of the ai's is a variable then no bi can be a

variable and ¢ is a Mgu of {bl""’ bn}, and

if one of the bi's is a variable then no ai can be a

" variable and o is a Mgu of {al,..., an}.

Then ((a1 < ’bl) V D)o 1is called an RCS-factor of C, where < = LE(C').

..

Thus (a < f(a) vV g(a) < c) 1is an RCS-factor of. (a< f(x) Vx< f(a) v

g(x) < ¢) but not of (a< f(a) V x < f(a) V g(x) < c). That is, for RCS-factors,

we do not allow a variable to unify with a (different) term unless that unification

is forced by the unification of other non-variable terms.

Definition. An RC-factor is the same as an RCS-factor, except conditioms (1) and

(2) are removed.

Definition.

FACT(S) = S U {C': ] C e S(C' is an RC-factor of C)}.

FACT-S(S) = S U {C': ] C e S(C' is an RCS-factor of C)}.

Definition. If S is a set of inequality clauses, then

Rc(sj = {R: J C; e FACT(S) J ¢, € FACT(S)

(R is a chain resolvent of Cl and CZ)} .
rRc®S) = S ,
R™(s) = URC@RE"(S)) , neN,

RS (S) = U RCT(S)
nel{
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Definition. If [J e RC(S) then we write

s =5 0

and say that there is an RC-deducting of 0 from S (or there is an RC-refu-

tation of §).
Definition. If S 1is a set of inequality clauses, then

VE(@E) = {R: 3 CeS (R is a VE-Resolvent of C)}
US~{Ce S: C has a VE=-Resolvent]},

VE+(S) 1is defined similarly,

RCF(S) = VE(S‘), where

s'={R:J C; ¢ FACT-5(s) 3 C, e FACT-5(S)

(R is a RCF-chain resolvent of .C1 and'Cz)}

RCS(S) = VE(S'), where
§'={R:J C, e FACT-S(S) 3J C, € FACT-5(5)

(R is a RCS~chain resolvent of ¢y and Cz)}

etc. for RCF+(S), RCM(S), RCMF(S), RCMS(S), RCMF+(S), and (RMS+(S), except

that FACT(S) is used in the definition of RCM(S) (only).

Note that variable elimination is applied immediately to a new resolvent R,

when it has an eligible variable, and R 1is discarded and replaced by its VE=-

resolvent.



Definition.
RCFC(S) = S ,
+
rRcF™ 1 (s) = RCF®(S) U RCF(RCF™(S)) ,

RCFT(S) = U RCFU(S) .
ne N
Similarly for RCS (S),...,RCMS¥ (5).

Definition. If |} e RCF (S) we write

S |RCF 0

‘and say that there is an RCF-deduction of J from s.

s =

RCMS+

s 2= g

Similarly for

18.
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3. Completeness Results

3.1. RCF Completeness

Lemma 1. If S is a set of inequality clauses, oS 1is ground, S 1is not
ground, and S has no eligible variables, then S contains a shielding term t

for which to # xo for all isolated variables x in S.

Proof. If S has no isolated variable we are finished. So let

*1

fl(xl) be a shielding term in C1 (since x, 1s

be an isolated variable in clause C,,

" not eligible, by hypothesis) .

Now if fl(xl)d # Vo for each isolated variable V in 5, we are finished. So

suppose that

2
fz(xz) is a shielding term in C,,

fl(xl)a = %x.0 for some isolated variable in clause Cz,

s 0

X {s an isolated variable in clause Cn
fom1 ®pe?% = %7

fn(xn) is a shielding term in C_

.

1f this were the case then we would have

fl(xl)/x2 , fz(xz)/x3,..., fn(xn)/xn+1,...
or

£f£f ,f

n n-1"n-2 "'f2f

1)/ x 4y
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But o has finite depth, so this process has to terminate. It can only terminate

if one of the x is eligible, or if one of the fi(xi) is such that

i
fi(xi)c # xo

for any isolated variable x in 8.

'Q.E.D.

Lemma 2. If S is an RC-unsatisfiable set of ground clauses, and c¢ 1is a
half literal of § (i.e., c<d, d<¢c, ¢<d, ord<c is in 5, for some d),
then there is an RC-refutation » of S for which any chaining on terms other

than c¢ is done on clauses not containing c¢ (as a half literal).

(That is, all chainings on ¢ are done first, and then only clauses not con-

taining ¢ are retained for the remainder of the refutatiom.)
S . «
Proof. The proof is by induction on the excess literal parameter k(S).

-1. Then [0 € S and we are finished.

L]

case 1. k(S)

0, O¢s.

]

Case 2. k(S)

In this case the clauses of S are all units and by Lemma 2, Appendix I,

S contains a sequence of unit clauses

a, <a,: a,<a,‘!t...‘1a < a a < a;, ,
: . n-1 . n" " n. 1

"The excess literal parameter k(§) is defined as
k() = (Z e -|[s] .
CeS

That is k(S) is the total number of occurrances of literals minus the number
of clauses in S.



where each < 1is either < or < and at least ome of the < is <.

If any of the a; are ¢'s, then they can be chained upon first.

Case 3. (Induction Step)

Suppose k(S)=n, n> 1, and that for each set S§' of ground clauses which
is RC-unsatisfiable and for which k(S ) - n, there is an RC-refutation D' of
S' for which any chaining on a term other than ¢ 1is done on clauses not con-

taining c¢ (as a half literal).

Then S has at least one non-unit clause C (since k(S8) > 0). Let
c=C'VL

where C' is a clause and 1L 1is a unit clause. Let

wn
"

S~{C}s

7]
i

s.u{c'}, s,==8

1= 5 2 UL} .

0

Then S, and SZ sub some S and hence are RC-unsatisfiable. Also k(Sl)<< n,
' k(SZ) < n, and hence by the induction hypothesis, there are RC-refutations Dl
and DZ of 81 and 82, respectively, for which any chaining on terms other

than ¢ is done on clauses not contain c.

Let Dll be the first part of Dl in which chaining is done only on ¢,

and -D12 be the rest of Dl (the last part of Dl)‘ And let Si be a set of

resolutents produced by Dll which do not contain ¢ (as a half literal), but

such that 912 produces 0O from Si.
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1
Sg U {c") 5o Y (L]
‘U' b1q U/ Dy
s! D
1
Now build 9 out of Dll, Dz, and 912 as follows:

Let DOl be the same as Dll except that C' 1is replaced by C (and some

descendents of C' have the additional literal L), and let Sé be produced by

’ : Y ‘ [ 2
,901 from S (similarly as S1 is produced by Dll from Sl).

For each clause E in S.), we have by Lemma 1, Appendix I, that either
E or (EVL) is in Sé . TFor each such (E VL) in S!, let DE be the
same as‘ DZ except that L 1is replaced by (E VL) and some descendents of

(E V1) have additional literals from E. Thus DE when applied to SOLJ{E VvV L}

will prbducg a clause E' which subsumes E. (By Lemma 1, Appendix I).

By applying such a deducting DE to each such (E V L) in 86, we obtain

from _(SéLJSO) a set S; of clauses which subsumes S; . And then we apply 9

1 12

to S{ to obtain [J .

"D is made up of DOl’ several of the DE‘s, and D

12°°
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Since Dbl consists of chainings only on ¢, since the first part of DE
‘ i

Ey

parallel, and since D12 chains only on clauses not containing ¢, it follows

consiSté of chainings only on c¢ for each i, since the D are done in

that 9 has the desired properties.

Q.E.D.

A different proof of Lemma 2, due to Ken Kunen, is given in Appendix II.

" Lemma 3. If S is an RC-unsatisfiable set of clauses (S may contain more
than one variant of a particular clause), So is ground and RC-unsatisfiable,

t is a half literal of S,
€= {t': t' is a half literal of § and t'c = to} ,-
then there is an RC-deduction ' of a set §' fromA-S for which

(1) each step in D' 1is a chaining on a member of €,
(2) s' contains no member of € as a half literal,

(3) S'c (and therefore S') is RC-unsatisfiable.
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Proof. Apply Lemma 2 to So, with to for ¢, to obtain an RC-refutation
p* of So for which any chaining on terms other than to is done on clauses
not containing to (as a half literal).

Let S" be the clauses obtained by 9" on So where only chainings Qn to
are done, and let Sé be those clauses of S"USo not containing to (as a half
literal). Since any chaining on terms other than to is done on clauses not
containing to, it follows that 9" is an RC-refutation of Sé.

D" is obtained from H" and S' from Sé by lifting. Comclusions (1),

(2) and (3) follow immediately.

Lemma 4. (RC-completeness Theorem)
If S 1is an RC-unsatisfiablie set of clauses then there is an RC-deduction

of . from S.

Proof. Let S' be an RC-unsatisfiable set of ground instances of S. Then by
Lemma 2 there is an RC-refutation D of §'. Lifting © gives the desired con-

clusion.

Remark. The deductions provided by Lemmas 2 and 4 may employ tautologies, as the

following example shows.

Example
1. b<a c¢c<a dgoa
2. a<b a<ec a<d
3. c S_b
)
4. b<c

o w
oA
INIA
=1 =
A




25.

Notice that each chaining on S results in a tautology. To show that S

is RC—ﬁnsatisfiable, the following deduction (using tautologies) is given.

7 c<a d<a a<c a<d 1,2
8. c<a d<a b<c ax<d 1,7

9 c<a d<a b<c b<d . 1,8
10. c‘< b d<a b<c b<d a<c a<d | 9,2
11. c<b d<a b<c b<d a<d 9,10
12. c<d d<a b<c b<d c<4d 9,11
13. c<b d<b b<c b<d c<d a<ec a<d 12,2
14. c<b d<b b<ec b<d e<d d<ec a<d 12,13
15. = c<b d<b b<e b<d ¢<d d<c 12,14
16. c<d 3,6
17. d<c 5,4
18. O ‘ 15,4,6,3,5,17,16

The use of tautologies in RC proofs can be avoided if we use "multiple cuts"
whereby for example clauses 1 and 2 above produce in one step the clause 15, and

intermediate clauses 7=-14 are not produced or retained. See [91.

Lemma 5. If S is an RC-unsatisfiable set of clauses, So is ground and
RC-unsatisfiable, C € S, x 1is a variable,
n m

c=(Vzx< a; V Vb, <xVE)
i=1 j=1 7

where x does not occur in a; bj or E, then
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n n
s'=8~{c}u{vV Vb.<ai\/E}
i=1 j=1J
is RC-unsatisfiable, and S'c is RC-unsatisfiable. Also the shielding terms of

S' are those of S. (A similar theorem holds when some or all of the '<' in

C are replaced by ' <', and appropriate changes are made in §'.)

Proof. LetA

n m
c' = (V Vb.<aiVE),
i=1 j=1 4
SO=S~{C}.

We must show that (SOU{C'})G is unsatisfiable. We will show that any model for
(SOU{C'})U is a model for So= (SOU{C})G. |
ASupposei M is a model for (SOU{C'})G. If M is a model for Eo then

M is a modei-for Co and we are through. Otherwise M is a model for
(bjd < aic), for some 1i,]j.

If M is ‘alre'ady defined on (%o < aic) and (bjc < x0), then, since
(bjc < aic)' is TRUE under M, it follows that either (xo0 < éic) or
(bjc < x0) 1is TRUE under M. If M is not defined on these two 1iferals, we
arbitrarily define it to be TRUE on the first and FALSE on the second (or vice versa).
In either case M 1is a model for Co and is therefore a 'model for So.

Clearly the shielding terms of S' are those of S.

Q.E.D.

Lemma 6. If S is an RC-unsatisfiable set of clauses then there exists a
set Sl of variants of S and a substitution o such that Slc is ground and

RC-unsatisfiable.
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Theorem 1. If S 1s an RC-unsatisfiable set of clauses then there is an RCF=-

refutation of S.

Proof. By Lemma 6 there is a set S1 of variants of S and a substitution o
for which Slc is ground and RC-unsatisfiable. WLOG assume that S has no
eligible variable.

Recursively define SZ’ SB"" as follows:

If Si is ground, halt.

1f Si is ground, halt.

If Si is not ground, use Lemma 1 to select a shielding term t from Si

for which ot#ox for any isolated variable x in S,, and let

€ = {t': t'o=to A t' is a half literal of Si} .

and use Lemma 3 to obtain an RC-deduction D, of a set S£+1 from S, for which
each step iﬁ ‘Di is a chaining on a member of €, S£+1 contains no member of €,
(as a half literal), and S£+1 and S£+1U are RC-unsatisfiable. Letsi+1==VE(Si+1).
We observe that variable elimination (i.e., the use of Lemma 4) on a set S'
does not increase the number of half literals in S'c. Furthermore, in épplying
Lemma 3, the half literals of Si+1 are a subset of those of Si’ and to is

a half literal of Sic but not Si+10. So the use of Lemma 3 steadily decreases

the number of half literals in Sic. Therefore the sequence, S1 ,82 se++y Must
terminate in an RC-unsatisfiable ground set Sn . Let DG be the RCF-refutation

of S .
n
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Since the shielding term chosen by Lemma 1 is such that
tg # %o

for any variable x, it follows that if to = t'c, then t and t' have the

form

f(t1 yeony tn)

where £ 1is an uninstantiated function symbol, and therefore each member of €
has this form. And since Di chains only on members of € it follows that each
of the steps of Di produces an RCF-resolvent.

Since variable elimination steps are also RCF-steps it would appear that Di

and Di together form a RCF-deduction of 8 from Si . But in the definition

i+l
of RCFn(S) we required that variable elimination be applied on a resolvent
immediately when it is produced (if it has an eligible variable), so we cannot

follow », by »!, but must intermingle the two, by reording the VE and RCF

i
steps. In particular, by {11], there is an RCF-deduction D; of Si+1 from
S for each i, i=1l,n=-1.

i’
And by putting together the deductions

\Ll DH

DY ey DY

1’DG,
we obtain an RCF-refutation of S.

QcEaD.

Theorem 2. (RCF Completeness Theorem)
Let
S be a set of inequality clauses,

S< be the set of clauses for the inequality axioms,

SI be the set of clauses for the interpolation axioms,
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and suppose (S US<USI) is unsatisfiable. Then there is an RCF-deduction of

from S.

Proof. By definition (8 USI) is RC-unsatisfiable. Thus by Theorem 1 there is
an RCF-deduction D of - from (S USI). But no clause of SI' can be a part of

a (productive) step in D, so D is an RCF-deduction of L1 from S.

To see why a clause of SI cannot be part of a (productive) step in D,

recall that SI is the set of clauses

. n n
<w_ (X, 5000 X Y ,ees YIV V. V(¥ < %)
*x. mm - 1 n’ "1 m =1 §=1 3 i
n n .
Wm(xl"“’xn9 yls“” Ym) S_Yz \ i\il j:l(Yj < Xi)

1;=1,n; £=1,m; n>0; m>0,

together with similar clauses when < and < are interchanged.

Consider the case when n= 1, m=1,

]

Ccl x<wx,y) Vy< x)

cI (w(x,y) <y Vy<x)

w' occurs only in

(we have dropped the subscript on w). Since the symbol
c1, and CIZ and nowhere else in §, it follows that no chaining on w(x,y)
with another clause in S 1is allowed in D, because it would have to match a

variable. And chaining CI1 with CI, would produce. the tautology

x<yVy<zx
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“which again cannot be used in any step of D since matching on variables is forbidden.

Hence CIl and CI2 are not used in a productive way in © and can be removed from

S USI . Similarly other members of § can be removed.

I

Q.E.D.
Lemma 7. If

S 1is a set of inequality and equality clauses,
S< is the set of clauses for the inequality axidms,

§" is obtained from S by replacing each literal of
the form (a=b) by (a<bAb < a) and reclausing

if necessary,

and S 1is unsatisfiable, then (S"US<) is RC-unsatisfiable.

Proof. The following is a partial sketch of the proof for the ground case. Lifting
gives the general case.

Suppose two clauses

[
L]

(a=bVE1')

(@]
]

(a# bV EZ)
in S. are resolved to obtain

R=(E1VE2)

If C1 and 02 have no other " ='" symbol then C1 is converted to the two clauses
in S",

Cl.l = (a<bV El)

Ci 0= (®<aVE)
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and Cz‘is converted to

L E—"
Cz- (a<bvb<aVE2)

. 1 .
RC-chaining Cl.l and Cl‘2 with C2 gives R.

Theorem 3. Let

- 8§ be a set of inequality and equality clauses,

S< be the set of clauses for the inequality axioms,

SE be the set of clauses for the equality axioms
for the .sets S,

SI be the set of clauses for the interpolation axioms,

S' be obtained from S USE by replacing each literal

a=b by (a<bAb< a) and reclausing if necessary,

and suppose (S US<USI) is E-unsatisfiable, and S NS_ = @. Then there is an

I
RCF—deducEion of [J from S'.

Proof. In this proof we use the following notation: For any set U of inequaiity

and equality clauses,

UE is the set of clauses for the equality axioms for U,

U" is obtained from U by replacing each literal of the form
a=b by (a<bAb<a) and reclausing if necessary.

Thus, in the above, S'=8" USE , and we must show that there is an RCF~deduction

of [] from S"US'E;.
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We first give an outline of the proof:

S US_US; is E-unsatisfiable (dypothesis of Theorem 3)

l Reference [8]

S U S< 8] SI 9] SE U SIE is unsatisfiable

l Lemma 7

s" v S< U SI U Sg U SEE is RC-unsatisfiable

—

(Note 82 = S< s S; = SI)

Theorem 2 (with §" U s! u SY for 8)

E IE
Y
There is an RCF-deduction of [] from (8" U SE U SgE)
See below.
Y

There is an RCF-deduction of [1 from (s" u SE) .

The last step follows because if 9 is an RCF-deduction of O from
s"u SE U SEE then we can omit from © those steps involving S;E . Because

S;E has only clauses of the form

o ] 1] . T
CIl . x1 < xl \Y x1 < x1 Ve.oV ym < ym \% ym < ym

Vwm(xl,--.,xn,yl,m,ym) SN CIPEPEPE S S ERETR AV

(and similar clauses, see Section 2), and since the symbol "wnm" does not occur

in S" U s@

E° no RCF step can use C

I unless CI is chained with itself.
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But such a chaining only produces a RCF-resolvent

t 1.
Xy < xl VeooV ym< ym
VvV Wmn(xls"', Ym) S_an(xl:'°': ym)

which can again only be used against members of RCﬁm(S" ).

IE So no interaction

with S" U SE is possible.

3.2. RCF+ Compieteness

Lemma 9 (Ground unit RC+ Completeness). If S is an RC+ unsatisfiable set

of ground unit clauses, then there is an RC+ deduction of 0 from S.

This follows essentially from a consistency criterion used in linear pro-

gramming. See [10]. Also see Lemma 3, Appendix I.
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Lemma 10. If S is an RC+ unsatisfiable set of ground unit clauses, and ¢

* :
is an isolated term of S, then there is an RC+ refutation D of S for which
any chaining on terms other than c¢ is done on clauses not containing c (as an

isolated term).

Proof. Use Lemma 9.

Lemma 11. (Like Lemma 2) If S 1is an RC+ unsatisfiable set of ground
clauses, and c¢ is an isolated term of S, then there is an RC+ refutation D
of S for which any chaining on terms other than ¢ is done on clauses not

~ containing ¢ (as an isolated tern).
Proof. The proof is by induction on the excess literal parameter k(S).

-1, Then [] € S.

Case 1. k(S)

Case 2. k(S8) =0, [] ¢ s.

In this case the clauses of S are ground unit clauses, and the desired

result follows from Lemma 10.

Case 3. (Induction Step) The proof of this case follows exactly as the proof of
Case 3 in Lemma 2, except the expression "half literal" is replaced by "isolated

term'.

* B
Recall that a term is isolated if it occurs not within the arguments of any
uninstantiated function symbol. E.g., t<a, t+a<b, at+t+b <c, etc.
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Lemma 12. (Like Lemma 3) If S 1is an RC+ unsatisfiable set of clauses,

Sg is ground and RC+ unsatisfiable, t is an isolated term of S,
€ = {t': t is an isolated term of S and t'o=to} ,

then there is an RC+ deduction D' of a set §' from S for which

(1) each step in D' 1is a chaining on a member of €,
(2) S' contains no member of € (as an isolated term),

(3) S'c (and therefore S) is RC+ unsatisfiable.

Proof. Similar to that of Lemma 3.

Lemma 13. (Like Lemma 5) If S 1is an RC+ unsatisfiable set of clauses,
CeS, x is an eligible variable in C, and R is a VE+ Resolvent of C wupon

#, then S~{C} U {R} is RC+ unsatisfiable.
Proof. The proof is similar to that of Lemma 5.

Theorem 4. If S is an RC+ unsatisfiable set of clauses then there is an RCF+

refutation of 8.

Proof. Very much like that of Theorem 1.
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Appendix I

Lemma 1. If S is a set of ground inequality clauses, C and E are ground
inequélity clauses, and D is an RC-deduction of [1 from S U {C}, then there is

a clause E' which subsumes E, and an RC-deduction D' of E' from S U {CVE}.
Remark. If E is the unit clause L, then E' 1is either O of L.

Lemma 2. If S is a finite RC-unsatisfiable set of unit ground inequality

clauses, then S contains a sequence,

1 - a < a

11 ) a, < ag ,..0, a <a,

2 n

where each of the' < is < or <, and at least one of the < is <. In case

n=1,» we have al<a1 in S.

Proof. Since S is RC-unsatisfiable it follows that S US< is unsatisfiable

where S » consists of the four clauses

1. x<x
2. x<yVvVy<x
3. . y<xVvVz<LyVvVx<z

4., y<xVz<yVvVxxL<az.

S must have at least one '<' clause, for otherwise S US< has the trivial

model whereby all members of the alphabet of S are mapped into one point (e.g., 0).
The proof is by induction on |S|, the size of S.

If |S|=1 them S consists of one clause a < b. But then b must be

identical to a, because otherwise {a < b, a < b} would be a model for §S us_.
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So assume the theorem holds for all sets S for which |S| <K, and assume
that [S|=K > 1.

Let. (a<b) €8, and let

S ~ {a< b}

w0
it

=SiU{x§_z: x<ye Sivﬂy(xgyvevs /\yg'zesi)}

i+l i

ufx < z:3y((x<yesi/\y_<_zesi)

V(xg_yeS’i/\y<ze Si))}’ for i=0,1,2,... .

Since S has a finite alphabet thére is an n for which Sn+1=sn .

If S0 is unsatisfiable then we are finished by the induction hypothesis.

So let M be a model of SOUS<. Hence

oy .
Sg SM

Since veach S 4

i+1 is obtained by applying axioms 2 -4 to S

that Sn_C_M, and M is a model for Sn' Thus

it follows

(2) (bg_a)esn or (b<a)eSn

for othewise MU{a < b, a < b} would be a model of SnU{a < b} US<, and there-

fore of (8 USS).
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Also for each 1,

x<zeS$ iff x<zeS;, or x<ze$

i+l i i’
or for some vy, xg_y«-:si and y_<_zeSi,
and
x<zeSi+1 iff x<yeSi

or for some vy, x<yeSi and ygzesi,

or x<yeS$ and y<ze$S

i i’

So by induction, if b < a ¢ Sn or b< ae S, then there is a sequence

of clauses

3) b<a , a,<a_,...,a < a
12 223 ‘ n--ln-_1

in S, where each < is < or <, (and if b< ae S then at least one of

i
the < must be <).
P
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So by (2) we have (3), and since (a < b) € S, we have the desired sequence

(1) (where a, =b, and -an=a).

1

Lemma 3. Suppose we have a set of linear inequalities

Y a,x,>0 for ier
jen 133

Y a,x,>0 for iep~r
jen i3]

where a‘ijeZZ for iep, jen and 0< r<p.

If there is no real solution {xj}jen then for some {A ,?\i €Z and

i}iep
7\120 for i€ p,

Y N.a,,.=0 foreach jen and A, >0 for some ie p~r .
171j i
iep
Proof.
Note that if r=p then xj=0 for jen is a solution. Hence we may
assume that r < p.
Let F&X)= TIp Y, a,.x. so that
. ij’i :
iep jen :

F: R® > RP

is a linear function. (We use the notation Tp ui to denote the p-tuple whose
iep
i-th coordinate is ui for each 1i e p.)

Let S=rng F. S 'is a linear subspace of ) L
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If S =RP then the .g:lven inequalities have a solution. We may therefore
assume that s #RP.

We have then that S* is at least ome dimensional. We wish to produce a
basis A of S* such that A czP. We have that u e S* ’iff u-z=0 for

all z e S. Since the n vectors Tp a; . span ‘S,‘ we have that u e S* iff

iep
7 u.a, . =0 for all j € n. But this is a set of linear homogeneous equations
iep
which may be solved by Gaussian elimination. Since the a, j's are integers, we
may choose a fundamental system of solutioms bji such that ue S* 1iff u is
an arbitrary linear combination of the q vectors Tp bji where the bji‘s

iep ,

are all integers.

T p~r p

Let P=[0,0) x (0,°) . So xe P& xeR and V(xizo and
‘ iep

(ice p~r+xi > 0)). So, given we Rq, we Q& 3 ¥ (yabj=wj),

yeP Jeq
Clearly, the existence of solutions to the given inequalities is equivalent

to PNS # 0.

Since we assume there are none, we have

PNS=90>vyveP (y¢5)

> ye P¥ ve 8* (y-v=0)

>YveP~V¥ jegq (y-bj 0)

»~J vyePV ijegq (y.bj 0)

+~6€Q.,

Now Q 1is a convex cone generated by the p vectors Tp b

i
jeq 1
seen by letting y be the i-th unit vector), where the scalars are strictly

(as may be

positive for the last pe-r terms.
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1f these p vectors 'lie in the same directiom, then let j be any one
of them which is not zero, so p-x >0 for x e Q. If the p generators do not
lie in the same directic;n, then the cone Q has faces, at least of one which must
be open.A Pick 1ie p-ﬁ:, then any face not holding t‘he véctor Tp bji must be
open. Choose an open face and pick out its generators from mnongjige Tp b 5 i's.
To get a normal to this face we must choose a vector perpendicular to eiig generator.
Since this can be done by Gaussian elimination and the b 3 i's are integers we can

get a normal vector which is integral. Changing its sign if necessary we get then

a u € z9 such that

ux >0 for xe Q.

Hence

2 u,X >0> for x € Q
jeq ¥

i.e. by My (}"bj) >0 for ye?P
jeq

Yp, % (,b,.)>0 for yeP
Jeq 3 iep 13 :

Y (T by, >0
iep jquJi i

or

.Z ?\iyi > U
€D

Hh
Q
3

v e P
where

= 2 ub .
1 Jeq 3

Since the pj's and bji's are integral so are the 7\1'3.
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Now choosing y € P with Yy small except for i=3 which we choose large,

we conclude from 2 A yi > 0 that ?\j >0 for jep.

iep ‘
1f it were the case that 7\j= 0 for all j e p=r then by choosing yj= 0
for jer, yj>0 for j e p~r we would have y € P, but 2 AN.y.=0, a con-
Jep
tradiction.

Hence A, > 0 for some je p=rT.

h|
' Now Z?\ia j=0 for all j e n& Z?\ixi=0 for x € S since the
iep iep
Tp , a,,'s span S. So given x € S we look at
iep 1]

ka-—z th§i=2u Zb .

fep © ©  dep jeq 7’ jeq e
. But
.Z bjixi =0
iep
since bj 'is a basis vector for S*. Hence Z}\ a5 =0 for all j € n.

iep
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