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Let <} be any set of terms. If ¢{ is a set of clauses, we let
gcons(¢( ,0, 4) be GJ , and let gcons(yJ , ntl, ?‘) be gcons(gf:,n, /") unioned
with the set of all clauses that can be obtained by one application of ground
chaining or ground self-chaining on a term in % to clauses in gcons( A/,n,?‘).
Let gcons( ¢{, %) be the union of all the gcons(,g{,n, 9‘). We shall often use
without comment the obvious fact that geons(gcons( « , 7), /) = geons( ., - ).
Let gcons!( ¢f, “%4) be the set of clauses in gcons(,ﬂ(, /) which do not usc

any terms in 4. Our ground completeness theorem is expressed by:

THEOREM: If ¢f is ground inconsistent and % is any set of terms, then

gconsx¢4, ;l) is ground inconsistent.

As a special case, we may take "/ to be the set of all terms appearing in
gf. The theorem then says that if ;m{ is ground incﬁnsistent, we may derive | |
from it by ground chaining and self-chaining.

To prove the theorem, note first that by compactness, we may assume that,;;i@
finite. The proof will be by induction on the EXCESS LITERAL PARAMETER (intro-
duced by Anderson and Bledsoe in [ABD, elp(é), If C 1is a clause, we let elp(0)
be the number of literals in C minus ome. If&ﬁ is a finite set of clauses, we
let elpgﬁ) be the sum of all elp(C) for C in.x%. If;§ doeé not already contain
1, elp(%ﬁ =0 means that each clause incg)consisﬁs of exactly one literal; this

case will be the basis of the induction, which we state as a lemma.

?

LEMMA 1: 1If ‘f{ is finite, elp(w( ) = 0, and ;i is ground inconsistent, .

then gcons!(aﬁ ,f% ) is ground inconsistent.

PROOF: We assume that | ] is not already in ¢/5 so that each clause of ﬁf

consists of a single literal. We say that é{ contains a BAD CYCLE iff there is
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a sequence of terms and symbols

u@a@...d@u
n n

17172 "2 1

where 4\ contains the clause o @n 0, as well as the clauses a. 0. a for

1 3441

each 1 < n, and at least one of the symbols @i is <, If @J contains such a

cycle, say that m of the a, are in 4, If m< n, then m applications of i

ground chaining on terms in % produce a bad cycle of length n-m containing
only terms not in %+ If m = n, then n-1 applications of ground chaining
plus one application of ground self-chaining produce []. In either case,
gcons!(gﬁ , #) is ground inconsistent.

Now, assume that z% does not contain a bad cycle; we construct a ground
model for a&h by taking a transitive closure. Let ZZ. be the set of all terms
used in 44 , and define the relation R on ¢ by: oRB iff either a and b
are the same or at least one of the literals, a < B, a < B is in ;f . Let R"
be the transitive closure of R. R* defines an equivalence relation E (as
does any transitive reflexive'felation)defiﬂedhy aEb iff aﬁ*B and BR*Q. Let
[a] be the equivalence class of a, let 72 be the set of equivalence classes,
and let < be the partial order on “Zf defined by [a] < [B] iff aR*B. Con-
sider (25, <,F), where F(a) is [a]; we show that this is a ground model for QJ;
recall that by Lemma 1 of Section 3.1, it is sufficient to produce a PARTIALLY
ordered ground model. Clearly, if ¢d contains either o < 8 or a < B, then -

F(a) < F(B). Now suppose QJ contains o < B. We cannot have F(a) = F(B),

since this would imply BR*o, » which would yield a bad cycle of the form
a<B ...

Hence, F(a) < F(B)-\
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The induction step in the proof of the ground completeness theorem uses
a lemma that says that if we have a deduction from / , we may tack on a sub-

set of any clause D to each line of the deduction. An easy induction shows:

LEMMA 2: Suppose that D is any clause and that for each clause C in

' {
' there is a subset D'(C) of D such that C v D'(C) is in s . Let E be

geons (.7 , % Y. Then there is a subset D" of D with E D" in gcons( )_»,(/ , 0

In our applications of Lemma 2, D'(C) will actually be empty for all but

one C.

PROOF OF THEOREM: By compactness, we may assume that </§{ is finite, and we
proceed by induction of elp(dg(«). By Lemma 1, we may assume thét [] is not in v/
alfeady, elp(gA) >0, A is ground inconéistent, and that whenever .7 is ground
inconsistent and elp(<}) < elp(gff), we have gecons! (.2 , 7 ) ground inconsistent.
Since elp(.?) > 0, there is a clause in ,af/ of the form C -~/ D, where C and U
are nonempty sets of literals. Let <’ be aJ with € ~ D replaced by C. The
inductive hypochesis applies to. <) , 80 gcons! (7 , (/) is ground inconsistent. .
By Lemma 2, for each E in gcoms!(.J, ? ) there is a subset, D"(E) of D such
that E v D'"(E) is in gcons(,zﬁ{, 2). vLet ZL(E) be obtained from (‘/ by replacing
C VD by D'(E). Then the inductive hypothesis applies to each "U(E), so
geons! ( /U;(E),q-) is ground inconsistent. Let 'V(E), be obtained from /fj by
replacing C v D by E v/ D"(E). BSI Lemma 2, for each E in geons! (J, 1)
and each H in gcons!(%(E),g') there is a subset E"(E,H) of E such that

;L
H v E"(E,H) is in geons (V(E), #). However, 7ME) is a subset of geons(, ),

) 5
so each H v/ E"(E,H) is in gcons(ﬂ ,/f') and hence in gcons! (¥ ,'-,7-). But then
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gcons!(z(,f}) is ground inconsistent. To see -this, suppose it had a ground
model. For each E in gcons!(Z,%) there must be an H in gcons!(7ZL(E), /)
such that H is false in this model, since gcons!( 7Z(E),%") is ground incon-
sistent; so, for this E and H, E"(E,H) is true in this model. But E"(E,H)
is a subset of E, so E is true in this model for each E in gcons!(J,%)

contradicting the fact that gcons!(./,7) is ground inconsistent.
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4, Real Completeness Results -

4,1 Intent

In this section, we discuss some completeness results for actual
systems based on the rules of inference discussed above. As the rules become

more restrictive, the completeness theorems become harder to prove.

4.2 A Simple Result

On the most trivial level, if we allowed ARBITRARY substitutions

as legitimate inferences, we could prove a completeness theorem by using Herbrand's
theorem plus the ground completeness theorem. Such a deductive system however,
would certainly not be practical. Somewhat less trivially, we can admit only
chaining, self-chaining, and factoring, and obtain an exact analog of Robinson's
completeness theorem for resolution. More precisely, let a{ be a set of clausec.
Let cons(¢4,0) be the set of all renamings of clauses in S, and cons(gf,n+l)
be cons(gx,n) unioned with the set of all renamings of clauses which can be
obtained by one application of chaining, self—chaining, or factoring to clauses
in cons(gf,n). Let cons(gj) be the union, for all n, of cons(;ﬁln). Clearly,
cons(q{),and each cons(gf,n) are closed under arbitrary renamings.

For the remainder of Section 4.2 we shall discuss further two aspects of
this "cons' deductive system: why its completeness theorem is easy, and why

it is not a good system.

THEOREM: If <4 is any set of clauses such that 44, has no totally ordered

model and &£& 1is a subset of %4, then [] is in cons(gf).\\
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(See Section 2.7 for the definition of &£& Y. We omit the proof because
it is exactly like the proof of completeness of ordinary resolution and because
"cons" is not really the system we are interested in anyway. In brief, by
Herbrénd's theorem (Section 3.2), subinst(qj) is ground incomsistent, so by the
ground completeness theorem (Section 3.3), [ ] is in gcons(subinst(uf)). We may
now take a ground inference of [J from subinst(yf) and lift it to an inference
of [] from ¢£. Factoring may be necessary along the way because a ground literal
may lift to a disjunction of several literals. The following simple example

shows that factoring is an essential rule. Let g4 have as its only member, C:
£(x) < f(y) v £(2) < £(t).

Then subinst(aA);contains the clause f(x) < £(x) which yields [] by ground
self-chaining, but [] cannot be obtained from ¢4/ by chaining and self-chaining
alone; in fact, it is easily proved by induction that any clause so obtained ha:
a renaming of C as a subset (remember: before we can chain two clauses, we
must rename the variables of one of them to be disjoint from those of the other.)

There are two defects of this "cons' deductive system. First, it is only
complete for total orders, not dense total orders. Second, it would be very
inefficient to implement. We now take up these defects in order.

The rules of chaining, self-chaining, and factoring are sound for all total
orders. Thus, for example, if C is the clause x < d, every consequence of (
by these rules is valid in all total orders in which C 1is valid (i.e., in which
d is interpreted as a largest element). In particular, we could never derive L

from C. Of course, if we allow variable elimination, then {J is concluded
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directly. In fact, if we add variable elimination,bthe system becomes complete
for dense total orders without endpoints, but our proof of this will be rather
indirect. First, we shall prove completeness of a weaker system under the
additional assumption that @f contains the axioms of dense total orders without
endpoints, and we shall then show that our proof rules are set up so that these
axioms can never be used.

We now state explicitly what these axioms are. When they are stated in
ordinary predicate calculus, they involve existential quantifiers, which in ouf
framework become Skolem functions. If p and g are one-place function symbols

and r is a two-place function symbol, we let ﬁkﬁC} (p,q,r) be the set of clauses,
1. p(x) <x
2. x < q(x)
3. y<x v x<rxy

by y <x V r(x,y) <y

5. EE(p):
6. EE(q)
7. EE(x).

(See Section 2.7 for the definition of EE). The Theorem above has .as an

immediate corollary:

COROLLARY: Suppose (i is a set of clauses which is not valid in any dense
total order without endpoints. Say p,q,r are not used in ﬁf . Let £& be the

set of all EE(f) for function symbols £ occurring in S. Then [} is in

cons(g U && U P& (p,q,1)) .\
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So for this we do not need variaﬁle elimination at all, but we have the
inelegant inclusion of extra function symbols q,q,r, and new axioms about them.

We now take up the second defect of this system; namely, that it is not
very efficient. We envision our system operating by starting with a finite set

zf of clauses and generating cons(aﬁ,n) successively for n = 0,1,..., until

we get [] . We have succeeded in making each cons(¢{,n) finite (up to renamingu
of variables), so that this procedure can be implemented in principle, but
unfortunately cons(g&,n) is very large, making the procedure impossible in
practice. The main problem is that a variable can unify with every term. Thus,
for each occurrence of a variable, x, on, say, the left side of a literal, we must
consider, for EACH other literal, the unification of x with the right side of
that literal. The fact that we must add in ﬁ;wﬁé} exacerbates the problem.

Even if ¢{ is empty, /@ alone contains 17 literals and 24 occurrences of
variables, resulting in 17%24 = 408 ﬁossible chainings to be investigated at tho
first step.

We now proceed to show thdat if we allow variable elimination, it will be
possible to put some restrictions on chaining and still have a complete system.
These restrictions will greatly increase efficiency for two reasons. TFirst,
we shall see by a syntactic argument that with this restricted chaining, the
axioms in Agejé)(p,q,r) can never be used, and therefore never need be con-

sidered by the prover. Second, our restrictions will, among other things, not

allow chaining on a variable.

4,3 Restricted Chaining

Let us call a SHIELDING TERM any term which is neither a variable

nor ground. Then x is eligible in a clause € iff C does not contain any
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shielding term which contains x; such a term would "shield” x from variable
elimination.

There are two motivations for our restrictions on chaining. TFirst, we want
to forbid chaining on variables, since those will be eliminated by variable eli-
mination., Second, one might expect, in view of our ground completeness fesult,
that if 14 is inconsistent and one chained oﬁly on shielding terms, one would
obtain a set my of clauses which is inconsistent and contain; no shielding terms.
If we also allow variable elimination, then variables can be removed as the
shielding terms disappear, so w;] will contain oﬁly ground terms.

In light of these motivations, we define restricted chaining and self-
chaining as follows. Suppose C is B<vy v D and o is mgu(B,y). We call
DU a result’of RESTRICTED SELF-CHAINING of C on B and 7Yy if neither £ nor

Y is a variable and one of them is a shielding term. Likewise, if C .is

o @18 \V4 D,

and @ is tr(@l,@z) (see Section 2.4), then we call
(@ § vD v F)o

a result of RESTRICTED CHAINING of C aﬁd E on B and Yy if neither { nor
Y is a variable and one of them is a shielding term,'and C and E Thave no
variables in common. Let rcons(a&,o) be the set of all renamings of clauses in

A , and let rcons(tf,n+l) be rcons(gﬂ, n) uniéned with the set of all renamings
of clauses obfained from rcons(gi,n) by factoring, variable elimination, restricted
chaining, ana restricted self-chaining. Let rcons(4 ) be the union of all the

rcons(dﬁ,n), and let rcons!(¢4) be the set of all ground clauses in rcons(;{).



36

In the next section, we.shall show that if zd is inconsistent, then so
is rcons!(al). In particular, if the language contains no constant symbols,
rcons!(;f) will be {[]}.

This result suggests two possibilities in implementations. First, one may
simply expand the proof rules to allow also chainings and self-chainings when
the clauses involved are ground; this procedure will be complete by the above
and the ground completeness theorem. However, it is fairly quick in practice
to check whether a set of clauses is ground inconsistent (although in theory this
problem is NP complete). As with checking tautologies in propositional logic,
there are better algorithms then merely searching for formal deductions. Thus,
a second possibility is to start with gﬁl and inductively construct rcons(ff),
periodically sending the list of ground clauses to the ground inconsistency
checker.

Of course, just because the restricted rules are complete does not requir:
us to use them only. There are certainly cases where a judicious use of addi-
tional chainings or self-chainings will lead to a shorter proof; for example,
one should probably always conclude D from o < o ~/ D immediately, even if
¢ 1is not a shielding term; see Section 5.1 for more on this.

Although we have used phe ground result to motivate our restrictions on
chaining, we have not yet proved anything, and one in fact must be careful to
state the restrictions correctly, or the system will not be complete., Najvely,
one might expect from the ground result that we could state our restrictions
to require BOTH B and 7Yy to be shielding terms, but this is wrong; the problem

is that a shielding term and a non-shielding term could unify to the same term.



37

Specifically, consider how to derive {71 from the clause f(x) < £(c). More
generally, the fact that variables, shielding terms and ground terms may all
have common substitution instances makes the proof of the completeness result
rather more difficult than the ground theorem.
We can now make precise our statement in the previous section that axioms
such as /9,3’(9/ (p,q,r) can never be used in a deduction from (xf,{ unioned with
5I6 (p,q,1) (assuming that p,q,r do not occﬁr in ,A) The general result

is the following, which we shall apply with ,{9__9//0' (p,q,r) as the < .

THEOREM: Suppose that J and ) are sets of clauses such that no function

symbol occurs in both J and ;) . Then

rcons(A U 2 )

rcons(A ) (J rcomns(J), and

i

rcons!(;A v J ) rcons!(g{) l) rcons! ().

PROOF: There is no restricted chaining possible between a clause in

rcons( J) and ‘one in rcons(J) \

COROLLARY: Suppose that A’ and ) are sets of clauses such that no func-
tion or constant symbol occurs in both J and 7 , and suppose that rcons(\g){ [

is ground inconsistent. Then at least one of rcons!(zf) and rcons! (<) is ground

inconsistent.

PROOF: rcons!(,é) and rcons!(~/) have no terms in common. If they both
had ground models, these models could easily be combined to form a model for

their union, which is inconsistent by the theorem. \
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The logician will recognize this corollary as a version of A, Robinson's
Consistency Theorem (see [E]), since tﬁ and 0 , when reducted to their common
language ( < and =), both yield the complete theory of dense total order with-
out eﬁdpoints.

The theorem would be false if chaining were not restricted (i.e., if we
tried to replace rcons by cons)., For example, let ng be {xv< y v ¢ < d}, and
let «J be {z <w v ¢y < dl}; by chaining and then self-chaining, cons(gf Ul
contaihs the clause ¢ < d V¥V ¢, < d , which is neither in cons(«g) nor in

1 1
cops(vﬁ),

As an example of the material of this section, let ;4/ be the set of

clauses:

1. £(x) < x
2. y<z Vv E(y) < f(2)

3. glw) < w.

These clauses cannot be valid in any total order, since if we fix v and set

z = g(£(y)), we have by (1) and (3), £(z) < z < £(y) <y, contradicting (2).
Thus, there is a deduction,of»[]‘ from these that does not use variable elimi-
nation at all. However, an algorithm that searches for a deduction using
unrestricted chaining (with or without variable elimination) by methodically
listing COES(gd,l) COHS(gd,Z), seos will waste an enormous amount of time enu-
merating all the possible chainings on variables. For example, there are a
total of 4 literals in clauses (1)...(3). Any of the four variables x,y,z,w, can

be chained with a term in any of these four literals, yielding4#4 =16 distinct
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clauses that (among others) appear in cons(g},1). Using restricted chaining.

we obtain [] very quickly. rcons(.},l) contains only:

4. y <x v f(y) <x (1,2 x/z)

rcons(éj,Z) contains (J (from 4 and variable elimihation) plus just one other
clause obtained from (4) and (2). Note that (3) was not used at all; in

fact, by the theorem above, any restricted-chaining consequence of (1)...(3)
must be either a consequence of (1), (2), or a consequence of (3) alone, so that
(3) can never be used.

One might attempt to construct a prover élong these lines that works for
arbitrary total orders, rather than dense total orders without endpoints. To
make the rules sound, some forms of variable elimination would have to be dropped.
One could still conclude ¢ < d frém c <x y x <d but not from ¢ < x V x < d
since it would not be excluded that d < ¢ with nothing between them. However,
this prover would not be nearly so efficient as our prover for dense total orders
without endpoints, since, as the above example shows, some chaining on variables
MUST be allowed. If not, then clause (3) could never be used, but one cannot
derive ] from (1) and (2) alone in a system sound for all total orders since
they have a totally ordered model. Such a model must have a first element, and
our use of variable elimination in concluding |J from (4) corresponded to the

assertion that there is no first element.

4,4 Completeness of Restricted Chaining

The main result of this section is the foliowing Theorem.

THEOREM: If subinst(4) is ground incomsistent, then reons! (Jf) is

ground inconsistent.



40

Thus, one may derive [ from ¢4 by restricted chaining followed by ground
chaining applied to purely ground clauses. Before we proceed to the proof, we

note the following corollary.

COROLLARY: 1If there is no model for ué( which is a dense total order with-

out endpoints, and £ & is a subset of 4 , then rcons!(g{) is ground incon-

sistent.

PROOF OF CORbLLARY (assuming Theorem): Let <5( be the set of function and
constant symbols used in 4. Then &£ % means the set of all EE(f) for function
symbols £ din L. Let P,q,T be the function symbols which do not occur in aff,
with p and q one-place, and r 2-place. Let g;f/be &f U {p,q,r} and let
tj// be $f U E}%Qég (p,q,r). Then gd has no totally ordered model, and by
definition of £9~Qé¥, AJ/ contains EE(f) for all function symbols f of _7/
By Herbrand's theorem (Section 3.2) applied to ;J/, subinst(¢ﬁ/) is ground in-
consistent, Thus, by the Theorem, reons! (A7) is ground inconsistent. By the

corollary in Section 4.3, rcons! () is ground inconsistent, since

rcons! (N I8(p,q,r)) is not ground inconsistent (and is in fact the empty set).,

We now begin a sequence of lemmas heading towards a proof of the theorem.
Call a substitution function W REPLETE iff for each term o of ??f there are
infinitely many variables x such that x Uy dis «. We shall concentrate our
efforts on the special case where ¢f is finite and there is a replete U such
that 24 U is ground inconsistent; later, in the proof of the theorem, we shall
see that this special case was sufficient. This 1 will be called the MAIN sub-

stitution, and will not change throughout our argument. Another substitution, o

will be called CONSISTENT with u iff for each variable x, xu = xop (and
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hence, oy = a0y for all terms o). An application of a proof rule (chaining,
self-chaining, or renaming) will be called CONSISTENT with W 1iff the substi-
tutiop function used is consistent with U. We shall in fact show that one
can derive [] using only steps consistent with U ; of course, we also allow
variable elimination, which, since it does not involve a substitution, will always
be considered to be consistent with 1 . It is easily checked that if o and 6
are terms and oY = By, then mgu(a,B) is consistent with p . Thus, for examplc,
if we are arguing from o < B and B' < Yy and By = B'p, then there is a possibility
of chaining (assuming that our other restrictions on chaining are met); if the
variables in these two clauses are not disjoint, we may first apply renaming;

_there is a consistentkrenaming because U 1is replete.

Let reconsl(ql,O) be the set of all consistent (with Y ) renamings of clauses
in ¢4 ( 4 will always be clear from context). Let reconsl(,.{ ,n+l) be
rconsl(d ,n) unioned with all consistent renamings of clauses obtained from
rconsl(¢4,n) by one application of variable elimination or of a factoring, re-
stricted chaiﬁing, or restrictéd self-chaining consistent with u . Let
rconsl(¢i) be the union of all reconsl(¢4,n).' Let reconsl!(<§) be the set of
all ground clauses in rconsl(¢4).

We wish to show under sﬁitable hypotheses (see Lemma 7) that reconsl!(g()

is ground inconsistent. As a first step, we see that we can remove all eligible

variables.

LEMMA 1: Assume that Aé 1 is ground inconsistent. Then there is a set
<) of clauses obtained from 4{ by variable eliminations alone such that AT

is ground inconsistent and no clause of U has any eligible variables.
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PROOF: ‘For each C in éf, let C' be obtained from € by variable
eliminations so that C' either has no eligible variable or C' contains a
literal of the form x < x (see Lemma 2 of Section 2.5). Let < be the set of
those C' which do not contain any literals of the form x < x. Then any ground

model for )| can be extended to a ground model for Ju

-

The main idea behind the proof of the theorem will be to try to reduce the
number of shielding terms of % by chaining; observe that if ¢{ had no shielding
terms, the <7 of Lemma 1 would be purely ground, so reconsl!(ri), which contains

<J (=Ju if <) is ground) would trivially be ground inconsistent. Let ST({G)

be
{ay : o is a shielding term in f!}.

This will be more useful than the set of shielding terms of /f, since it will
not change under renamings consistent with W . However, there may be a problom
chaining away members of ST(¢J) since under U a shielding terﬁ could match a
variable, making some chainings illegal. For example, let gf be {x < ¢, ¢ < £(y)}.
with x4y = £(y) and vy = y. Then our restrictions forbid us from chaining on

x and f(x) to obtain ¢ < ¢c. Of course, in this case we conclude UJ directly

by variable elimination. In general, the proof of the theorem will be by first
applying variable elimination to gf as per Lemma 1 to remove eligible variables,
and then show (Lemma 3) that then no member of ST(J/) of maximal height (or com-
plexity) can match a variable, so that these can be chained away (Lemma 6). Then

the proof of the theorem will involve (in Lemma 7) an induction on the maximal

height of the members of ST(({). Formally, we define the HEIGHT, ht(o), of
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any term o by:

The height of a variable or constant symbol is 0,

ht(f(al ces un)) =1 + max(ht(al) oo ht(an)).

If xd is finite, let MH(%!) be the maximal height of all elements of ST(«/).

1f ST(ﬁJ) is empty, we set ME(J ) to be O.

LEMMA 2: Assume that %f is finite, the wvariable =x and the shielding

term o both occur in 'ﬂ/, and x dis used in o . Then ht{xyu) < MH(;{).
PROOF: ht(xu) < he(ou) < ME(J).\

In particular, if =x is not eligible in any clause of ¢1, ¥ is used

within some shielding term, so

LEMMA 3:° Assume that 4 is finite and has no eligible variables and x

is a variable occurring in A . Then ht(xu) < MH(zJ);\

We now shall attempt to show (Lemma 6) that we may start with A having no
eligible variables and eliminate all members of ST(#) of maximal height by
chaining. This will be an induction on the excess literal parameter resembling
the ground completeness theorem. It will be important for the induction that
vériable elimination is not used at this point. Let rconsZ(g4,0,k) be the set
of all consistent (with | ) renamings of clauses in A . Let rconsZ(y{,n+1,k)

be reconsZ(Ql,n,k) unioned with all consistent renamings of clauses obtained
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from rconsZ(‘J,n,k) by one applicatién of a factoring, restricted chaining, or
restricted self-chaining consistent with y , where, in the chaining and self-
chaining, we have the additional restriction that the terms B, <Yy chained upon
satisfy that ht{Bu) (= ht(yu)) > k. Let rconsZ(a{,k) be the union of all
rcon82(¢i,n,k). Let rconsZ!(xf,k) be the set of those clauses C in rcons2(./, k)
such that € contains no shielding terms o with ht(ap) > k. We shall show
(Lemma 6) that if ¢jL1 is ground inconsistent, U is replete, and ht{xu) < k
for all variables =x occurring in ﬁf, then (rconsZ!(qf,k))u is ground incon-
sistent. The proof will be an induction on the excess literal parameter re-
sembling the proof of the ground completeness theorem in Section 3.3; the 7
there is analogous to the set of shielding terms o with ht(ap) > k here.
Analogously to the ground case, we state a result saying that if we have a de-
duction from éi, a clause D may be stuck onto each line as a disjunct. The
actual statement of the lemma is slightly more compiicated, since the various
chainings in the deduction from wf will introduce substitution instances of D.

Call D' a STRENGTHENING of D iff there are substitutions, © Op con~-

IERREY
sistent with U such that D' dis a subset of

DO,V aee V DGP.

An easy induction shows:

LEMMA 4: Suppose that D is any clause and that for each clause C in . 7

A

there is a strengthening D'(C) of D such that C ~ D'(C) is in xf. Let T Dhe

in rcons2(< ,k). Then there is a strengthening D" of D with E v D" in

reons2 (4,k) .\
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It is important here that we are not allowing variable elimination. TFor

example, if C 1s the clause x < ¢, and D is the clause f(x) < g(x), then

variable elimination would allow us to conclude 0 from C, whereas there are

no inferences possible from C v D.

. In our applications of Lemma 4, D'(C) will actually be empty for all but

one C. It may still be the case that the D' obtained may very well be longer

than D, as it may be a disjunction of several different substitution instances

of D. For that reason, our proof of Lemma 6 will be by induction on the excess

literal parameter of ¢fu, not of Qd.

We first list some elementary properties of strengthenings which will be

used without comment in the proof of Lemma 6.

LEMMA S: Let D' be a strengthening of D. Then

.

LEMMA 6: If
in gi, and ¢{u

consistent.,

D'y is a subset of Duyu.

If ht{xyu) < k for all variables x occurring in D,

then the same is true for D',
If ht{ap) < k for all shielding term o occurring in

D, then the same is true for D'.

U is replete, ht(xu) < k for all variables x occurring

is ground inconsistent, then (rconsZ!(gﬁ,k))u is ground in-
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PROOF: By compactness, we may assume that z{ is finite, and we proceed
by induction on the excess literal parameter, elp(/d]i ). If this is zero,
we eliminate a bad cycle as in the ground case, but we must be somewhat careful
because of our restrictions on chaining. Let be(sA) be the shortest length of
a bad cycle in ¢£u (defined only when elp(,AJ W) is 0). Observe that if ¢!
is a unit clause (i.e., of length 1) in g{u » then by factoring there is a unit
clause C in ;a/ such that C' is Cu. Thus, if bc(;/) is n, rconsZ(gf,k)

contains clauses of the form:

onl@lBl s eses ocn@an s

where 1 < n, (Bi)u = (ui+l))u, (Bn)u = (al)u , and at least one of the @i is

< . The conclusion is trivial unless for some i, either o is a shielding term
aﬁd ht((ai)u).z k or Bi is a shielding term and ht((Bi)u) > k. For definite-
ness, say Bl is a shielding term and ht (( Bl)u) > k. Since (az)u = (Bl)u has
height > k,laz is not a variable. It follows that restricted chaining can be
applied to al @181 and a2@262 to shorten the length of the bad cycle. In the
special case n = 1, we apply self-chaining instead.

For the induction step, we assume elp(gfu) > 0, and that the lemma holds
for smaller values of elp. By definition of elp, LU must contain a non-unit
clause, so it must contain a clause of the form C' V D', where C' and D'
are non-empty. Then & contains a clause of the form € D, where Cu is C' -
and Dy is D'. Let ~J be obtained fromv¢4 by replacing C v D by C. The
inductive hypothesis applies to .0 , so there is a finite subset, & , of
rcons2(J,k), such that ¢§Ll is ground inconsistent and for each shielding term

¢ occurring in &, ht(ap) < k. By Lemma 4, for each E in & there is a
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strengthening, D"(E) of D such that E v D'(E) is in rconsZ(xJ). Let ZL(E)

be obtained from o by replacing C « D by D"(E). Then the inductive hypothesis

applies to each 7L(E), so there is a finite subset 7#(E) of rcons2(%Z4(L))

such fﬁat (“#(E))u  is ground inconsistent and for each shielding term o oc-

curring in  7#(E), ht(an) < k. Let 1J(E) be obtained from 4 by replacing

C ¥V Dby E v D"(E). By Lemma 4, for each E in & and each F in #(E),

there is a strengthening E"(E,F) of E such that F v E"(E,F) is in

reons2 ("J(E)). However, every clause in lka) is in rcon32(¢f), so each

F « E"(E,F) is in rcon32(¢{) and hence in rconsZ!(éi). But then (rconsZ!(@/,k))u

is ground inconsistent. To see this, suppose it had a ground model. For each

E in &, there must be an F in 4 (E) suchbthat Fu is false in this ﬁodel,

since (7 (E)) U is ground inconsistent; for this E and F, (E"(E,F))u is true

in this model. But (E"(E,F))u dis a subset of EU , so EuY is true in Ehis

model for each E in 5p, contradicting the fact that W is gtound inconsistent . .
Observe the asymmetric nature of the proof of Lemma 6. For each E in

D'(E) may be & different variant of D, with differing shielding terms and

ground terms. Thus, as E ranges of &, the ?(E) and the way we obtain them

may bear no relationship to each other.

LEMMA 7: If y4 is finite, 1y dis replete, and aﬁuvis ground inconsistent,

then rconsl!(¢4) is ground inconsistent.

PROOF: This will be an induction on MH(;J), s0 assume that k = MH(@i) and
that Lemma 7 holds for all sets with MH less than k. By Lemma 1, there is an

/s . rd
x4 obtained from g{ by variable elimination alone such that gfu is ground
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inconsistent and gf/’has no eligible variables. Then MH(¢J/)_i ke If x 1is

any variable used in S', then by Lemma 3, ht(xu) < k, In particular, if k is

0, then xgjjcontains no variables whatever, so ¢J/u is /d/, and the lemma>

follows trivially. If k > 0, observe that MH(:consZ!(¢J/,k)) is less than k

by definition of rcons2!., By Lemma 6, rconsZ!(zll,k) is ground inconsistent,

so by the inductive hypothesis, reconsl!(rcons2!(14/,k)) is ground inconsistent; -

but this is contained in rconsl!(iﬁ).\

-

PROOT OF THEOREM: Assume subinst(J) is ground inconsistent. By compact-
ness, some finite subset of subinst(q4), /47 , is also ground inconsistent, and
/ﬂ involves substitution instances of some finite set D of 'g{. Since
renaming is a proof rule, we may assume that any two clauses in .. have dis-
joint sets of variables. Furthermore, we may assume that .Zg contains exactly
one substitutibn instance of each clause of J; if Zj contains more than one
instance of a given clause, we may instead replace that clause by a finite
number of renamings of itself. Since variables occurring in distinct clauses
are distinct, there is ONE substitution, W , such that _Ay is the set of all
Cu for C in J. Since what pu does to variable not occurring in 7/ is
irrelevant, we may modify it on these variables to make it replete. Then by

Lemma 7, rconsl!(<)), and hence rcons!(4]) is ground inconsistent.\

4.5 Equalitvy Axioms and Skolem Functions ' "

In practice, our set ;{ of clauses usually is obtained, via
Skolemization and other syntactical transformations (see Section 1.5), from a

set of sentences in ordinary predicate logic. Up to now, this has not been
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relevant, since we dealt directly with <¢( without caring about how it was
obtained. 1In particular, our theory has made no distinction between the func-
tion symbols used in the original sentences and the new Skolem functions intro-
cuced in obtaining ¢1. However, there is an important distinction which we
examine in this section, namely, it is never necessary to use equality axioms
for the Skolem functions.

We begin with some remarks on the role of equality axioms in ordinary
predicate logic. It is possible to treat the symbol = as just another binary

relation symbol, provided that in our structures, we allow = to be interpreted

as an arbitrary binary relation; call such a structure a WEAK STRUCTURE. With

this in mind, let EQ be the sentence that :states that = is an equivalence

relation. Let <A be a set of sentences in a language c;(- If £ 4dis an n-place
function symbol, let EE'(f) be the sentence
\/Xl... vV Yy e \/yn((xl =y, & 0. & x = yn)-€>

1 n

‘

. f(xl oo xn) = f(yl v yn)).
If P is an n-place predicate symbol, let EE'(P) be the sentence

VX1~.. Vxn Vylo-o "‘/yn((xl = yl & ° oo Xn = yn)~__.>

P(x1 ces xn) > P(yl cee yn)).

Call a WEAK MODEL for ¢! any weak structure satisfying all the sentences in f

e s
whereas a STRONG MODEL is one in which = is interpreted as real equality. Let
é:é” be the set containing EQ plus all the EE'(f) and EE'(P) for f and P

P ‘ , .
in <§€. If £& is a subset of ¢<, then ¢J has a weak model iff VJ has a
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- strong model, since in any weak model, the equivalence relation defined by the
interpretation of = may be factored out to produce a strong model. Also w%

may be skolemized to produce a set .7 of universal sentences in a larger

+ b . . . 2
language, X ; so =7 contains some function symbols not present in o7 .

7

Then < has a weak model iff «J) has a weak model, and <! has a strong model
iff J has a strong model; the proof here has ﬁothing to .do with the presence
or absence of equality axioms; we siﬁply note that any model (weak or strong)
for <J is a model for y{, whereas any model for Hﬁ{ can be made into a model
for <7 by appropriate choice of interpretations for the Skclem functions.
Thus, if gg/ is a subset of ,g(, we have that ¢£ has a weak model iff 7 has
a weak model iff éf has a strong model iff §;7 has a strong model. Observe
that (25/ contains only equality axioms for the symbols of C;f, and not for the
new Skolem functions of &Jfé

It thus follows, in thevgenéral framework of resolution, that one never
needs to use an equality axiom, ER'(f), when £ is a Skolem function. This
is also true ih the system discussed here, but requires some additional dis-
cussion, since wé do not have a symbol for =, and we expressed the equality
axioms & & in terms of < an& <; the axiom EQ 1is never used, as it is
subsumed in the transitivity of <,

A PREORDER on a set A isvany relation, < , on A, which is transitive
and reflexive. Such a preorder defines an associated equivalence relation on
A, ~, defined by x ~y iff x <y and y < x, and it defines an associated par-
tial order, <, defined by x <y iff x <y and not y < x. In general, x <y
does NOT imply that x <y or x = y, since we may have distinct x and y with

X~y
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Letbcjf be a language in ordinary predicate logic such that (7( contains
the binary relation symbols = , < , and < , plus some (possibly empty) set of
function and constant symbols; we now view = as a non-logical symbol. Let V{
be a set of sentences of 5(. A WEAK PREORDERED MODEL for «4 is a structure
£2‘ which satisfies a/ and in which < is interpreted as a preorder and =
and < are interpreted as the associated equivalence relation and partial order
respectively. A WEAK PRE-TOTALLY-ORDERED MODEL for ,f is a weak preordered
model that satisfies Vx Vy(x Sy vvyv<x) i.e., < defines a total or-
dering in the usual sense on the equivalence classes. Likewise, a WEAK PRE-
DENSE~TOTALLY-ORDERED MODEL is a weak pre-totally-ordered model in which <
defines a dense total ordering without endpoints on the equivalence classes.

If we drop the "weak", we get the corresponding notions of an ordered model,
totally ordered model, and dense-totally-ordered model, in which the equivalence
relation corresponding to < (i.e., the interpretation of =) is required to

be identity. Such a model may be obtained from a weak model by passing to the
set of equivaience classes, PROVIDED that the functions of .7, factor through
the equivalence relation. We thus have the following definition and lemma.

If £ is'an n-place function symbol, let EE'(f) be the universal closure
of the clause EE(f) (see Section 2.7); so the only distinction between EE and
EE' is that EE is a clause whereas EE' 1is the corresponding sentence in
predicate logic. Let EE'(X) be the set of all EE'(f) for £ in . Let

EE(X) be the set of all clauses EE(f) for f in -

7

LEMMA 1: Let gf be any set of sentences in ¢${. Then gj has an ordered

model iff 4 U EE' () has a weak pre-ordered model. Likewise for totally

ordered models and dense totally ordered models.\
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Now, the herbrandization procedure described in Section 1.5 obtained from
A a set herb(4) of clauses, expressed in a language herb(./) equal to 7
plus some Skolem functions. Besides purely logical manipulations, this pro-
ceduré involved the equivalence of a = b with (a < b) & (b < a), which is valid
in all weak pre-ordered models, and the equivalence of a < b with — (b < a),

which is valid in all weak pre-totally-ordered models. Thus,

LEMMA 2: Let o be any set of sentences in .% . Then ;A has a weak pre-

. :
totally-ordered model iff herb(« ) does. Likewise for weak pre~dense-totally-

ordered models.\

Since herb(EE'(X)) is just EE(S), we may apply Lemmas 1 and 2 to get

LEMMA 3: Let 4 be any set of sentences in % . Then ﬂ{ has a totally
ordered model iff herb(d ) (/ EE(.Y) has a weak pre-totally ordered model.

Likewise for dense totally ordered models.\

Observe that there is no need here for the equality axioms épplied to the
Skolem functions. We now proceed to see what the results of this paper say in
the context of weak models.

In the discussion of ground models (see Section 3.1), little is changed,
since we are regarding terms as constant symbols. Thus, call a WEAK GROUND
MODEL for A\ a quadruple (CZS<<, < ,F), where < 1is a preorder and < is the o
associated partial order, and F dis as in the definition of Section 3.1. If

~ 1is the associated equivalence relation, we may form (2, <, <,F)/~ .

LEMMA 4: If (@, <, <,F) is a weak ground model for . , then (&, <, <, )/~

is a ground model for 4 .\
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This passage to the quotient structure was used also in the proof of the

ground completeness theorem (see Lemma 1 of Section 3.3).

LEMMA 5: 4 has a ground model iff  has a weak ground model iff  has

a weak ground model in which F is 1-1.

PROOF: Any weak ground model can be factored into a ground model by Lemma 4.
Conversely, given any ground model, (zbﬂ <, G), we may define é weak ground model
(4,<, <, F) in which . is the set of terms occurring in ¢! and F is the

identity.\

We may also state the analogue of Herbrand's theorem. It is actually some-
what easier here, since when F is 1-1, we do not have to worry about whether
the interpretations of the function symbols are well-defined. As in our previous

Herbrand theorem, we do need to observe that any preorder may be extended to a

pre-total order.

LEMMA 6: If subinst(al) is ground consistent, then qé -has a weak pre-

totally-ordered model.\

We now examine the completeness results in Section 4.4 in our new context.
The main theorem remains unchanged, since the notions of rcons! and ground in-

consistency have not changed. The corollary, modified for weak models, becomes,

LEMMA 7: 1If &1 has no weak pre-dense-totally-ordered model, then rcons!(, ')

is ground incomsistent.
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PROOF: Exactly as in Section 4.4, but without the mention of EE. 1In

particular, [90& (see Section 4.2) now contains only 4 clauses.\

The following theorem now says that one never needs equality axioms for

the Skolem functions.

THEOREM: Let cJ be any set of sentences in A such that d[ has no

dense totally ordered model. Then rcons! (herb(d) U EE(X)) is ground in-

consistent,

PROOF: By Lemma 3, herb(J) U EE(X) has no weak pre-dense-totally-

ordered model, so Lemma 7 appliesf\
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5. Conclusion

5.1 Comparison of Theory and Practice

The actual system of Bledsoe and Hines [BH] is somewhat more
complicated than what we have described here. It employs a number of heuristics
designed to obtain deductions more quickly. In some cases, these heuristics
lead to incompleteness.

One additional rule applied is that of reduction. If € is any clause,
let REDUCE(C) be the result of deleting from € all literals of the form
o < . In the system of [BH}, each C, as it is obtained, is immediately re-
placed by REDUCE(C). It is not hard to see that this rule leaves the system
complete.

Another rule involves the elimination of tautologies. C is called ab
TAUTOLOGY iff ‘C is valid in all totally ordered structures. Since a tautology
"says nothing'”, it is tempting to throw out taufologies as they are produced;
equivalently, -to allow aﬁ application of a proof rule only when the resultant
clause is a tautology. Observe that it is decidable, by a transitive closure
algorithm, whether C 1is a tautology; however, the actual system of [BH] only
looks for tautologies of a very special kind, for which the decision procedure
is quicker. Say C dis a type 1 tautology iff C contains a literal of the
form oo < 0. Say € 1is type 2 iff C contains literals of the fprm u@lB and
B@zu , where at most one of @l and @2 is <, It is easily seen that the system
remains complete if it is modified.to throw out type 1 tautologies.as they are
produced. The system of [BH] throws out both type 1 and type 2 tautologies,

however, and this leads to incompleteness, as the following example shows.
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Let ,J be the set of

c <EX) v d<fx) v e< £(x)

flx) <¢c v f(x) <d Vv f(x) < e

Then A is ground inconsistent. However, with our restrictions, every possible
chaining on‘fi results in a type 2 -tautology.

Another feature of the [BH] system is that variable elimination is manda-
tory. Thus, as soon as C 1is produced, C is replaced by a clause, D,
obtained by applying variable elimination to C wuntil all eligible variables
are removed. [This seems reasonable since »C and D are equivalent in all
dense total orders without endpoints, and D is simpier. However, we do not

know whether the system remains complete with this rule.

5.2 An Example

We present here an example which illustrates some of the points
in this paper. The example expresses the fact that if a and ¢ are real
numbers, there is no continuous f with £(a) < c and Y x > a(f(x) > c).
Clauses (1) and (2) below express this property of f; here, a and c are

constant symbols. Continuity is expressed by
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Vx Vyl Vy2 Hxl 3X2 \7"\7(}’1 < f(X) < yZ"""“‘i’
Xy <x < %, & (Xl < v < %, e vy < f(v) < YZ))’

which becomes clauses (3) to (6) below; (7) is the equality axiom for £,
As we pointed out in Section 4.5, it is not necessary to postulate equality

axioms for the Skolem functions L or R. So, we shall derive {1 from:

1. f(a) <c¢
2. x<a vec<i®
3. £(x) 2y, v vy, SE v Lx,y,y,) <x

4, £(x) f_yl NV Y, <f(x) y x< R<X’y1’y2)

5. £(x) 2y vy, 2E() Vv SLGLYLY,) Y

R(£,7157,) £v vy, <£W)

6. £(x) <y, vy, <fx VvILEy.y) V
1 2 1772

R(X,5,,¥,) 2 v V £(v) <y,

7. x<y Vy<x v i <1y

This example serves to illustrate a number of points. First, it requires
the order to be dense; that is, (1) - (7) can be satisfied in non-dense total
orders; thus, variable elimination (VE) would be required in the derivation of
0J even if we dropped all restrictions on chaining. Second, it will serve to
illustrate how the inductive proof of completeness can be used (by humans) to

construct a derivation of []; if one has in mind an informal proof of contra-

diction, an examination of that proof will yield an inconsistent set of ground
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instances of the given clauses, and then the procedure of eliminating shielding
terms, starting from the ones whose ground instances have greatest height will
produce a derivation of []. Finally, this example illustrates the level of
difficulty with which provers based on the present system can be expected to
cope. It was tried on the prover set up at Austin by Bledsoe and Hines (see
[BH]). UNote that clauses (5) and (7) are not needed for the proof; when the
prover was given the list with (5) and (7) deleted, it found a proof of [] ,
but when it was given the entire list, it failed.

Ve now give an informal mathematical proof that (1) - (7) are inconsistent.
This proof requires that the order is dense and without endpoints. For such an
order, we may, as in the discussion of [ .J& in Section 4.2, introduce functions
D apd r so that for any x we have p(x) < x, and whenever x < y, we have
x < r(x,y) <y. Now, by (1), p(f(a)) < f(a) < c. So by (3) and (4),
L(a,p(f(a)),c) < a < R(a,p(f(a)),c). Then (6) gives f(r(a,R(a,p(f(a)),c)) < c,
contradicting (2), since a < r(a,R(a,p(f(a)).

This informal proof tells us what the inconsistent ground instances of (1)-
(7) are; of course, these are not inconsistent alone, but they are inconsistent
if put together with some instances of [ J& . Then when we follow our pro-
cedure of eliminating first the shielding terms whose ground instances are of
greatest height, this translates into some variable eliminations if those

shielding terms begin in p or . We display these ground instances after

the :: following the clause.
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1. f(a) <e

2. x<a vec<£fx ::r(a,Ra,plf(a)),e))/x

3. f£(x) Sy vy, 2 f(x) Vv L(X,yl,yz) <x i
a/x, p(f(a))/y,,cly,

be £(0) Sy v oy, SEG) W ox < R(5,YgLY,)
a/x, p(£(a))/y,,cly,

6. £() Ly vy, 2EG) Vv Ly, V

R(x,yl,yz) <v V() < Yy

1: alx, p(f(a))/yl, c/y2, r(a,R(a,p(f(a)),c)) /v

The indicated substitutions will lead to a set of ground clauses that is

inconsistent with the following ground instances of Q;~95%
a. p(f(a)) < f(a)

b. a < r(a,R(a,p(f(a)),ec))

c. r(a,R(a,p(f(a)),c)) < R(a,p(f(a)),c))
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The shielding term of greatest height in its ground instance is the f(x)

from (2) and £(v) from (6), so we should chain (2) and (6), after which they

will no longer be used:

8. v<a \/c<y2 \/'f(x)f—}’l ) yzﬁf(x) \Y
v < L(X,Yl,yz) \% R<X,Y19Y2> v

(2 (v/x), 6).

t:oz/x, pE@@) )y, efy,, (a,R(a,p(E(a)),c)) /v

We now have (1), (3), (4), (8) as active clauses, and the shielding term of next

greatest height is the v of (8), which becomes r(a,R(a,p(f(a)),c); since r

comes from 1§:9@3 we eliminate it by VE. This corresponds to the ground step

of chaining it against (b) and (c).
9e r(xyyy)) fa Ve <y, N Of(x) <y oy
Yz < £(x) \/ R(nyl,yz) < L(X:ylsy2)
(8, VE)

[ a/x, p(f(a))/}’l, C/Y2

We now have (1), (3), (4), (9) as active clauses, and the next shielding terms

in ground instance are L{a,p(f(a)),c) and R(a,p(f(a)),c), so we eliminate them

in order to get:
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10. R(x,yl,yz) <a Ve < Y, WV f(x) A2 Y
372 f__ f(X) ~ r(X,}’la}’z) <x

(3,9

11, f(x) < Y1V Y, <fx) Vx<ave <,y2

r(X,y,5y,) <x

(4,10)

12, £(x) j.yl Vv Yz.ﬁ f(x) v x<a Vv ¢ < Y,

(4,11) :: a/x, p(f(a))/yl, C/Yz

In obtaining (12), we used REDUCE (see Section 5.1) to drop the x £ x. Now (1)
and (12) are active clauses, and the next shielding term in ground instance is

p(f(a)), which is removed by VE. This corresponds to the ground step of chaining

against (a).

13. Yy < fx) Vv ¢ < Yo, ¥ x < a (12, VE) :: a/x, c/y2

y2 is likewise removed by VE to get to a situation where there are no eligible
variables. This VE step does not correspond to an instance of @VQQ-, since it
would be valid in any total order; we could have also obtained (14) from (13)

by self-chaining on Ygs except that this is forbidden in our system because v,

is not a shielding term.

14, ¢ <f(x) Vv x<a (13, VE)
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Now we eliminate f£(x) by chaining with (1)
15. ¢ <e ¥ a<a (1, 14, a/x)

(15) is ground incomsistent. The actual prover would REDUCE it immediately e

to [].

5.3 Possible Generalizations

The logician will recognize some features of the system described
here which might apply in a more general context. In ordinary predicate logic,
let J be the theory of dense total orders without endpoints, expressed in a
language 7 consisting of symbols for < and = . Then J is complete and
decidable, and moreover admits quantifier elimination; that is, every formula
of cj’ is provably from J equivalent to a quantifiér—free formula. Now, let
<;f/ be the language ;>{ with a finite set of function and constant symbols

added, and let CQ’ be < plus a finite set of new sentences of ;;”’. What we

-/
have presented, in the format of resolution is a prover for consequences of ’

that uses the quantifier elimination for :9 to obtain a significant speedup
over a pure predicate calculus prover applied to wj/.

We do not know the extent to which the results of this paper can be gene- Ny
ralized to other theories that admit quantifier elimination. Some of our
arguments certainly do, but other features, such as the specific definition of “ ’
chaining and our restrictions on chaining shielding terms seem specific to total
orders. The system of [BH] actually handles + as well; that is, < is essen-
tially the theory of densely ordered Abelian groups. One may neglect the fine

points discussed in Section 5.1 and use this <J to define rcons in direct analogy

with Section 4. We do not know whether the analogous completeness result holds.
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