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§0. Introduction. We consider a language whose sentences are finite dis-
junctions of ineéualities among a finite set of constant symbols; there are mo
variables or quantifiers. We prove a completeness theorem for a system of de-
duction whose only non-trivial rule is chaining (reflecting transitivity of <).
The system incorporates a number of restrictions designed to limit the number

of alternatives a computer must examine in searching for a proof.

§1. Syntax. Let A be a finite alphabet. A literal of A is an expression
of the form a <b or a<b, where a,be A. A clause of A is a (finite)
set of literals of A. We think of a clause as the disjunction of the literals
in it, and we often exhibit clauses using a disjunction sign. Thus, a<bVb<ec

and b<cVa<b denote the same clause, {a <b, b < c}. We use C] to denote

the empty clause.

§2. Semantics. A model for A is armap, ‘P: A +R, where R 1is the set
of real numbers. We abuse notation by using < also to denote the usual order-
ing of R. It will become clear that we could allow maps into arbitrary totally
ordered sets, but it will be notationally convenient to have a fixed target.

We say " F a<b, or a<b is true in T, 1iff T(a) < T'(b); Llikewise
T }= a<b iff T'(a) <T(b). If E 1is a clause, we say I' FE iff at least
one of the elements (disjuncts) of E is true in D. If S is a set of clauses,
we say T‘}= S 1iff T F= E for every E € 8. In particular, for any T, T }Z[j
and T % @, where @ is the empty set of clauses; there is a minor abuse of

notation here, since [:{ and @ are actually the same object.



If S 1is a set of clauses and E a clause, S %= E, or E 1is a semantic

consequence of 3, iff for all 1, T F: S dimplies T F E. S is semantically

consistent iff T F S for some I iff SJ% []. We call E a tautology iff
o F B iff T F E for all T. If F is another clause, F E E means

(F} F E; we say E follows tautologically from F. Thus, [] E E for all E;

if E 4is a tautology them F k E for all F.

§3. Proof theory. There are two basic proof rules. One is deletion. If E
is a clause, we define del(E) to be the result of deleting from E all literals
of the form a < a as well as all those literals of the form a < b where a<b
occurs in E. The other is chaining. If ae A and E and F are clauses,

ch(E,a,F), the result of chaining E and F on a, is defined as follows. Say
= “ { !
E \V/{bisia‘ i<n} VE',

where each S5 is either the symbol < or <, and all literals of E' do not

have a on the right. Likewise, say
F =\V/{atjcj: j<m) VF',

where each tj is either < or < and the literals of F' do not have a on

the left. Then we define

ch(E,a,F) S\V/{biuijcj: i<mn, j<m}VE' VF',




where uij is < if . and vtj are both <; otherwise u, . is <. If
n=0, these definitions imply that ch(E,a,F) is E V F', while m=0 implies'
that ch(E,a,F) 1is E' Vv F.

Our proof theory has no logical axioms; a deduction from S must proceed by
quoting clauses in S or applying the two proof rules. Because of this, the
usual completeness theorem, S % E=3S5 }- E, 1is false. For a trivial example,

$ F a < a, but there is no way of deriving anything from . For a less trivial

example,

Example 1. Let S be
{a<b, c<d, a<bVe<dl

and let E be

a<dvVvVe<hb

Then S 1is closed under deletions and chainings, S }= E, and E does not

follow tautologically from any single element of §S.

Nevertheless, it is true that if § % [], then one can derive E] from
S. We shall prove this to be the case even when we put the following two
restrictions on the allowable chainings. First, we forbid ch(E,a,F) to be

inferred from E and F 4if it follows tautologically from E or from F

separately. Second, we list A 1is some order, say A.=={a1 s 8, 5-0. 1, and de=

2 ¥

mand that the deduction first chain only on a; s then chain only on a, between

clauses which do not use a; and so forth.



More precisely, if a e A and S 1is a set of clauses of A, define

Ra(S) =S U {del(E): Ee S} U {ch(E,a,F): E,F ¢ S and

E}é ch(E,a,F) and F/}é ch(E,a,F)} .

0 _ n+l _ n © _ n *
Let Ra(S) = G, Ra (S) = Ra(Ra(S)), and Ra(S) -UnRa(S). Let Ra(S> be the

set of clauses in RZ(S) which do not mention the letter a.

3.1. Completeness Theorem. Suppose that n > 1, A={a

ERERT an+1},
a set of clauses of A, and § ‘r: D . Then

Oer ® o ® () ))
n n-1 1

Example 2. Let S = {E,F,G,H, I}, where

E is bh<avac<hb

F is c<avac<ec

N

Then S kE D Ri(s) s S together with the 5 clauses
ch(E,a,T): b<cVa<hb
ch(F,a,I): c<cVac<ece
ch(H,a,E): b<avb<b

Vb <e

jae}

ch(H,a,F): ¢ <

ch(d,a,I): b

IN
o)




We do not obtain b <cV a<bVec<a (ch(E,a,F)), since it follows tautologically
from E- and from TF separately, although it is not a tautology. Further deletions
3
and chainings yield, in R:(S), b<a, a<ec, b<c, among others. Thus R;(S)
*

*
contains ¢ < b and b<c, so0 [] € Rb(Ra(S)).

Before proving Theorem 3.1, we establish, as a lemma, a completeness result fox

chaining on one letter only.

3.2. Lemma. Suppose that a e A, A =A\{a), S is a set of clauses of A,

0
and PO: A0 > R. Suppose further that for every I': A >R which extends FO’
*
rKs. Then ro £ R 6
Proof. Say AO==Bl U...U Bn’ Tysenes r € R, Ty < T, <L,..< T and

To(b)==ri whenever b € Bi . For 1 <i<mn, let Ci € S be such that T }4 Ci
when T is the extension of FO such that 1“(ax)==r__,L . For 1<i<mn=1, let
Di € S be such that T }( Di when I' is some {any) extension of TO with

Likewise, let D, e S contradict T'(a) <t

17 0

contradict r < T{(a).

d
T < I'(a) < ri+ and let Dn e S

1
We now produce E, and F. in RZ(S) for 1 < i< n such that for each

" extending TO,

r( <r, = I‘)g E, and

1‘(31)31:i = P,% Fi~

We also produce En+l € Ra(S) such that I‘}é En+1 for any [' extending PO'
. iver E
Let E1 be DO Given Ei’ let Fi be  ch( e a,Ci) unless ch(Ei, a,Ci}

follows tautologically from E, or C., in which case we let Fi be any one

i
of Ei, Ci from which ch(Ei, a,Ci) follows tautologically. Likewise, given Fi R




let Ei+l be ch(Fi, a,Di) unless ch(Fi, a,Di) follows tautologically from
Fi or Di’ in which case Ei+l is any one of Fi’ Di from\which ch(Fi, a,Di)
follows tautologically. It is easily verified inductively that the Ei and T,

i
have the properties claimed.

Finally, observe that E can involve the letter a only in the combin-

n+1

*
ation a < a, so that del(En+1) is an element of Ra(S) which contradicts FO’

proving the lemma.

As a special case, if § % [] we may apply Lemma 3.2 to every FO: AO > R

and obtain the following.

3.3. Corollary. Suppose that ae A, S is a set of clauses of 4,  and
*
s B [J. Then r (s) F [1:

Finally, we prove Theorem 3.1 by induction on n. For n=1, 1t is easy by

inspection, and the induction step is immediate from Corollary 3.3.
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