A COMPLETENESS THEOREM

FOR MULTIPLE CHAINING

by

Kenneth Kunen

August 1980

ATP-61

This work was supported by the National Science Foundation Grant MCS-7900824.

A Completeness Theorem for Multiple Chaining Kenneth Kunen

- §0. <u>Introduction</u>. We consider a language whose sentences are finite disjunctions of inequalities among a finite set of constant symbols; there are no variables or quantifiers. We prove a completeness theorem for a system of deduction whose only non-trivial rule is chaining (reflecting transitivity of <). The system incorporates a number of restrictions designed to limit the number of alternatives a computer must examine in searching for a proof.
- §1. Syntax. Let A be a finite alphabet. A <u>literal</u> of A is an expression of the form $a \le b$ or a < b, where a,b \in A. A <u>clause</u> of A is a (finite) set of literals of A. We think of a clause as the disjunction of the literals in it, and we often exhibit clauses using a disjunction sign. Thus, $a \le b \lor b < c$ and $b < c \lor a \le b$ denote the <u>same</u> clause, $\{a \le b, b < c\}$. We use \Box to denote the empty clause.
- §2. Semantics. A model for A is a map, $\Gamma: A \to \mathbb{R}$, where \mathbb{R} is the set of real numbers. We abuse notation by using < also to denote the usual ordering of \mathbb{R} . It will become clear that we could allow maps into arbitrary totally ordered sets, but it will be notationally convenient to have a fixed target.

We say $\Gamma \models a < b$, or a < b is <u>true</u> in Γ , iff $\Gamma(a) < \Gamma(b)$; likewise $\Gamma \models a \le b$ iff $\Gamma(a) \le \Gamma(b)$. If E is a clause, we say $\Gamma \models E$ iff at least one of the elements (disjuncts) of E is true in Γ . If S is a set of clauses, we say $\Gamma \models S$ iff $\Gamma \models E$ for every $E \in S$. In particular, for any Γ , $\Gamma \not\models \Gamma$ and $\Gamma \models \emptyset$, where \emptyset is the empty set of clauses; there is a minor abuse of notation here, since Γ and \emptyset are actually the same object.

If S is a set of clauses and E a clause, $S \models E$, or E is a <u>semantic</u> consequence of S, iff for all Γ , $\Gamma \models S$ implies $\Gamma \models E$. S is <u>semantically consistent</u> iff $\Gamma \models S$ for some Γ iff $S \not\models \square$. We call E a <u>tautology</u> iff $\emptyset \models E$ iff $\Gamma \models E$ for all Γ . If F is another clause, $F \models E$ means $\{F\} \models E$; we say E <u>follows tautologically</u> from F. Thus, $\square \models E$ for all E; if E is a tautology then $F \models E$ for all F.

§3. Proof theory. There are two basic proof rules. One is <u>deletion</u>. If E is a clause, we define del(E) to be the result of deleting from E all literals of the form a < a as well as all those literals of the form a < b where $a \le b$ occurs in E. The other is <u>chaining</u>. If $a \in A$ and E and F are clauses, ch(E,a,F), the result of chaining E and F on a, is defined as follows. Say

$$E = \bigvee \{b_i s_i a : i < n\} \vee E',$$

where each s is either the symbol < or \leq , and all literals of E' do not have a on the right. Likewise, say

$$F = \bigvee \{at_jc_j: j < m\} \lor F'$$
,

where each t is either < or \leq and the literals of F' do not have a on the left. Then we define

$$ch(E, a, F) = \bigvee \{b_{i}u_{ij}c_{j}: i < n, j < m\} \lor E' \lor F'$$

where $u_{\mbox{ij}}$ is \leq if $s_{\mbox{i}}$ and $t_{\mbox{j}}$ are both \leq ; otherwise $u_{\mbox{ij}}$ is <. If n=0, these definitions imply that ch(E,a,F) is $E\vee F'$, while m=0 implies that ch(E,a,F) is $E'\vee F$.

Our proof theory has no logical axioms; a deduction from S must proceed by quoting clauses in S or applying the two proof rules. Because of this, the usual completeness theorem, S \models E \Rightarrow S \models E, is false. For a trivial example, $\emptyset \models$ a \leq a, but there is no way of deriving anything from \emptyset . For a less trivial example,

Example 1. Let S be

$${a < b, c < d, a < b \lor c < d}$$

and let E be

$$a < d \lor c < b$$
.

Then S is closed under deletions and chainings, $S \models E$, and E does not follow tautologically from any single element of S.

Nevertheless, it is true that if $S \models \Box$, then one can derive \Box from S. We shall prove this to be the case even when we put the following two restrictions on the allowable chainings. First, we forbid ch(E,a,F) to be inferred from E and F if it follows tautologically from E or from F separately. Second, we list A is some order, say $A = \{a_1, a_2, \dots\}$, and demand that the deduction first chain only on a_1 , then chain only on a_2 between clauses which do not use a_1 , and so forth.

More precisely, if a ϵ A and S is a set of clauses of A, define

$$R_a(S) = S \cup \{del(E): E \in S\} \cup \{ch(E,a,F): E,F \in S \text{ and } E \not\models ch(E,a,F) \text{ and } F \not\models ch(E,a,F)\}$$
.

Let $R_a^0(S) = S$, $R_a^{n+1}(S) = R_a(R_a^n(S))$, and $R_a^\infty(S) = \bigcup_n R_a^n(S)$. Let $R_a^*(S)$ be the set of clauses in $R_a^\infty(S)$ which do not mention the letter a.

3.1. Completeness Theorem. Suppose that $n \ge 1$, $A = \{a_1, \ldots, a_{n+1}\}$, S is a set of clauses of A, and S $\models \square$. Then

Example 2. Let $S = \{E, F, G, H, I\}$, where

E is
$$b < a \lor a < b$$

$$F \quad \text{is} \quad c < a \lor a < c$$

$$G \quad \text{is} \quad c \leq b, \ \text{H} \quad \text{is} \quad b \leq a, \ \text{I} \quad \text{is} \quad a \leq c \ .$$

Then $S \models \square$. $R_a^1(S)$ is S together with the 5 clauses

$$ch(E, a, I): b < c \lor a < b$$
 $ch(F, a, I): c < c \lor a < c$
 $ch(H, a, E): b < a \lor b < b$
 $ch(H, a, F): c < a \lor b < c$
 $ch(H, a, I): b \leq c$.

We do not obtain $b < c \lor a < b \lor c < a$ (ch(E,a,F)), since it follows tautologically from E and from F separately, although it is not a tautology. Further deletions and chainings yield, in $R_a^{\infty}(S)$, b < a, a < c, b < c, among others. Thus $R_a^{\star}(S)$ contains $c \le b$ and b < c, so $\square \in R_b^{\star}(R_a^{\star}(S))$.

Before proving Theorem 3.1, we establish, as a lemma, a completeness result for chaining on one letter only.

3.2. Lemma. Suppose that $a \in A$, $A_0 = A \setminus \{a\}$, S is a set of clauses of A, and $\Gamma_0 \colon A_0 \to \mathbb{R}$. Suppose further that for every $\Gamma \colon A \to \mathbb{R}$ which extends Γ_0 , $\Gamma \not\models S$. Then $\Gamma_0 \not\models R_a^*(S)$.

Proof. Say $A_0 = B_1 \cup \ldots \cup B_n$, $r_1, \ldots, r_n \in \mathbb{R}$, $r_1 < r_2 < \ldots < r_n$, and $\Gamma_0(b) = r_i$ whenever $b \in B_i$. For $1 \le i \le n$, let $C_i \in S$ be such that $\Gamma \not\models C_i$ when Γ is the extension of Γ_0 such that $\Gamma(a) = r_i$. For $1 \le i \le n-1$, let $D_i \in S$ be such that $\Gamma \not\models D_i$ when Γ is some (any) extension of Γ_0 with $\Gamma_1 < \Gamma(a) < r_1$. Likewise, let $D_0 \in S$ contradict $\Gamma(a) < r_1$ and let $D_n \in S$ contradict $\Gamma_0 < \Gamma(a)$.

We now produce E and F in R $_a^\infty(S)$ for $1\leq i\leq n$ such that for each Γ extending Γ_0 ,

$$\Gamma(a) < r_i \Rightarrow \Gamma \not\models E_i$$
 and $\Gamma(a) \le r_i \Rightarrow \Gamma \not\models F_i$.

We also produce $E_{n+1} \in R_a^{\infty}(S)$ such that $\Gamma \not\models E_{n+1}$ for any Γ extending Γ_0 .

Let E_1 be D_0 . Given E_i , let F_i be $ch(E_i, a, C_i)$ unless $ch(E_i, a, C_i)$ follows tautologically from E_i or C_i , in which case we let F_i be any one of E_i , C_i from which $ch(E_i, a, C_i)$ follows tautologically. Likewise, given F_i ,

let E_{i+1} be $\mathrm{ch}(F_i,a,D_i)$ unless $\mathrm{ch}(F_i,a,D_i)$ follows tautologically from F_i or D_i , in which case E_{i+1} is any one of F_i,D_i from which $\mathrm{ch}(F_i,a,D_i)$ follows tautologically. It is easily verified inductively that the E_i and F_i have the properties claimed.

Finally, observe that E_{n+1} can involve the letter a only in the combination a < a, so that $\text{del}(E_{n+1})$ is an element of $R_a^*(S)$ which contradicts Γ_0 , proving the lemma.

As a special case, if $S \models \square$ we may apply Lemma 3.2 to every $\Gamma_0 \colon A_0 \to \mathbb{R}$ and obtain the following.

3.3. Corollary. Suppose that $a \in A$, S is a set of clauses of A, and $S \models \square$. Then $R_a^*(S) \models \square$.

Finally, we prove Theorem 3.1 by induction on n. For n=1, it is easy by inspection, and the induction step is immediate from Corollary 3.3.

Department of Mathematics The University of Texas Austin, TX, 78712 U.S.A.