APRVR: A PRIORITY-ORDERED
AGENDA THEOREM PROVER

by

WILLIAM MABRY TYSON

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
August 1981

* APRVR: A PRIORITY-ORDERED

AGENDA THEOREM PROVER

APPROVED BY SUPERVISORY COMMITTEE:

Copyright
by
William Mabry Tyson
1981

@

TO
DODY, KATHY,
AND MY PARENTS

ACKNOWLEDGMENTS

I am deeply indebted to Woody Bledsoe, my advisor, for all his guidance and help. He has
been a source of ideas and inspiration and an example of excellence as both a researcher and a
person.

I would also like to express my thanks and appreciation to the rest of my committee: Dan
Chester, Don Good, Bob Simmons, John Alexander, and Jay Misra.

Clive Dawson has given me great {echnical support but even that is secondary to his friendship.
Rich Cohen has also given his support and friendship.

There is really no way to express my thanks to my parents who have provided me with a good
base and have continued to support me throughout.

Although she is too young to understand, I must acknowledge the patience of my daughter
Kathy while she shared her Daddy so he could write his “book”.

My most sincere gratitude and love go to my wife Dody. She has given her love and gentle,

yet strong, support throughout this work and, meanwhile, given us a very happy life together.

This work was supported in part by National Science Foundation grant MCS 80-11417.

APRVR: A PRIORITY-ORDERED
AGENDA THEOREM PROVER

Publication No.
Williamm Mabry Tyson, Ph.D.
The University of Texas at Austin, 1981

!

Supervising Professor: W, W. Bledsoe

This dissertation is concerned with research in automatic theorem proving by computers.
Discussed herein are issues involved with designing a natural deduction theorem proving system
whose search is guided by the priorities assigned to the formulas it attempts to prove and the
methods used to prove them. A list of the tasks to be done is kept in an agenda ordered by
these priorities. A particular implementation of a priority-ordered agenda theorem prover, named
APRVR, is described but the main purpose of the research is to explore the advantages and problems

of using this search strategy for theorem proving.

The first chapter introduces theorem proving in general, and natural deduction theorem
proving in particular. The need for a new combination of search strategy and control structure is
motivated and the agenda-based system is shown to fill this need. The objective of the research

for this dissertation is set.

Providing the groundwork for the later chapters, the second chapter describes the proof
methods of this natural deduction theorem prover, including subgoaling, splitting, and chaining.
The soundness of the basic deduction rules is proved in an appendix and involves a generalization

of ordinary substitutions.

vi

The agenda mechanism is described in the third chapter. The agenda consists of a list of goals,
each of which is a data structure including the formula to be proved, the method to be used, and
two separate components of the priority assigned to the goal. Some considerations are presented
for assigning the initial pribrity to the goal and the later adjusting of this priority as the proof
px.'oceeds‘ The agenda-based system allows for improvements to two existing p}ool métﬁods. More
- detail is presented in Chapter 4 of how APRVR implements this agenda mechanism.

The examples given to APRVR are described in Chapter 5 and include some problems from
symbolic logic, set theory, and group theory. The final example is a linear real inequality that
has never before been proved by machine. APRVR’s performance on these examples is discussed.
Example proofs are included in an appendix.

The conclusions of this research are presented in the final chapter with some suggestions for

future research with priority-ordered agenda theorem provers.

vii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
1.1 Theorem Proving i i e e e e e e e e e e e
1.2 Motivatior L L L L e e e e e e e e e e e e e
1.3 Dissertation L . L L . .. e e e e e e e e e e

CHAPTER 2: PROOF METHODS
2.1 Imtroduction e e e e e e e e e e e e e e
2.2 Subgoaling L. e e e e e e e e e e e
2.3 Skolemization L .. e e e e e e e e e e e e
24 ANDSPLITs et e e e e e e e e e e e e e e
25 Backward Chaining e e e e
26 Forward Chaining e e
27 CaseSplittingo e e e e e e e e e
28 OtherMethods

CHAPTER 3: THE AGENDA MECHANISM
3.1 Imtroduction L . e e e e e e e e e
3.2 Goal Structures L L Lo e e e e e e e e e e e e
3.3 Considerations for Priority Schemes
3.4 The CompomentsofaPriority
3.5 Manipulations of Priorities
3.6 Proof Methods Specificto Agendas

CHAPTER 4: IMPLEMENTATION
4.1 Introduction e e e e e
4.2 Implementation of the Proof Methods
421 Goal Types e e e e e e e
422 Priovity Details L ..
43 MultipleParentage e
4.4 Human Interaction e e

CHAPTER 5: PROBLEMS AND RESULTS

5.1 Introduction e e e e e e e e e e e e e

viii

5.4 Group Theory Problem 47
5.5 AM8B e e e e e 48
CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS
6.1 Summary L 50
6.2 Conclusions L 50
6.3 FutureDirections 52
APPENDIX A: GENERALIZED SUBSTITUTIONS AND SOUNDNESS
Al Imtroductiono 54
A.2 Soundness Results for Ordinary Substitutions e 56
A3 Generalized Substitutions 59
A4 Properties of Generalized Substitutions 80
A.5 Generalized Substitutions in APRVR e e e e e e e e e e 61
A6 Soundmess 63
A.7 Soundness Theorem for ANDSPLIT _ 66
A8 Examples. 0 67
APPENDIX B: EXAMPLES OF PROOFS BY APRVR '
Bl Proofof ®2.13 69
B2 Proofof *237 L 73
B3 Proofof AM8 83
REFERENCES 88

CHAPTER 1.

INTRODUCTION

1.1 Theorem Proving

Since the time of Thales of Miletus twenty-five centuries ago, man has been using deduction
to prove theorems. Frege formalized this into the predicate calculus 100 years ago. Fifty years
ago, Herbrand and Gentzen developed methodologies for mechanical theorem proving. For ap-
proximately twenty-five years, researchers have been making slow progress toward developing com-
puter based, predicate calculus theorem provers. The early efforts demonstrated that theoretical
procedures, while logically beautiful, are not necessarily practical. The Herbrand procedures ran
into combinatorial explosions: simple theorems were provable but the proofs of only slightly more
complex théorems were far beyond what could be computed on existing machines.

Predicate calculus is not decidable; no algorithm can exist to determine whether 2 formula
is valid or not. As a result, combinatorial explosions are inevitable. Even decidable subsets of
predicate calculus often run into this. For example, Presburger arithmetic has a time complexity

on the order of

92%*

in the length of the formula [Oppen-78].

The development of the unification and resolution theorems [Robinson-65] brought 2 flurry of
activity in computer theorem proving. The application of the basic resolution principle was again
plagued by combinatorial explosion, although it was not as bad as before. Numerous refinements
of resolution have been developed improving its performance. Research is actively being done
on resolution based theorem provers; applications include deductions on data bases and program
verification.

Resolution was not the only type of theorem proving being done. Other types of theorem

proving included those that tried to do proofs in a manner more closely related to the way people

have normally proved theorems for centuries. The earliest of these included the Logic Theorist of
Newell, Simon, and Shaw |[Newell-57] and the Geometry-Theorem Proving Machine of Gelernter
|Gelernter-59]. Research is continuing with these natural deduction type systems by Bledsoe
[Bledsoe-71, Bledsoe-78], Boyer and Moore [Boyer-75, Boyer-79], and others. Bledsoe’s natural

deduction system is in active use as part of a program verification system [Good-75].

1.2 Motivation

APRVR was based upon earlier work by W. W. Bledsoe [Bledsoe-71, Bledsde—?.?, Bledsoe-78] on
his interactive prover (to which Ishall refer by the name of its main routine, IMPLY). Both provers
are natural dedﬁction systems in first order Jogic which use the concepts of subgoaling, backward
chaining, and !orwgrd chaining. Bledsoe’s IMPLY and its offshoots has been used successru’lly in
a number of areas: set theory [Bledsoe-71], topology [Bledsoe-74], program verification [Good-75],
limit theorems [Bledsoe-72, Ballantyne-75], and linear algebra [Bruell-79]. While many (but mot
all) of the proof methods used in APRVR are similar or identical to those in IMPLY, the control
structures of the two provers are radically different. APRVR uses an agenda-based control structure

as opposed to the hierarchical control structure of IMPLY.

One of IMPLY s strongest features is its man-machine interface which allows the user 2 pumber
of capabilities to monitor and affect the progress of a proof. The user would typically watch the
progress of the proof and interact with the prover when it needed help. If IMPLY came to a goal
which was unprovable without some additional lemmas that were not supplied in the original proof,
the user could add them. If IMPLY was spending too much effort on some subgoal that the user
knew was not provable, the user could cause IMPLY to reject that subgoal. Commands existed
that would allow the user to direct IMPLY to attempt some rarely used method in order to find
the proof. Such a method might be one that was usually a waste of resources and time but was

useful on rare occasions.

During my extensive usage of IMPLY, I found that the man-machine interaction was most
often used to direct the prover toward or away from particular alternative attempts at proving
the goal under consideration. The user would realize that the prover, lefi to itself, would try

sequentially its arsenal of methods (possibly sequentially on some subparts of the hypothesis or

conclusion) and so spend a considerable amount of time going down dead-end paths before finding
the correct path. So he would alter the normal sequence of events so as to cause IMPLY to find

the proof more guickly.

Am alternative method of proceeding towards the goal became apparent. If the theorem prover
could try several possible paths to a proof for a short distance, it would have more information
about which path is best. In fact, one of the paths may have already found a proof. If not, it should
be better able to choose on which one of the paths would be best to continue. After proceeding
down this path further, the theorem prover may decide this was not as promising as first expected.
It might determine that another of the alternative paths is now more likely to return a proof. The
best action at this point would be for the theorem prover to switch over to that other path on
which it had already done some work. Even later, it might be decided that the first alternative
chosen has again become the most promising and so would be chosen to be processed further. If
no progress had been made by some much later time, the system could decide that it was time to
try some strategies that, while rarely worth doing early in the proof, might lead to a proof when

the more commonly successful strategies appeared to be failing.

What I have just described is an agenda system where the items on the agenda are the paths
attemptingbto prove the goal. This is not a new idea. For many years operating systems have
had queues that operate according to the same concept. More recently, Doug Lenat [Lenat-76]
has demonstrated the utility of an agenda system with his AM system which discovered such
mathematical concepts as primes, Diophantine equations, the prime factorization theorem, and
Goldbach’s conjecture. Peter Bruell [Bruell-?Q] developed a version of IMPLY that used a somewhat
different concept of an agenda. He only allowed tasks on the agenda that were alternative methods
of proving the same goal. When one task on the agenda had been processed, it could not be retried.

Thus there was no way to alternate between different atiempts at a proof.

1.3 Dissertation

As the potentials of an agenda system became obvious so did the problems. The agenda is a
list of ordered tasks. How does one calculate the priorities that should be assigned to the various

tasks and what factors contribute to them? Indeed, can there even be a single priority for a task or

does it depend upon the state of the proof? How can the switching between tasks be accomplished?
Would an agenda system add any power that is not available to the hierarchical IMPLY? I decided
to implement a theorem prover using an agenda-based control structure and to experiment on it to
gain knowledge about these problems. Hopefully, such knowledge would be transferable to other

provers regardless of their control structures.

For comphtational simplicity, I assumed that the priority of a task (goal) would be a single
: numbef. This allows a single ordered list of goals. Originally this number was atomic: it stood
by itself and had no subparts. After some early experiments, I found that the priority could be
readily updated if this single number was divided into two separate numbers (which could then be

arithmetically combined into 2 single number which is the priority of the goal).

The implementation of the capability to switch back and forth amongst the paths of a proof
was pot immediately apparent. The more obvious solution would have been to use the same
hierarchical IMPLY but to use coroutines (such as Interlisp’s spaghetti stack [Téitelman-’?S]) to
record the program’s status when a path is abandoned so it could be resumed later. No such

! and so it would have been mecessary to implement it.

method was available to me at the time
Even if Interlisp’s spaghetti stack had been available, it may have been prohibitively expensive to

use.

An alternative to recording the execution state of the process when it suspends a path is to
suspeﬁd the path only at specific points from which it may be easily be continued. This places
the burden upon the routines used to follow the paths to suspend themselves after recording what
information is necessary for their continuation. Interestingly, the recursive nature of IMPLY made
this fairly simple. Each time any routine wished to call the routine IMPLY to prove a subgoal,
rather than directly calling IMPLY on the subgoal, the routine would add a task to the agenda
to solve the subgoal and then would suspend itself pending the return of a value from the newly
scheduled goal. The hierarchical, recursive IMPLY is now flattened out into an agenda-based
~ theorem prover operating on a list of goals. Thus the procedure used is to have a controlling

routine that picks the most promising task from the agenda, pass conirol to the routine that is to

PAPRVR was written in the University of Texas’s version of UCI-LISP [Meehan-70] without using any features
unique to that language.

process that task, wait for that routine to finish (which should be fairly quickly), and then loop
back to pick the best task from the agenda again.

From the beginning I felt that the power of the agenda-based mechanism would be in its ability
to proceed a short way down an attempted proof and then suspend it in favor of another, now
more promising path. I realized this meant that sometimes the prover might leave the correct path
for other supérﬁcially more attractive paths but [felt that these cases would be outweighed by the
cases where it leaves an incorrect path for the correct one.

Although I had expected this to be the sole source of power, I discovered another method of
finding the proof of a goal that was impossible under the recursive IMPLY. Because all the goals on
the agenda are linked (by PARENT and SUBGOAL links), it is possible to examine the structure
of the attempted proof. This allows a goal not only to know its parent(s) and subgoals but also
to examine the whole proof tree. I discovered that when a goal succeeds partially {on one or more
conjuncts of its conclusion) but fails on the others, then this information may be useful much earlier
in the proof tree. In particular, if the goal finds a disjunct in the hypothesis and can prove the goal
if it assumes one of the disjimcts but can not prove it assuming the other disjunct, then it may
be reasonable to use that hypothesis (suitably instantiated) to be the basis for a case split much
earlier in the proof tree.

This case splitting mechanism is somewhat similar to the case splitting done in [Bledsoe-77]
but is more general. The older method. is limited to inequalities and has 2 special fnechanism built
in to pass back the imequalities that constitute the remaining cases afler some are satisfied. My
method does not restrict case splitting to cases about inequalities. When the decision is made to try
proof by cases, the task making that decision schedules the task to prove the cases. No other tasks
are burdened with extra machinery because of this capability. Furthermore, because of the npature
of the agenda, APRVR does not have to commit itself totally ¢o the proof by cases as IMPLY does.
it can still continue attempting to find a proof without doing a case split or it may also generate
several candidate case splits.

In my planning of the work to be done on agendas, I decided that it would be best if 1
were able to experiment on a domain of theorems on that was not subject to being better solved

using domain-specific knowledge. The purpose of this was two-fold. First, | was interested in

experimenting with the agenda mechanism without any interfering special purpose mechanisms for
the particular domain. By refusing to add such special purpose mechanisms, my effort could be
concentrated solely on the problems of working with an agenda rather than trying to work on the
special purpose procedures and their interactions with the agenda. Furthermore, whatever power
1 developed in my system could credited to the agenda rather than being passed off as a result of
some powerful special purpose mechanism I might have employed. Secondly, this theorem prover,
while based partly in concept on IMPLY, was all new code. By starting out fresh, I was a number
of man-years behind other existing theorem provers in the development of the basic theorem prover
and any special purpose mechanisms. I did not want to have to compare my system to others that

had been much more extensively developed.

‘Considering all this, I decided to develop my system using as a domain some theorems from
Principia Mathematica [Whitehead-70]. These theorems are purely légical and do not include any
functions that might be attacked by special mechanisms. Unfortunately, for the theorems I did,
my system was too powerful for these simple logical concepts. It employs logical reasonings that
were not yet proved valid by the propositions preceding the proposition being proved. Therefore
it was necessary to treat the logical symbols of the propositions differently than the normal logical
symbols operated upon. Proof techniques such as ANDSPLIT, backward chaining, and forward
chaining could not be used (directly) on these theorems; but I was not interested in proving difficult
theorems, only in exploring priorities and agendas.

After developing APRVR on the rather barren propositions from Principiz Mathematica, |
attempted and proved some more traditional theorems. The first set were some basic theorems
about sets and their complements, intersections, and unions. The most complex of the theorems was
DeMorgan’s Law that the complement of the intersection of two sets is the union of the complements
of the sets. Following this, I proved a standard theorem for resolution theorem provers: If the square
of every element in a group is the identity element, then the group is Abelian.

Finally, I attempted and proved 2 very hard problem that had never been proved before by
machine. This particular problem, calied AMS, is due to my advisor, W. W. Bledsoe, from his
work in proofs involving linear real inequalities. Specifically it comes from 2 proof of the theorem

that a continuous function attaius its minimum over 2 closed region. It is quite difficult even for

people and I challenge the reader to attempt this theorem before proceeding. Note that although
the problem depends heavily upon inequalities, no special purpose machinery was built in for that
(although such machinery very well might have sped up the solution of the problem).

AMS:
Vi[L<t = F(L) < F(t)]
AVz{(z>L = 3t{t <z A F(z) > F(t)})
AVw3g [F(g) < F(w) A VZ'(F(z') < F(w) = g < Z)]
= 3JuVt F(x) < F(t')

CHAPTER 2.

PROOF METHODS

2.1 Introduction

Before getting into the details of the agenda mechanism, it is necessary to describe the nature
of the tasks that will be put onto the agenda. In order to do this, I shall describe the proof methods

used.

Theorem proving is not an easy task for people; yet, people are much more proficient at it than
machines. Researchers in automatic theorem proving are trying to understand the many methods
(logical and extralogical) used by human theorem provers to find proofs and to incorporate them
into their computer theorem provers. I feel that until such time 2s we understand these human
techniques better, it is best to use theorem provers, described as natural deduection theorem
provers, that generate proofs that are somewhat similar to those generated by people. Hopéfully,
because of this similarity, a natural deduction theorem prover will lend itself to the adoption of the
" methods used by people as we discover how to do them on a computer. Unfortunately, a natural
deduction theorem prover can mot be encoded as efficiently as, say, a Resolution [Rdbinson-ﬁsl
theorem prover, meaning that the natural deduction system may not perform as well on the simpler
problems. But the real question of the power of a research theorem prover is not its efficiency on
any particular theorem (although in application areas such as program verification or data basgs
this is critical) but instead is what theorems it can prove that other theorem provers have not

before been able to prove.

2.2 Subgoaling

APRVR is 2 natural deduction theorem prover. It is originally given a particular goal {the
“theorem”) to attempt to prove and tries to prove it by reducing that problem to possibly simpler
subgoals. The prover then tries to prove these subgoals in exactly the same manner that it tries to

prove the original goal.

APRVR works by developing and searching an AND/OR tree [Nilsson-80] of goals. One
particular goal (whick may just be some deep subgoal of the original problem) is being concentrated
on at any point in time. In trying to solve this goal, APRVR may generate several subgoals of that
problem. Some of these may be in an OR relation to the others; that is, if one of these subgoals
is solved then the goal is solved. I shall refer to this as an ORSPLIT (because splitting an OR
in the conclusion of a goal is a common example that generates this structure). Other subgoals
may be in an AND relation to other subgoals (which may not yet exist physically), all of which
must be solved in order for the original goal to be solved. This splitting into subgoals is termed
an ANDSPLIT because it usually arises from splitting on an AND in the conclusion of the goal.

Usuully only the first goal of an AND branch exists and the others will be created as needed.

An example of an AND/OR tree is in Figure 1. The node labelled Gy has below it two subgoals,
G, and Gy, that are in an OR relation to each other. The goal G; has two subgoals, Gs and G,
below it that are in an AND relation to each other. Such a situation might occur if goﬂ Gy

represents an attempt at proving
H=((Ci AC2)V Cs).

If either of the goals
H = (C} A Cg) (Goal Gl)

or

H=Cs (Goal Gg)

is proved, then G would be proved. This is an example of an ORSPLIT, a split of a goal into

10

subgoals because of an OR in the conclusion of the goal. ORSPLITs may also occur when there
are multiple methods of proving a goal (for example, backward chaining on either of two different

hypotheses). An example of an ANDSPLIT would be the goal G; which would be proved if both
H=C (Goal Gs)

and

H = Cz (GOal G4)

are proved’.

One of the major differences between APRVR and IMPLY is that IMPLY can keep track of only
one path to the proof at once. If an ORSPLIT exists for 2 goal, then IMPLY must choose which
subgoal to work on. In order to try a different branch of the ORSPLIT, IMPLY must terminate
(and forget) any work that has been done on the first subgoal. IMPLY does not have any capability
of remembering its previous work and continuing that work at a later point. APRVR does have
that capability to suspend and resume working on any’subgoal. This is one important aspect of

the agenda mechanism.

2.3 Skolemization

Theorems (and non-theorems) that are given to APRVR are closed logical formulas pos-
sibly containing quantifiers. APRVR immediately removes these quantifiers by the process of
Skolemization [Robinson-79, Chang-73] to generate an open formula containing variables which
is then given as the original goal to the deductive routines,

Skolemization is traditionally defined as the process of transforming the closed formula into
the logically equivalent prenex form (with all the quantifiers in front of the remaining quantifier

free form) and then applying certain rules to remove the quantifiers. A formula of the form
3vVYw3z3yVz Plv,w,z,y, z)

will be transformed into

P(v, $ (U), Z, ¥, 52(1’, z, y))

iThis is & simplification of what happens. The gosl G4 may depend upon how goal G is proved. In particular,
variables that exist in Cz may be partially instantiated sccording to the substitution returned from the proof of
goal G3. This will be covered in Chapter 2.4.

i1

where S; and S, are Skolem functions®. This can be understood by realizing that the prover
is trying to prove the validity of the quantified formula by finding some instantiation (or some
disjunction of instantiations) of the open formula. Thus the existentially quantified variables become
Skolem variables for which the prover is free to choose instantiations. The universally quantified
variables are replaced by functions because, if the formula in the scope of the quantifier is to be
true for every instance of the variable, then it must be proved true for an arbitrary, unspecified
value, which is represented by the Skolem function. This Skolem function has as arguments the
Skolem variables generated by the existential quantifiers containing the universal quantifier in order
to prevent those variables from being instantiated in terms of the Skolem function. In the example,
v is not allowed to be instantiated in terms of either of the Skolem functions S; or S,.

If we can find some substitution, such as {afv, b/z, ¢/y} that generates a valid expression
P(a, Si{a), b, ¢, Sz(a, b, ¢))

when the substitution is applied to the Skolemized form then we have proved the original form.

We have also proved the original form if we find some set of substitutions, such as

{{afv,b]z,cfy}, {d]v, e[z, [[y},...}

such that the disjunction of the results of applying the substitutions to the Skolemized form,

P(a, S1(a), b, ¢, Sz{a, b, ¢))
VP(d, $1(d), ¢, f, S2(d, e, f))
V...,

is valid®. This is 2 result of existential generalization:
(P(A)VP(B)V ...)= 3z P(z)

APRVR actually does something somewhat more complex than this simple Skolemization. In

order to preclude any unnecessary dependencies of the Skolem functions on the Skolem variables,

2Note that the Skolemization done in Resolution theorem proving is the opposite of this. The reason for this
apparent inconsistency is that APRVR is trying to prove the validity of the formula rather than the inconsistency
of its negation. If the two Skolemization techniques are given negatively opposite formulas, the resulis are
identical except for the negation symbol.

3For more information, see Appendix A.

12

the formula is not put into prenex form before the quantifiers are removed. Thus a formula of the

form

VYw 3z P(w,z) = 3yVYz Qly, z) (1)

is Skolemized into

P(w, $(v)) = Q(y, 52(y)) @)

rather than into one of

P(w, S;(‘W)) = Q(y: Sg(W,y))
P(w, $,(w,y)) = Qly, S2(v))
P(w, S] (w, y)) = Q(y’ 52(wr y))

depending upon which prenex form of the formula is chosen.

All goals in APRVR are open formulas. When APRVR proves a goal, it returns a substitution
as the value of that proof. This indicates that if the designated substitutions are made for the
variables in the open formula, then the resulting formula can be proved, treating any other variables

in that formula as constants. If APRVR returns a substitution of

{ajw,bly}

for the formula (2) above, then APRVR has proved that
P(a, S1(a)) = Q(b, S2(b))

is valid. Thus the original formula (1) is true.

'Since the substitution returned is only applicable for the open formula it proves, any variables
in the domain of the substitution that are not in the open formula are removed. This might occur
if the proof involved using lemmas (not expressed in the formula) whose Skolemized form contained
variables.

The substitutions necessary to prove a particular open formula are not always simple. Suppose
we have the open formula |

P(z) = (P(a) A P(b)).

13

There is not a single substitution that will make this valid. The problem is that both substitutions

{a/z} and {b/z} are needed. This is overcome by using the generalized substitution

({e/=} v {8/2}).

By the definition of generalized substitutions®, the result of applying this substitution to the open
formula is '

[Ple) = (P(e) A PR))] V [P(8) = (P(s) A P(b))]

which is 2 valid formula. Such generalized substitutions mayvbe necessary when the substitutions
proving two subgoals must be combined.

APRVR is a little more clever than the above example might indicate. If the P(z) in the
hypothesis had been 2 hypothesis ¥z P(z) in the original theorem given to APRVR, APRVR will

treat the P(z) like a lemma. Thus APRVR is, in effect, simply proving the open formula
P(e) A P(b)

but is allowed to use the “lemma” Vz P(z). Whenever P(z) would be used, a distinct variable is
used for z. So APRVR may prove
P(IIOO) = P(G)

and
P(zIOI) = P(b)
and would never need to generate the generalized substitution described above.

2.4 ANDSPLITs
The dominant theorem proving concept in APRVR is the transformation of a problem into an

equivalent problem or into component subproblems. A goal of the form

[HA(AVB)=C

4Generalized substitutions are defined and explained in detail in Appendix A.

14

is transformed into

H=[(A=C)A(B=C).

Although this is logically equivalent to the original form, it will be termed a subgoal of the original

goal. This goal is then split into two subgoals:
H=(A=C)

and

H=(B=C)

which must be proved. The first of these is then transformed into
(HAA)=C.

It is this concept of subgoaling that allows the agenda mechanism to be useful.

The most interesting usage of subgoaling comes in doing ANDSPLITs. When an AND is the
main logical connective of the conclusion of the goal, APRVR splits the goal into two subgoals.
First, a subgoal that tries to prove one of the conjuncts is generated. For example, if the goal is to

prove

H = (AAB)

then a2 subgoal
H=A

is generated. When this subgoal is proved and returns a substitution 8, then another subgoal
H = B¢

is generated. {See Appendix A for an explanation of the notation ¢. Normally # is identical to
6.} If this subgoal is then proved with a substitution)\, then the two substitutions are combined
{usually by composition but occasionally into a disjunctive generalized substitution) and returned

as the substitution proving this goal.

15

Although this ANDSPLIT looks simple, there are some subtle problems that occur because
of it. The most common problem is trapping. If the first subgoal returns only one of the valid
substitutions proving that subgoal and it is not ope that will lead to 3 provable sécond subgoal
(while another substitution would have), this is termed trapping. Some of the methods that have
been tried to avoid this include attempting the various possible first subgoals or rep}oving the first
subgoal but preventing it from returning the same substitution. APRVR avoids this problem by
allowing subgoals to return multiple values. If several substitutions are found simultaneously as

would be the case for 2 subgoal of the form
P(a) A P(b) = P(z)

then they are all returned as a set®. Furthermore, because of the agenda system, the goal may not
need to be discarded after some proving substitutions are returned. It is simply rescheduled for
later time in case its parent goal is not proved. If necessary, it will be continued and will hopefully
discover the proof necessary to work with the other branches of the overall proof.

| Another problem that an ANDSPLIT can create is one in which conflicting substitntions‘are
returned. This was the case in the example above where both substitutions {a/z} and {b/z}
were negded. In that ANDSPLIT, the substitution proving the first subgoal was {a/z} while the
substitution préving the second subgoal was {b/z}. Combining these conflicting substitutions was
a problem in the earlier IMPLY system but APRVR uses generalized substitutions to return both
substitutions in this case.

A final, more subtle problem occurs in the selection of which of the possible first subgoals to
use. If the wrong choice is made, the first subgoal may have too great a degree of freedom and so
may return several proofs which are incompatible with the remaining subgoals. If a different choice
had been made, the proof may have been made easier by the bindings made to the variables by
thg alternate first subgoal. APRVR combats this problem by allowing all the possible first subgoals
to have a chaﬁce at generating a quick proof (as explained later). If any do, the corresponding
secondary subgoals are generated and the proof continues. If none do, APRVR reverts to selecting

one of the subgoals to work on with more patience while cancelling the other subgoals it started.

ENote that this is different than Nevins [Nevine-74] where he returns sll solutions svailable under ceriain
heuristics; he does not find some and later go back for more.

i8

In this way, APRVR relieves some of the risk in chosing only one first subgoal without unduly

increasing the branching factor of the proof tree.

2.5 Backward Chalning

A common proof technique used in APRVR is backward chaining. This is a form of an
ANDSPLIT that occurs when an implication in the hy pothesis is used to try to ptové the conclusion.
The first step is to prove the conclusion of the goal, given the conclusion of the implication. Usually
this is achieved by a simple matching without doing extensive search to find this proof. The second
subgoal is generated by trying to establish the hypothesis of the implication (suitébly instantiated)
assuming the hypothesis of the goal.

If the goal is

[HA(A=B)=cC, @)

the first subgoal to establish is®

B=C.
If this is proved with some substitution 4, then the second subgoal is
H = A¢.

A similar technique, detachment, is used in the Principia Mathematica examples. If the goal is

simply C and a lemma

Ly = Lo
exists such that C matches Lo by a substitution 4, then a subgoal
Lyb

will finish the proof. Chapter 5.2 explains why this was needed for reasons of implementation.
Backward chaining is a useful technique. Because the first step is to match with the conclusion
of the goal, backward chaining is more likely to remain on the right path to the proof. It is also

less likely to generate problems of infinite recursion than the related method, forward chaining.

©The first subgosal could be (H A B) =2 C, but that might be diverted into effectively trying to prove H = C.

17

2.6 Forward Chalning

Forward chaining can be attempted in the same situation where backward chaining can be.
The diflerence is that while backward chaining works backward across the implication, forward
chaining works forward. That is, it tries to establish the validity of the antecedent of the implication
as the first subgoal. If that succeeds, the second subgoal is similar to the original goal except that
there is now an additional hypothesis. Both the new hypothesis {originally the conclusion of the
implication chained oh) and the conclusion are instantiated by the substitution proving the first
subgoal. 7

If the formula to prove is (3), the same goal as in backward chaining, then the first subgoal to
be proved is

H=A.

If this is proved with the value 8, then the second subgoal becomes
{H A (A= B) A Bf] = C6.

Forward chaining is difficult to deal with. Doing forward chainings early in a problem creates
extra hypotheses that may clutter the proof and obscure the important hypotheses. The irrelevant
hypotheses generated by forward chaining increase the branching factor and so the cost of doing

_the proof. The alternative of not doing forward chaining early is to risk missing a proof later by
not having a needed fact or to try forward chaining later, perhaps repeatedly, whenever it might
be needed. In doing forward chaining, one must be careful to prevent infinite loops generating
new hypotheses that in turn will match the antecedent of the hypothesis being chained on. (Both
forward and backward chaining can generate infinite loops. This is only a real problem where it

can loop unchecked.)

2.7 Case Splitting

Occasionally there may not be a simple, straightforward proof of a theorem; several different
proofs may be required according to different situations or cases. One attempted proof of a theorem
may hinge upon a premise that is not always true. In such situations, it may be advantageous to

accept this proof for the cases where the premise is true and then try to find 3 different proof of

18

the theorem for all the other cases. This strategy is called case splitting or proof by cases. If only

the two cases, A or B, are possible, then the proof by cases of

H=C
involves proving both
(ANH)=C
and
(BAH)=C.

2.8 Other methods

The methods listed so far constitute the majority of the techniques used in proving a theorem.
There are other methods that are used but not as frequently. Proof by contradiction is one such
method. In this method the conclusion is negated and added to the hypotheses. One of the
hypotheses is negated and used as the new coaclusion. Most often this comes into use when 2
forward chaining has generated a hypothesis that is inconsistent with another hypothesis. The
contradiction is noted and the proof succeeds.

Backward chaining and forward chaining can be reversed by uéing the contrapositive of the

implication chained on. Reverse backward chaining in
[HA(A=B)]=C
would be equivalent to backward chaining in
[HA{(~B=~A)]=C
so that the first subgoal generated would be
~A=C.

Reverse forward chaining is similarly defined. These two types of chaining are done rather than the
regular backward and forward chainings if both the hypothesis and conclusion of the first subgoal

will have the same sign, either both negated or peither negated.

19

When the conclusion of a goal is an implication, its hy pothesis is promoted into the hypothesis
of the goal. If the goal is
H= (A= B),

the result of promoting the implication is
(HAA)=B.

Many different truth-preserving transformations are made on goals. Conjuncts and disjuncts
| may be reordered. Negations may be distributed (or cancelled) across other logical operators. True

conjuncts and false disjuncts are removed. Terms may be collected so that 2 goal
H=[{AAB)V(AAC)

will be reduced to
H=[AA(BVC).

Some of these are applied by a rewriting routine that simplifies new goals and others are applicd

when they become necessary.

CHAPTER 3.

THE AGENDA MECHANISM

3.1 Introduction

As has been stated, APRVR works by reducing a goal to (presumably) simpler subgoals. As
these goals are created they are added to an ordered list called the agenda, according to the priority
assigned to them. When APRVR is ready to select a new task, it chooses the highest priority goal
on the agenda. To attempt to prove the chosen goal, APRVR calls the appropriate routine which
then does limited processing trying to find proofs. If it is successful, it will usually immediately
return the proof after rescheduling the goal {at a much lower priority) in the event that 2 different
pvroof (substitution) is the one needed. More often, while processing the goal, a routine will spin
off some subgoals and suspend its processing (by exiting after removing the goal from the agenda)
and wait for one of the subgoals to complete a proof of its formula and to reschedule this goal. A
routine may also reschedule the goal {(at a lower priority) along with some information indicating
what is left to be done. If the goal later reaches the head of the agenda, the routine will be called
again and processing will resume where it left off. Of course, the goal may never be recalled if it

is not necessary to the proof.

The agenda mechanism is basically similar to the heuristic graph &&ch procedure described in
[Nilsson-80] except that nodes (goals) selected are often left on the open list (agenda). The priority
_of a goal is determined by the depth of the goal (via an overhead cost) and the heuristic “estimate”
of the magnitude of work left on a goal. This “estimate” actually has littie bearing on what the
actual amount of work left might be but is 2 numeric result of combining a2 number of heuristic
factors indicating how likely the goal is part of a proof. APRVR is interested in finding some proof

{if one exists) without caring whether it is the shortest.

3.2 Goal Structures

The actual objects stored on the agenda are data structures of which one part is the formula

20

21

to be proved. Other information stored in the goal data structure includes the goal's priority, its
parents and subgoals, its proofs already generated (if any), a flag (the type of the goal) indicating
what routine is to be called to process this goal, and a slot used by that routine for information
Tocal to it. |

When 2 proof routine, such as an ANDSPLIT, needs to have a formula (a subgoal) proved,
it generates a goal data structure containing 2 canonical form of this formula with a goal-type
specified as “GOAL”!. If a goal with the same formula already exists, a new goal structure will
not be created but the old one will be used. Furthermore, if the new formula is identical, up
to the renaming of variables, to one already in 2 GOAL-type goal, a special RENAME-type goal
structure is generated (and returned) which will return the appropriate values whenever the similar
GOAL-type goal returns values. By these provisions, duplication of work is kept to a minimum.
Thus there is a one-to-one correspondence (up to renaming of variables) between every formula
generated as a goal at the logical level and the GOAL-type goal structures.

When 2 routine generates a subgoal of one of these goal structures the subgoal may be one
of two types: methodological or logical. A methodological subgoal is a goal structure in which the
formula to be proved has not changed, but the goal-type has changed to indicate a different, more
specific method is to be tried to prove the formula. A logical subgoal is one in which the formula
has changed and is always a GOAL-type goal or a RENAME-type goal.

The routine o process the goals with a type of THMOPS is SOLVETHMOPS which, as its
pame implies, processes the goal by looking at the logical operators in the formula. This routine
can generate both methodological subgoals (generating ANDSPLIT, ORSPLIT, and HAND type
goals) and logical subgoals. If SOLVETHMOPS is given a goal whose formula is

H = (AAB)

it will generate a goal structure whose formula is the same but whose goal-type is “ANDSPLIT”.
So SOLVETHMOPS has passed the responsibility of proving this formula through to a routine
specific for doing ANDSPLITs. A mew goal structure was generated rather than directly calling

the routine so that the ANDSPLIT routine could manipulate and reschedule its own goal without

}This type goal structure will be referred to 235 3 GOAL~type goal.

22

interfering with the THMOPS goal.
However, if SOLVETHMOPS is given a formula of the form

H= (A= B),

the transformation necessary for the logical subgoal is simple enough that SOLVETHMOPS does

it. A new GOAL-type goal structure, a logical subgoal, is created with a formula
(HAA)= B.

HAND-type goals are generated for the purpose of manipulating the hypotheses in order to
prove the goal. The routine to process these type goals, HAND, is an example of a procedure
that will reschedule the goal which it is processing for a later time. Typically, HAND may cause a
number of logical subgoals resulting from backward chaining to be created and then will reschedule
its goal {by assigning it a lower priority) for a later time. If the HAND—Gpe goal reaches the head
of the agenda again, HAND will do some more work on it, possibly generating some subgoals for
forward chaining. But if in the meantime, one of the backward chaining subgoals is proved, the

HAND-type goal is immediately woken up to respond to that.

3.3 Considerations for Priority Schemes

The priorities assigned to goals determine which goal gets worked on when. Because of this,
it would seem that the assignment of priorities is all important. If the “right” goals (ﬁhose on the
path to the proof) get the higher priorities, the proof will be found easily. Of course, there is
no general way to determine what these goals will be without already knowing the proof. Some
“wrong” goals (not on a path to the proof) are almost surely going to be selected while searching
for a proof no matter how the priorities are chosen. It is almost a definition that hard problems
are those in which the number of “wrong” goals selected far outweigh the “right” goals.

Although the priorities are important, a significant amount of freedom can be allowed in the
assignment of priorities without undue influence on the outcome of the proof. APRVR's priority

system is still quite rough and untuned but it has performed reasonably well®. It is not too

2Because of this lack of tuning I will try to avoid referring to specific numeric values for priorily manipulations
and will instead discuss the stralegies in assigning them. The reader is referred to the program if more specific
information is desired.

-difficult to understand why this is s0. It should be obvious that the priorities are just 2 ranking of

the candidate goals and that the scale of the priorities is upimportant. Under certain conditions
described later, the actual ordering of the goals by the priorities is not too important. In a2
reasonable agenda system, the difference in the ordering of two goals whose priorities are close in
value should not drastically affect the outcome of a proof. In practice, the problem turns out not
that some “wrong” goals get too attractive a priority but that some “right” goals get too low a
priority.

Obviously, the main objective in setting up a system of priorities is to give high priorities to
those goals most probable to be on a path to a proof. However, since wrong choices are almost
always made, another aim should be to minimize the cost of making a wrong choice. One simple way
of doing this is giving some preference to a goal which will be solved or rejected quickly. Such a goal
may be one in which there are few or no variables or one in which the number of logical connectives
is minimal (the positions and types of which can also be an influence). Unfortunately, the proof
attempts for such goals are not always guaranteed to terminate quickly because of interactions with
the lemmas. Many other considerations like these may be added if more domain-specific knowledge
is used.

Another way to minimize the resources spent on a possibly “wrong” goal is to limit the amount
of work done on it. By including a depth factor in assigning priorities, the deeper a goal is in
the proof tree, the lower its priority will tend to be. While this hurts the descendents of all goals
whether they are off or on 2 path to a proof, the descendents of a “right” goal will probably
make some progress towards a proof and so may overcome the depth factor. If they do not totally
overcome it, they may at least partially reduce it. This is also one way to prevent the prover from
following down an infinite, recursive path.

| This depth factor can not be allowed to be too large. If it is dominant over the other factors
contributing _td the priority, the search for a proof will eflectively be breadth first. In practice I
have found that for difficult problems the depth factor may become significant at times, forcing
2 number of goals and their descendents to be searched in 2 breadth first fashion. Eventually, a

breakthrough occurs and one goal becomes significantly better than the others.

The search for a proof tends to become breadth first when some goals are created that are

24

similar in structure and have no features that are distinguished by the priority calculations. These
goals and their descendants all get assigned priorities that aggregate together. If there are four
separate but similar groups of goals, there are four proof trees being developed a step at a time in
succession. This can be very frustrating to an observer watching the prover in action. In addition,
it may even be that the four separate goals are four different intermediate steps in the proof all

leading to the same result.

To improve this situation somewhat, an inertia factor is taken into comsideration when
choosing the next goal té be worked on. If the highest priority goal of the subgoals of the goal
just worked on (or the goal itself) is sufficiently close to the overall highest priority goal, that goal
would be chosen, thus keeping the prover proceeding in the same context rather than jumping to
a different context. Following the prover as it works is easier when the context of what is being

worked on does not change too frequently.

This can also be useful in getting a proof over a little hill where the priority of one goal on
the path is not very attractive. If the hill is not too big or the inertia is strong enough, the proof
will sail right over it. Unfortunately, there is nothing magical about the inertia; it behaves like
inertia does in physics. If APRVR gets going in the wrong direction, the inertia is a disadvantage.
1If 2 hill on a correct path was too big, it is going to take extra work to get over it. Examples run
through APRVR have shown both kinds of behavior but I have kept an inertia factor because of

its improvement in an observer’s perception of the flow of the proof.

3.4 The Components of s Priority

When 2 new goal is created it is given a priority that is a combination of an estimated cost of
proving that goal (static estimation) and an estimation of how much work is left to be done once
the goal is proved. These estimations are rather arbitrary and in no particular units and are really
only used for the ranking of the goals. Thus an estimated cost for 2 goal of 100 does not mean

that it is five times more difficult than a goal with an estimated cost of 20.

The estimation of work left to be done (the TODO cost) is based upon the parent’s TODO
cost plus an estimation of the cost of any goals to be proved by that parent when this goal is proved

plus an overhead cost. It is this overhead cost that partially implements the depth factor discussed

25

above. The deeper a goal is, the more overhead cost is included in the estimated work to be done.

Originally, APRVR kept a goal's priority as a single number but it became clear that this was
too little information. When 2 goal was created only one number was stored im it as the priority.
No record was kept of what portion of that was due to the static estimation of the gozl and how
much was passed down from its parent (the work left to be done). After a goal is created, some
work may be done on it and then it is rescheduled, at a lower priority, to try some methods later
that are less likely to be successful. This rescheduling masked any information contained in the
original priority. APRVR now keeps the estimated TODO cost for a goal separate from the other
factors entering into the priority but when the total priority of a goal is needed the TODO cost is

combined with them to return a single value.

The static estimation for goals bas also evolved. Originally it was an intentionally simplistic
measure of the size of the formula to be proved as I was more interested im the dymamics of
the priorities and was working with simple theorems. As harder theorems were attacked, the
static estimation became more involved but can not be described as sophisticated. It liow includes
checking whether the formula is ground, the correspondence between function symbols in the
bypothesis and conclusion, some checking for simple proofs, and, still, the sizes of the hypothesis
and conclusion. Since the static estimation is done only once for each goal created, a thorough
examination of the goal could be done. If domain specific knowledge (eg., models) is added, a more

powerful static estimation routine can be built upon the solely syntactic one I am using.

3.5 Manipulations of Priorities

The priority given to a goal does not stay static once it is worked on. It is the dynamics of the
priorities that makes the agenda system successful. The estimated cost (and therefore the priority)

ascribed to a goal changes as more information is learned about it.

When a proof is fqund for a goal, its priority changes drastically. If the proof is a ground proof,
that is, no variables need be substituted into the goal’s formaula, the goal is completely removed
frorﬁ consideration. No better proof can be found. Otherwise its estimated cost is multiplied by a
factor to push the goal far down the agenda. This prevents the goal from being worked on further

unless the total proof goes nowhere, in which case the goal will be called upon again in hopes of

finding another proof. While this theoretically relieves the problem of trapping {(and it does do that
for simple cases), for any difficult problem, the chance of the goal being called again is remote. If
APRVR had better knowledge of when a proof had the wrong substitutions then it could be wiser
about rescheduling the goal. In some cases APRVR can determine that a proof is inconsistent with

other goals and s0 can retry the goal to find 2 different proof.

When two or more goals generate the same subgoal, that subgoal’s priority is adjusted to
reflect that fact. If a particular subgoal is important on several different possible paths to the
proof, its importance is increased because the multiplicity of the paths improves the chances that
at least one will be successful. But the paths to the proof probably join at some point above this
goal and so the number of parents of a goal may not correspond to completely independent proof
attempts. It would take a complete analysis of the entire proof tree to sért out the duplication in
the various paths. This is not cost effective as it would be expensive and the priorities are only
rough estimates anyway. Clearly the priority of the goai should be no worse than that computed
by the considering the path with the minimum estimated TODO cost and probably should be
somewhat better. APRVR takes all this into account by computing the goal’s priority by using an
artificial TODO cost of two-thirds the minimum TODO cost passed down from the parents of the
goal.

The priority of a goal changes as work is done on the goal. When created, 2 goal’s priority is
just a combination of its estimated TODO cost and its initial static estimation. As more processing
is required for the goal, this estimated cost is increased and the priority lowered. Typically the
routine called for a particular goal will try some methods of proving the goal and then reschedule

itself at a lower priority (by increasing the goal’s estimated cost) to try some more methods later.

HAND-type goals undergo this refiguring to the estimated cost. When a HAND-type goal is
first processed, some of the more attractive backward chainings (if any) are done and the goal is
rescheduled at a lower priority. The next time it is at the head of the agenda, any disjunctions
in the hypothesis will be processed and the goal is rescheduled. Then come the forward chainings,
the rest of the backward chainings, tries at contradictions, reverse backward chainings, and finally
reverse forward chainings. As each of those steps is tried and the next is scheduled, the estimated

cost of the goal is increased according to a factor associated with the likelihood that the next step

27

will lead to a proof. Since the next step obviously has not yet been tried, this factor is only based
on the general performance of the next method rather than anything specific for this goal. Once
that next method is tried, any subgoals generated will better reflect whether the method may be

successful for this goal.

Two types of adjustments are made to priorities. The most common one is to adjust the
priority by multiplying the estimated cost of the goal by a constant factor. This linear adjustment
has the property that the absolute value of the priorities does not matter. If a factor increases the
estimate ten percent, it does not matter if that estimate had been 100 or 2000. As a proof proceeds
the estimated costs of the active goals tends to increase. This does not affect these percentage

, adjustments to priorities.

Other adjustments are absolute adjustments. The overhead cost is an example of this. The
overhead cﬁarged for creating a subgoal is always constant. As the proof attempt gets more

involved, these factors decrease in importance relative to the percentage factors.

The values of these factors used to adjust the priorities are stored in variables in APRVR. I
have always been concerned when others have said that their provers have a number of parameters
that can be tuned, because these could be adjusted for each particular problem to get the best
performance on that one problem. The parameters for adjusting priorities in APRVR 'were put in
Because I bad very little a priori idea what they should be and I wanted to be able to modify them
as it bécame clear that the present values could be improved. Usually I adjusted a parameter a
number of times as I saw how the examples performed with it. After a few runs, the parameter had
adequately conferged to some rough value and it was not changed again unless some new factor
was inclhded which changed the relative performance due to this factor. Fine tuning (adjusting a

factor by less than 25 be necessary. All the problems were run with the same parameter values.

3.6 Proof Methods Specific to Agendas

A hierarchical theorem prover like IMPLY has 2 conceptual elegance in that to prove a subgoal,
it simply recalls itself and waits for a proof (or failure). There are few comsiderations Becessary
in manipulating subgoals; most of the details are hidden in the use of recursion. Since IMPLY is

interactive, if it fails to prove a needed subgoal while using the default limits of efforts, the user

can come to the rescue and help direct the proof.

APRVR gives up some of the advantages of IMPLY. The same’conceptual elegance is still
somewhat there in that subgoals are just added to the agenda, but there are many more details to
be handled. APRVR was not designed to be highly interactive and so is designed to avoid cutting
itself off from finding a proof, again adding to the complexity of the prover.

The agenda theorem prover has a number of advantages that outweigh these complications.
The most obvious one is the ability to process the subgoals according to a priority ordering rather
than working on them in a fixed ordering. Associated with this is the ability to suspend processing
on a subgoal whenever the subgoal is no longer promising. Other advantages of using the agenda
in APRVR include a more flexible ANDSPLIT and a pon-local case split. When I first wrote the
ANDSPLIT routine, it tried all the conjuncts as “first” conjuncts to generate the “first” subgoal.
The idea was that by trying all orders, the best order would be included and so the proof would
finish quickly. I was depending on the priority ordering to direct the search down the best path.
Early experimentation showed that the potential combinatorial explosion from this method was not
adequately limited by the narrowing effect of ordering by priorities. The ANDSPLIT mechanism
was reverted back to the method in IMPLY; only one first subgoal (derived from the lexically first
conjunct) is generated. This method is reasonable in that it considerably reduces the branching
factor in the search and any proof that could be found starting from any of the other conjuncts
can be found by starting with this conjunct.

The problem with looking at only one first subgoal is that others may lead to proofs more
quickly. The difference is due to substitutions returned as proofs. One conjunct may restrict
the binding of a variable to a2 particular variable while another may simply check that a certain

property holds for that variable (or its binding). For example consider the conjunction
z*a == a%¥z A z¥¢c = ¢

where e is the identity element in group theory. The first conjunct may possibly have many proving
substitutions, just one of which would be the only proving substitution of the second conjunct.
If APRVR only looks at the subgoal generated from the first conjunct, it might first return the

substitution {e/z} which would cause the second subgoal to fail. APRVR could eventually find

the right solution but it may involve unnecessary delays. If APRVR were smart enough to try the
second subgoal first, finding that z should be the inverse of s, the temporary trapping could be
averted.

The new feature added to APRVR to prevent this temporary trapping was to try all of the
conjuncts as first conjuncts, as before. The difference now is that after a short while all the “frst”
subgoals (and their subgoals) that have not been proved are terminated. If none have been proved,
the subgoal from the lexically first conjunct is not terminated. Those that have been proved
continue and generate their associated second subgoals. (This may have the additional advantage
of finding multiple alternative values for the substitution proving the conjunction, each starting

‘from a different conjunct.) The eflective branching factor of the search has not been increased
much (since most of the branches were quickly cut) and there may be a considerable increase in
efficiency in finding a proof.

A very interesting use of the agenda is the non-local generation of case splits. The motivation
for this comes from a problem in which there is a very promising path for a proof which is blocked
at the end by the lack of a specific fact. The proof would succeed if that fact were true but,
unfortunately, this is only sometimes the case. This fact might trigge; a person solving this problem
to do a case split at the appropriate point in the proof, somewhere above the point at which the
atiempted proof failed.

Two different types of case splitting can be identified. Although these two are logically
equivalent, they are different in terms of the motivations for doing the case split. The first is
the more general: A proof may be split upon whether a proposition, A, or its negation, ~ A, is
true. The difficulty with using this type splitting is in knowing what A should be. Every goal
H = C is a candidate trigger for this split by just noting that the goal is true if C (or some C8)
were true. Then 2 case split could be done on some ancestor goal (parent, grandparent, etc.) of
the goal in which one case is where C is true and the other case is where ' is false. Of course,
doing this type of case split often would lead to much extra work.

The second type of case splitting is more useful. If there is some fact known by hypothesis or

lemma that is of the form

AVBYV...

then any goal whose conclusion, C, matches (by unification using a substitution 8) one of the
disjuncts can trigger a case split at some ancestor of the goal on the cases A, BY, ... (one of which
would be just the case C¥8).

If there were a lemma or hypothesis that was just the tautology
Xv~X,

this second type of case splitting would include the first type. Hopefully the available lemmas would
not include such simplistic ones but instead would include those with more semantic importance.

Whenever APRVR is going to try a proof based upon the disjuncts of an OR in the hypothesis
it generates an “ORSPLIT-H” goal. ORSPLIT-H accepts a formula of the form

((AVB)AH)=C
and generates a goal whose formula is
H=(A=C)A(B=C)).

ORSPLIT-H then attaches itself as a “daemon” watching the goal it created. This means that
whenever that goal is worked on, APRVR wakes up the ORSPLIT-H goal to check on what has been
accomplished. Specifically, ORSPLIT-H attaches itself as 2 daemon to subsequent subgoals until
an ANDSPLIT is generated. When each of the subgoals corresponding to the conjuncts (which
correspond to the disjuncts in the OR hypothesis) are created, ORSPLIT-H attaches itself as a
parent to the subgoal. Then, whenever one of these subgoals is proved, ORSPLIT-H allows the
normal proof attempt to continue but schedules itself for some point in the future. If the proof of the
ANDSPLIT and, therefore, the proof of the ORSPLIT-H succeeds, everything prockeeds normally.
But if the ANDSPLIT has not been proved when ORSPLIT-H eventually wakens, APRVR will
generate the cases based upon the disjunction in the hypothesis (after application of the substitution
proving the subgoal of the ANDSPLIT) if those cases are ground (contain no variables).

Where in the proof tree should the case split be tried? It could be tried at the goal immediately

above the triggering goal but the chances that the other cases could be proved there are slim. It

31

could be tried at the original goal (the “theorem” being proved) but that probably would lead to
a large amount of duplication of work.

APRVR chooses to back the case split as far up the proof tree as possible until a goal is reached
at which backing up any further would reach a goal that would not necessarily be helped by doing
the cases. The goal stopped at is provable, given the right case, by the path already taken. The

parent goal would not necessarily be proved given that same case.

| In the figure above, all branches shown are AND branches and all goals to the left of the branch
upward from the present goal (Gg) are already proved while those to the right are not proved. If
Gy is the goal that triggers a case split, the cases would be applied at G». The case that proves
G would finish the proof of G; but not G;. If G, could be proved for the remaining cases, the
proof could continue at the right hand branch under G;.

How much extra work is done if this is not the right place to do the case split? If the case
split need not have gone back as far as G, but could have been done at G, extra work would have .
been done, but not much. Since G, was the point at which the cases had to be done, the proof of
Gs was acceptable without regard to the cases and did not need to be redone (which is not true if
Gg was the correct place to do the case split). So, in fact, very little extra work was necessary.

ﬂ‘, on the other hand, G; was the proper point for the case split, APRVR has not wasted its
effort. G2 would be proved by doing the split there. Later, when it was found that G; needed the
case split, the G5 branch would be already proved for each case,

There are surely other methods available to a prover with an agenda mechanism like APRVR’s.

More non-local methods might be found where information from one part of the proof might affect

32

what is being done elsewhere. Perhaps if a goal was found to be false, this could be traced up the
tree to the point at which a false ancestor of this goal was generated. Other similar goals might
also be purged. The idea of a daemon goal watching other goals may prove fruitful. Also, since the
entire proof tree is kept, if one goal is found similar (analogous) to another, the successful proof of

one could be followed, correcting it wherever the similarity broke down.

CHAPTER 4.

IMPLEMENTATION

4.1 Introduction

APRVR is a fairly large system consisting of over 400 LISP functions and 100 flags and
parameters. Most of these are support functions, such as the simple data accessing functions,
the functions to manipulate the agenda, and user interaction functions. Other large groups include
those for Skolemization, unification, and for the printing of proofs. Only about 70 functions

implement the proof methods used.

To handle this large system a number of support systems are mecessary. Listings of the
program are cross referenced (by page of reference) and a separate LISP cross reference of the
calling structure and global references are generated. A help system references this second cross
reference to provide easy on-line documentation. It also displays the top level comments for the
functions.

Only the compiled versions of most of the functions are in core, but simple commands bring in
the interpreted versions, edit, or “pretty-print” them. Functions modified are noted and a simple
command saves them all to a disk file. »

Although LISP may not be as efficient as other languages in execution speed, its advantages
for program development made it ideal for the development of APRVR. Its interactive capabilities
allowed debugging in the middle of a proof attempt. I was able to do arbitrary computations and
corrections on the code and to continue or restart (not necessarily at the beginning) a proof.

This chapter deals with the implementation of APRVR - the details that, while they are not
major points, are important to the operation of agenda based theorem provers in general, and

APRVR in particular,

4.2 Implementation of the Proof Methods

A number of the proof methods are described in Chapter 2 and will not be covered here. This

33

will cover some of the details omitted in that chapter.

4.2.1 Goal Types

Goal structures have a field to specify the TYPE of the goal. This, in turn, specifies what
routine is used to process the goal when it reaches the head of the agenda. In order to have APRVIZ
prove a logical formula, a GOAL-type goal needs to be created for it. A number of things happen
when a GOAl-type goal is to be created.

The formula is logically reduced and normalized into a canonical form. The formula and all
its subparts are hashed into an array so that duplicate expressions originally occupyihg different
memory locations become references to the same memory. This reduces the amount of memory
used while speeding up tests of equality and membership applied to logical expressions.

If the formula to be proved is identical to that already in some other GOAL-type goal, the
previous goal is used. If the formula is identical to a previous one up to a renaming of variables, a

. RENAME-type goal is generated, made a parent of the previous GOAL-type goal, and returned.
Its only purpose is to rename the variables in any substitutions returned for the earlier goal.

In either of these two cases, if the previous goal had proofs a DUMMYWAKEUP-type goal
is generated and put at the head of the agenda. When the next goal is picked from the agenda,
it will be this one. This goal then “wakes up” {puts at the head of the agenda) the goal that just
requested the creation of that GOAL-type goal. This indirection of using an intermediate goal
is necessary to prevent the waking-up of the goal from interfering with the requestor’s possible
rescheduling of itself.

If the goal is new, further processing is done on it. Under certain restrictions, all possible
forward chainings are done to it and added to the hypotheses. These restrictions demand that no
forward chainings require substitutions for variables other than those in lemmas {(and lemma-like
hypotheses). Furthermore, no hypothesis or lemma may ever use an implication {or disjunction)
to forward chain on if that implicatioﬁ had been used before in creating this hypothesis (or one
of its ancestors if forward chaining bad been used several times to create the hypothesis). All
successful forward chainings are recorded in two lists: one records what was generated, indexed
by each hypothesis used, and the other records what hypotheses were used, indexed by what was

generated. This allows most forward chainings to be done rather quickly. Only new combinations

of hypotheses need to be tested for the generation of new forward chains.

This forward chain processing (done by the routine QKFC) has the useful feature that it
reaches a closure. Later attempts at forward chaining on its result would not generate anything
new. By testing whether this hypothesis exists elsewhere, APRVR can use this feature to reduce
greatly the running time to generate forward chainings on subsequent goals.

The advantage of doing all these simple forward chainings and updating the hypothesis to
include them at this point is to eliminate the expense for doing them one by one later if they might
be needed. If the forward chainings are added later, the problem exists of what should be done
with all the work already done on this goal. By not having the additional hypotheses, some critical
deduction may have been missed. But redoing all the deductions (and creating nearly identical goals
along the way) is quite expensive. By doing the simpler forward chainings now, these problems are
avoided. The more complex forward ghains still need to be done later.

After the goal structure is created but before control ‘is passed back to the routine requesting
it, 2 quick attempt is made at proving the goal by a routine called QKIMPLY'. QKIMPLY does
many of the manipulations that can be done on goals but only those that can be guaranteed to
terminate quickly: ANDSPLIT, ORSPLIT, limited backward chaining, promotion of an implication
in the conclusion, and the matching of the conclusion against the hypotheses. This is actually the
only method to recognize that the conclusion matches one of the hypotheses. QKIMPLY is used to
prove a simple goal when it is created rather than waiting until it reaches the head of the agenda.
Substitutions for all the proofs that QKIMPLY can find are returned as a set.

When 3 GOAL-type goal is chosen to be worked on, SOLVEGOAL is called. SOLVEGOAL
does no processing itself but checks its property list for the types of subgoals to generate and> what
priorities to give them. Normally it has only one type to generate, 2 THMOPS-type goal. The
intention of SOLVEGOAL was to allow for room for later expansion of other methods to work on
3 goal. As ap experiment, a specialized method called P->#, was recently added for the problems
from Principia Mathematica to look for the existence of 2 lemma that would help prove the goal’s
formula. It was a trivial matter to get SOLVEGOAL to generate P->>se-type goals by placing

P->+ into a property list.

IThis is essentially identical to the same routine in IV/PLY.

36

While normally only the routine responsible for processing a particular goal type can add
subgoals to that type goal, the routine that generates non-local case splits may add a subgoal to a
GOAL-type goal. SOLVEGOAL never notices this except when that subgoal is proved.

As with all the routines to process goals, SOLVEGOAL must provide for its goal being selected
after being woken up when one of its subgoals was proved. SOLVEGOAL, like most of the other
routines, simply passes the proof up to its parents unchanged except for the addition of some
information for later printing the proof.

A THMOPS-type goal is generated to try to find a proof by performing some manipulations
based on the logical operators in the goal’s formula. SOLVETHMOPS, the routine to do this, may
spin off ANDSPLIT goals to handle an AND in the conclusion‘, ORSPLIT goals to handie an OR
in the conclusion, or 2 HAND goal to work on the operators in the conjunctions of the hypothesis.
SOLVETHMOPS may also generate GOAL-type goals for the subgoals of the simpler processing it
does itself.

ORSPLIT-type goals are simple. The routine to process them simply generates a different
GOAL-type goal for each of the disjuncts in the conclusion.

The processing of ANDSPLIT-type goals has already been discussed. It generates GOAL-type
goals for its “first” subgoals and either GOAL-type or ANDSPLIT-type goals for its “second”
subgoals depending upon whether there were two or more conjuncts.

The HAND routine to process HANDotype goals may attempt many different methods on the
bypotheses to prove the goal. These methods do not appear as the type of goals; instead, the
HAND-type goal handles all of them, keeping the name of the currently active method in the
goal itself. The normal sequence of these is: BC (backward chaining), OR (looks for ORs in
the hypothesis and generates an ORSPLIT-H-type goal), FC (forward chaining), SBC (secondary
backward chaining), CONTR (looks for contradictions in the hypotheses), RBC (reverse backward
chaining), and RFC (reverse forward chaining). HAND picks its methods from 2 list stored in the
goal, which allows an alternative ordering on some goals to be CONTR, FC, RFC, BC, OR, SBC,
and RBC when it appears that the goal would be more suited to finding incomsistencies in the
hypotheses.

As each new method is chosen a subset of the hypotheses may be selected by a start-up

function associated with the method. Thus BC is only done on those hypotheses returned from
BC-STARTUP, allowing the prover not only to be selective about which hypotheses are worked on
(with the others done by SBC) but also in the order in which they are done. BC-STARTUP sorts
the candidate hypotheses into an order that roughly reflects the degree of matching between the
conclusion of the hypotheses and the conclusion of the goal. The more non-variables that match,
the closer the matching. The use of closer matching hypotheses increases the probability that the
backward chaining will be productive.

When all the eligible hypotheses are chosen, the method is applied to each of ‘them in sequence.
If the method applies to a particular hypothesis and 2 subgoal iz generated, the HAND routine
suspends itself (with the goal getting a slightly lower priority) in case the new goal has a better
priority. If not, the HAND routine processes the next hypothesis. When all the hypotheses are
processed, the HAND-type goal is given a somewhat worse priority, according to the next method
to be tried, and is rescheduled. When all the methods have been tried, the HAND-type goal is
removed from the list of active goals, pending the proof of a subgoal.

As described earlier, when an ORSPLIT-H-type goal is generated, it will generate subgoals to
do an ANDSPLIT. Under certain conditions it may also generate a CASESPLIT-type goal and add
it as a subgoal to some GOAL-type goal.

Because the proof methods were different for the problems from Principia Mathematica, dif-
ferent methods were used in HAND. These are: BCe, BCX#%, FCe, SBCXe#, SBC# and are similar
to the normal methods of BC, FC, and SBC. See Chapter 5.2 for more details.

4.2.2 Priority Detalls

Priorities in APRVR are usually numeric, normally ranging from 1 upward to INFINITY. The
priority of a goal is associated with its estimated cost, so a goal whose numeric priority (cost) is
1 bas the highest priority while a goal whose priority is the special symbol “INFINITY” is the
lowest priority. A goal with a priority of infinity is said to be “asleep”. Nothing will be done om it
unless one of its subgoals gets proved and “wakes it up”. Whenever 2 goal is proved it wakes up
its parents by negating their priorities. This puts the parent goal at the front of the agenda ahead
of all the normal goals, insuring that it will be worked on guickly.

Once a goal is proved, the likelihood of its generating other, more useful, proving substitutions

drops. APRVR “slows down” the goal by multiplying its priority by a factor. This lowering of
priority is filtered downward through all the descendants of the goal, taking care that no goal is

slowed down more than once.

If the proving substitution for a goal is the empty substitution, then no other solution wouid
be better. In this case, the goal is “killed” rather than being slowed down. If a goal is flagged as

killed, no work will ever get done on it. Furthermore, it tries to “drug” its sons.

This involves removing its support for the attempted proof of the subgoal. If no other support
exists for that subgoal, it is “drugged” and tries to drug its subgoals. A drugged goal is just 2
goal for which no active goal is requesting its proof and so is removed from active consideration.
If another goal later generates the drugged goal as a subgoal, the goal and its drugged descendants

are revived. The ANDSPLIT routine drugs its subgoals that it wants to ierminate.

4.3 Multiple Parentage

One of the features of APRVR is the uniqueness of each GOAL-type goal. Each of these is
essentially a theorem to be proved by itself; during proofs, almost no consideration is made of what
the ancestry of a goal is or whether it is the top goal or not. A second request for the proof of a
particular subgoal by a second goal results in the reuse of the original subgoal (which records that

it has the two parents to which to return its values).

The scheduling of 2 goal getting an additional parent has to be adjusted. It appears to be
a critical subgoal; if it could be proved, more than one possibie path to the total proof could be
advanced. After analyzing the situation and trying several different strategies, I decided on the

strategy discussed earlier.

The TODO cost of the subgoal is set to two-thirds of the minimum of the TODO costs passed

down from its active parents.

A more serious problem arises when the parent subgoal graph has loops in it. Note that G

occurs twice in the following subgraph of a proof tree:

39

If Gs is proved via Gy, it will pass its values up to both G; and Gs. G5 passes the value up
to G but can not pass that value back up to Gs. The goals usgd to generate a proof are explicitly
recorded in the proof to allow APRVR to check for this type of recursion. An alternative solutioﬁ
would be to prohibit loops from ever being generated but if G had not been allowed to become a

subgoal of Gj, a proof of G2 via G4, Gs, and G would not have been possible.

The possibility of loops causes problems in a2 number of places. As stated, APRVR must
refﬁse to pass a proof up from a goal to its parent if that parent was involved in the proof of the
goal. A similar problem occurs when the goals below a proved goal have their priorities adjusted
{or are drugged) because of that proof. When an ANDSPLIT terminates and drugs its “first”
subgoals that have not been successful, it encounters the same difficulties and must avoid them.
When ORSPLIT-H looks back up the proof tree to do a CASESPLIT, it must also be aware of the

problem.

4.4 Human Interaction

One of the strongest points of IMPLY is its man-machine interface. IMPLY is not really
designed to be run without a person controlling it. By using some of the many powerful commands

available to him, the user can guide the prover towards a successful proof.

Although [wanted a strong human interface in APRVR, I found that an agenda theorem prover
was not as convenient for this as 2 recursive theorem prover. While there was an obvious point
where intéraction could be added, it was not clear when APRVR should allow {force) the user to
interact. The obvious point was in the routine LOOPER that just loops picking the best goal off
the agenda and applying the proper routine to it. APRVR could stop to interact with the user just

before it chooses the next goal to be worked on, but this occurs too often to be done every time.

40

Rather than APRVR deciding when the user might want to interact, APRVR allows the user to
interrupt it. Every time a goal is chosen, LOOPER cliccks to see if the user has typed something.
If not, APRVR continues on its way without disturbing the user. If so, APRVR interrupts what it
is doing and calls the LISP interpreter to give control to the user. When the user finishes, control
is passed back to LOOPER which continues as though nothing had happened unless the user has
changed the data base. In that case, depending on what the user did, LOOPER may pick a2 different
goal to work on.

Before the user can know when to interact with the system, he needs to know what it is
doing. A trace of the proof attempts is printed with explanatory comments as the proof proceeds.
Each goal creation is displayed, as is every goal that is chosen from the agenda to be worked on.
Whenever APRVR changes context by choosing a goal not closely related to the previously chosen
goal, the first few items on the agenda are displayed with their priorities. Logical expressions such
as the conclusions of the goals are displayed in infix notation by a “pretty printer” that can limit
the detail shown to a particular depth. Example output of a proof trace can be found in Appendix
B.

Normally a user will watch the flow of the proof without interrupting it until some interesting
event happens. At that point he may wish to back up to before the event so he can watch the proof
more closely or check on what the state of the proof was before that event happened.

Since IMPLY is recursive, it is very easy to back up to an earlier point in 2 proof by popping
up recursive levels to where the proof could be continued from just before the point desired. This
is not possible in the agenda based control structure of APRVR. Interaction points always occur
at the same level; no recursion saves the state information. All the changes since the previous
interaction point have already been made to the data base,

Because the ability to back up and retrace the steps in a proof are very important to developing
the prover, I implemented an UNDO facility in APRVR. The functions which modify the global
data structures used in APRVR were changed to use stkructure modification functions that record
the information that would be lost by doing the modification so that recreation of the previous
state is possible. This information is then recorded onto a list. APRVR keeps an index into the list

where the interaction points were, indexed by the goal that was next created after that point. If |

41

had a question related to the performance on a particular goal, I could just tell APRVR to back up
to just before fhe creation of that goal (or one of its subgoals, if that was where the problem was).
APRVR would traverse the list of saved information, undoing all that had been done since that
point. Afterwards, APRVR would still be at the user interaction point but the data base would be
reverted back to its earlier state. The proof could be continued and would proceed as it did before.
LISP breakpoints could be set to provide a closer view of what was happening within APRVR.

Obviously the retention of the information to UNDO earlier data modifications requires mem-
ory, but because of the memory sharing of the formulas, the memory requirement was not as much
as might be expected. The amount of memory required for each interaction point is on the order
of 100 words. This allows a fairly long memory, depending on how many words the user is willing
to devote té it. I found that most of the time I wanted to back up only a few interaction points.

Now that the user can interrupt the prover and back it up, whut can he do during his
interaction? He may wish to examine the state of the proof. One routine, FRONTIER, prints
out the proof tree. By using keywords, he may specily that he wants more or less information
displayed. Other routines are available for printing more detailed information about any of the
goals. Although the proof printing routine was designed for printing the complete proof of a
theorem, the user can invoke it on any proved goal. This provides more detail on how a proof was
achieved than is available from watching the trace of the proof as it develops. Example outputs of
the proof printer are in Appendix B.

In order to affect the flow of the proof, the user must modify the data base. Although it is
simple to move a goal to the front of the agenda so it gets processed next, APRVR is likely to
create its subgoals with priorities approximately the same as the goal had before it was moved to
the head of the agenda. Therefore, they would not be at the front of the agenda as desired. So,
unless the goal will be proved when it is next processed, this user interaction may noi help much.

A more useful manipulation is to eoncentrate the search. By reducing the active goal list
to only the descendants of a particular goal or just to 2 single goal, the search for a proof can
be reduced considerably. Similarly, all the descendants of an attractive, but untrue, goal can be

drugged so as to stop the attempts at proving it.

APRVR is now powerful enough to prove the examples in Chapter 5 without any interaction.

42

However, during the development of the prover, the interaction facilities were used extemsively to
monitor the proof and also to bypass uninteresting dead ends to concentrate on whatever techniques
were being developed. Harder problems in the future may require the use of the interaction facilities

"in order for any proof to be found.

CHAPTER 6.

PROBLEMS AND RESULTS

5.1 Introduction

My intention in doing this theorem prover was to develop an agenda-based natural deduction
theorem prover and to experiment with it and the assignment of priorities. I did not enter into this
to prove any specific theorems by any particular methods designed for them. I was attempting to
do something more general;] was not planning on advancing the frontiers of the theorems proved

by automatic theorem provers in the present system?®.

- That could come later when more specialized heuristics could be added that would be com-
parable with what is available in other theorem provers. This system is just an initial testbed to

determine the basic advantages and problems of agenda systems.

5.2 Principia Mathematica

I chose Principia Mathematica (PM) [Whitehead-70] as the domain for the early developmental
work on APRVR. PM, the classic logical tome of Whitehead and Russell, had 2 number of ad-
vantages. It is 3 well laid out system with the axioms and proof rules explicit. The problems
are presented as logical statements and gemerally proceed from simpler to harder. In the early
theorems, in chapter *2, there are no function symbols, other than the logical omes, to require

special handling.

PM was not without its disadvantages. The theorems are not impressive in appearance.
Without adhering to the logical presentation in PM and letting the prover treat the propositions
in *2 as it would normally, the theorems are immediately proved. This required rephrasing the
theorems by replacing the logicai connectives with different symbols that were not already built
into APRVR. Then, some of the already existing deductive machinery had to be duplicated to

provide deduction capabilities allowed in PM. While this went against my desires not to beild

1 However, see Chapter 5.5 on AMS.

43

44

special machinery in this version, the special deductive machinery was very similar to what already
existed and so the results of experimenting could be adopted.

In PM, the distinction between implication and disjunction is notational only. This was
reflected in the the matching routine in APRVR and caused no problems. The definitions in the
next chapters, *3 and *4, of conjunction and equivalence appeared likely to present difficulties to
my system. Conjunction and disjunction are handled quite differently in my prover for semantic
reasons. It would be out of the spirit of natural deduction and would be a burden to transform
back and forth between the equivalent forms of AND and OR all the time. Since I was only
interested in working on agendas and not verifying PM by computer, I avoided these problems by
only choosing examples in *2. I feel that translating between forms of AND and OR rarely occur
in most theorems.

There were two major rules of inference, detachment and backward chaining (see Chapter 2.5).
Forward chaining (for PM) was not added until later. APRVR normally keeps the hypothesis and
the conclusion of a goal separately (with the implication implicit), but since the logical operators of
PM had to be disguised from APRVB, the goals were kept intact in the slot normally containing just
the conclusion. Because of this, the implementation of detachment is actually identical to APRVR's
normal backward chaining. The backward chaining for the PM problems, although identical in
conceptA to the normal backward chaining, had to be specially implemented. In the notation of PM,
detachment is justified by *1.11 while backward and forward chaining are justified by *1.11 and
the principle of the syllogism (*2.05 and *2.06).

I did not try to do a complete run of all the theorems in *2. By default (so as to fit in
physical memory while on our DEC-10 computer), APRVR was limited to 150 goals (about 50-75
logical goals) during each problem. Some theorems could not be proved under this limitation,
others required limiting the number of previously proved propositions available during a proof,
while most were proved with all previous propositions available as lemmas. When I later added
forward chaining, 2 number of the proofs became easier. APRVR proved 47 out of about 55 tried.

I was satisfied with the results. APRVR's success on these theorems was adequate and 1 had
developed the initial structure of APRVR and was ready to try new fields. Meanwhile, using the

same deductive techniques (originally without forward chaining) available to the Logic Theorist

45

[Newell-57], I had been approximately as successful in proving the theorems. Later, when I added
forward chaining, I proved the most difficult problem for LT, ®2.17, rather easily. As 2 test in
adding domain specific technigues, I also recently added 2 procedure that looks for 2 “lemma” to
be used in proving a goal in this domyain. This showed the modularity of APRVR,; it was quite easy
to add such a procedure without modifying the other procedures. It was only necessary to write
the one procedure to do the proposing and calling the other routines to do the proving, another one
to print its part of the proof, and then modify a property list indicator to tell APRVR to include
that procedure. This procedure allowed APRVR to find the proof for a theorem on which the Logic
Theorist totally failed, *2.13. The proofs of *2.13 and *2.17 are in Appendix B.

5.3 Set Problems

The next set of problems presented to APRVR were a list of elementary set theory problems.
At first APRVR did poorly on them. In analyzing why, I rgalized that these problems involved
developing several ground facts from the hypotheses via the axioms. Forward chaining in APRVR
had been designed with the idea that it was not often needed and that backward chaining could
usually be used. When forward chaining was really needed, it would have to wait its turn behind

the more commonly used backward chaining.

These problems pointed to a mistake in that logic. The problems needed not one, but several,
simple forward chainings. In my system this would mean a delay until the first forward chaining
was done and then a further delay until the next one was done. While this might be acceptable for

some complex forward chaining, it was intolerable for these simple ones.

The solution to this was to do some kind of limited forward chaining early in the problem.
Limitations had to be imposed to prevent forward chaining from continuing forever recursively.
Recursive forward chainings would be prohibited and only ground chainings could be done. This is
exactly the type of simple forward chainings that were desired but also prevents any complications,
with the goal or the substitutions returned in its proof, arising from any substitutions for forward

chaining. This “quick” forward chaining routine, QKFC, is described in Chapter 4.

The results on these problems look impressive but it should be realized that they do not reflect

the amount of effort spent in QKFC, which was considerable. On the whole, QKFC, even though

it might be expensive to use, is 2 worthwhile tool, saving many times its own expense.

The lemmas used in the set problems follow:

ztCyAyCz=sz=y
Vz{z€z=2€y)=22Cy
z€eAz€b=z€ (af)))
z€(alb)=2z€aAZED
z€aVz€Eb=z€(ayd)
z€(elJb)=z€avzED
~{(z€c°)=2z€a
~(z€a)=2z€a°

z € 6= ~(z €a°)

z €c® = ~(z €a)

~(z € ¢)
Results
Theorem Total GOAL~type Goals
Goals Goals Proved
tNa=2¢ 19 10 19
a=af)e 21 11 21
ayb=1=56la 43 21 25
a}bCa 7 4 7
eNb=1bNe 21 11 21
pljea=2a 31 16 28
bC (aUb) 11 6 o
alJea=a 25 13 25
(e’ =0 17 9 17

(e b)° = (eYU(¥") 50 25 38

47

5.4 Group Theory Problem

One of the classical group theory problems in automatic theorem proving is the proof that
a group is Abelian (commutative) if the square of every element is equal to the identity element.
Because the associativity axiom is used three times on partially instantiated multiplications, this
problem is a good test of the system’s design in avoiding inefficiencies in finding substitutions for
free variables.

APRVR did well on this problem. The only additional improvement to APRVR that came
from tfying this problem was in the way ANDSPLITs are handled. Originally, when faced with
an ANDSPLIT, APRVR only tried proving the first of the conjuncts, leaving the others until that
-one was finished. This reduces the branching factor considerably as any proof that could be found
starting from one of the conjuncts could be found by starting with any other conjunct. But when
there is hore than one substitution proving an ANDSPLIT, the conjunct chosen as the initial one to
prove may make a difference in the efficiency of finding the required substitution. If that conjunct
lends itself to an easy proof, but with a different substitution than the one needed, the prover may
be temporarily trapped while it tries that first solution.

The new feature added to APRVR to prevent this temporary trapping was to try all of
the conjuncts for a quick proof. For each comjunct proved, the reinaining conjuncts have to be
proved with that substitution. Thus while several proofs of the conjunction might be going on
simultaneously, it will only be so if several conjuncts have been proved. If none of the conjuncts
could be proved quickly, APRVR reverts back to trying to find 3 proof only of ‘the first conjunct.
The branching factor had not been increased much (because only quick proofs were tried) ahd a
considerable increase in efficiency occurs when an ANDSPLIT returns multiple values.

Because equality is not implemented in APRVR, expressions of the form X*Y == Z had to be
encoded as predicates, P(X,Y, Z). The associativity axiom then had to be expressed as a pair of

implications. Expressed in this form, the properties of groups that are needed are:

Yzy 3z Plz,y, 2} Closure under multiplication
Vz P(z,E, r) Right identity
Vz P(E,z,z) Left identity

48

Vz P(z, I{z),E) Right inverse
vz P(I(z),z,E) Left inverse
Vzyzvyvow(P(z,y,v) A P(y, 2, v2) A P(vy, 2, w) = P(z, vz, w)) Associativity

Vzyzvivow(P(z,y,v1) A Ply, 2, v2) A P(z,v;,w) = P(v;,z,w)) Associativity

and the theorem is simply
VzP(z,z,E) = Vzyz(P(z,y,z) = P(y, z, 2)).

In order to prove this, APRVR requires 228 goals of which 105 are GOAL-type goals. The proof

involves 35 of the goals.

5.6 AMS8

A mathematician would have found the previous examples rather simple. The problemé are
indeed simple but I think he would feel that way partly because he is very familiar with the problem
domains and can use methods (possibly extralogical) not available to the prover?. These methods
allow him to reduce his search space by determining what axioms and theorems are likely to be
used, what bindings will be used for the variables, and possibly some lemmas that will cause the
search tree to be shallower.

The hardest of the examples for APRVR is a problem in linear real inequalities, called AMS.
1t is a derivative of the problem to prove that 2 continuous function attains its minimum over a
closed region. Even knowing about inequalities and knowing what the problem is about, 2 buman
prover will not find the solution quickly.

APRVR is not knowledgeable about inequalities and certainly can not understand what the
problem means. The lemmas for inequalities are simply uninterpreted predicates to APRVR. I
believe a person given the problem in the form that APRVR gets would not be able to solve it.

This form is:

2For example, finding & rough proof of the z¢z == E group theory problem is easy if cancellation is used. Bui
cancellation is not immediately obvious from the axioms and lemmas given to the prover. If it were knowledgeable
zbout groups and had specialized heuristics and procedures such s cancellation, then it should have little difficulty
with that problem.

49

" Lemmas:

Vzy|(P(z,) A Py, z)) = P(F(z), F(y))]

Vz P(z,z)

Vzy|P(z,¥) V Py,)]

Vzyz|(P(z,y) A P(y, 2)) = Plz, 2)]

Vzy|~ P(z,y) vV ~P(y,z) V (P(z,9) A P(y,7))]

- Problem: vt|~ P(t,L) = P(F(L), F(t))}

AVz|~P(L,z) = 3t[P(t, z) A ~P(F(t), F(z))]
A Vw3g|P(F(g), F(w)) A ¥z [P(F(z), F(w)) = P(g, z}}]
= 3u 3t P(F(u), F(t))

Doing an undirected search for the proof of this problem would be hopeless. But, if the
variables were instantiated_with the correct values, the problem might become solvable.

When APRVR starts trying to prove the problem, it finds a promising path to follow. After.
a while, the problem is reduced to proving something that (although APRVR can not know it) is
not always true. In trying to prove this, APRVR finds a disjunction in the lemmas for which two
of the three disjuncts would finish the proof. APRVR then does a case split. It looks back up the
proof tree for an appropriate spot, in this case, the original goal, and does the case split there.

By noticing it had a partial proof, APRVR was able to use the indicated substitutions and
reduce the problem to three other problems each with its own additional hypothesis, two of which
are easily solvable. If this case split is neéessary for the proof (as it was on this problem), APRVR
has effectively reduced the search space by binding some variables. Even if it has guessed wrong,
the search space is increased only linearly. During the proof of AM8, two other case splits are tried
besides the one leading to the proof.

The successful case split involves three separate cases: whether the Skolem constant G(Z*(L))
is less than, greater than, or equal to L. The Skolem function G is from the third hypothesis while
T’ is the Skolem function for the variable ¢ in the conclusion. Two of the cases are trivial to prove.
The third is an impossible case. When APRVR tries that case, it finds that QKFC generates 2

_contradiction in the hypothesis and so reports the goal is proved.

CHAPTER 6.

CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Summary

Theorem proving is the search for a set of deductions that leads from the axioms, lemmas, and
theorems to the problem under consideration. Since the British Museum Algorithm of applying the
proof rules to every possible combination of already proved facts is very ineffective, some heuristics
must be applied to try to guide the search in the right direction. Although many theorem provers
may have these heuristics to order the search embedded in their code, this dissertation explores an
agenda method for making this ordering explicit and free from restrictions imposed by the control
structure of the theorem prover. But freedom implies responsibility. To be free to chose the order

of search means the choice must be explicitly made.

APRVR is an agenda-based theorem prover. The problems of determining the priorities
on which to base the choices as well as the advantages of having the freedom of a less restrictive
control structure have been experienced during its development. From this different view of theorem

proving have come some fresh ideas for finding proofs.

Although this theorem prover was only meant to be a vehicle to explore priorities and agendas,
APRVR has performed qﬁite well on the problems it has been given. Each new problem has px;ovided
more.insight into the agenda system, resulting in a change that has added power t§ the prover.
The system is not completed; future problems should provide more ideas on how to strengthen the

system by better utilization of the agenda.

8.2 Conclusions

Designing and working with APRVR has lead me to a number of conclusions, some of which

are general in nature and some specific to agenda systems.

1. The iterative, as opposed to recursive, choice of subgoals leads to new methods of finding

proofs. The concept of trying to prove each of the conjuncts, but only for a short while, in order

50

51

to find the best conjunct of an ANDSPLIT to start with would be difficult and expensive without
‘an agenda system. It would be impractical to try to use information developed in one part of the
search tree to affect the search in a different part of the tree, especially if the area to be affected
is above the part causing the effect. This can be accomplished in an agenda system with little
difficulty.

2. The determination of priorities is difficalt. There are many factors th-t can enter into a
priority of a new goal: how likely is it to be provable, how difficult might it be to prove or disprove,
how likely is it to be part of the total proof, how much work would remain after it is prbved, does
it have multiple proofs, would its single or multiple solutions increase later work, would it bind
variables to restrict the search later. As work is done on the goal, the priority should be adjusted
to reflect how its partial successes or failures affect the likelihood of its being proved and how the
ways to prove the goal have decreased. All these factors must be somehow weighted and combined
so the goals can be compared to determine the best goal.

3. Although the priorities are important to the efficiency of the system, they are not critical.
If certain guidelines are followed in assigning priorities, the specific priorities assigned to goals are
not overly important. A goal with a slightly worse priority will still be processed, only somewhat
later. 4 As a result, the computation and assignment of priorities can be done somewhat loosely
and still be reasonable. The only significant differences will appear at the limits of the prover’s
capabilities. ‘

4. Completeness is only a theory. In determining how to assign priorities, a theorem prover
designer must realize that no matter how well designed his system is, it only has a finite amount of
resources with which to search an infinite tree. By the assignment of priorities, he can and must
choose where the incompleteness will occur.

5. The overhead in using an agenda system and assigning priorities is significant. This does
reduce the actual number of deductions made but should also reduce the number necessary. On
simple problems, the agenda prover may not be as fast as some other types of provers. On more
complicated problems, the agenda mechanism may be the difference between finding a solution or
not.

6. There are difficulties in using 2 system in which common logical subgoals are shared by

52

their parents. I feel that the simpler conceptualization of having unique goals outweighs the added
bookkeeping.

7. The human interface, even in an almost totally automatic theorem prover, is important. It
1s important for developing the system, knowing it works correctly, and allowing the user to help

when necessary.

8. The priority system, taken by itself, might cause the prover to jump from one branch of
the proof tree to another rapidly. Overlaying the priorities with some system of giving inertia to a
proof branch causes the prover to appear more stable and allows it to hurdle small barriers to the
proof.

9. This system does not begin to exhaust the possibilities of agenda theorem proving. I feel that
only the surface has been scratched and that future systems should provide significant advances in

automatic theorem proving.

8.3 Future Directions

There are many possible future directions to be taken with APRVR and 3genda theorem
proving.

APRVR does all the limited forward chaining for a goal when it is generated and adds the
results as hypotheses. I feel there ought to be some way to distinguish these from the original
bypotheses and not use them for some of the later deductions. They should be available to be
matched, but not necessarily used as chaining hypotheses. By making them second-class hy potheses,
. the branching factor of the search should decrease.

Although the parameters for the combining of the priority factors are not critical, the present
‘parameters could provably be improved by running APRVR on a larger class of problems and seeing
how it performs.

More importantly, if a particular domain is chosen, the syntactic judgements of the provability
of a formula.could be supplehented by semantic, domain specific knowledge. I believe this would
drastically improve APRVR’s performance and might also force a better understanding of how to

determine the plausibility of a formula.

I feel for certain that there are many more non-local methods in which the exploration of one

- part of a proof tree provides insight into what should be tried in another part. An example of
this might be where two goals may be proved similarly. Perhaps the proof of one could be a guide
for the proof of the other or perhaps the two proofs could even be attempted as a single attempt,
sharing common deductions and differing only where necessary.

There is a great deal of independence among the goals on the agenda which could be exploited
on future parallel computers. Different CPUs would take different goals, process them, update
the data base, and then pick the next goal off the agenda. This n-fold increase in speed might
be somew.tmt decreased by conflicts in accessing the database but a significant speed-up might be
poséible. Unfortunately, theorem provers run into problems with combinatorial explosions. This is
not resolved by a linear increase in speed.

The human interface in APRVR can be improved. There is too much detail being presented
to the user, distracting him from the important points. A better display of the status of the proof
could be made but it would need to have some mechanism for letting him view the overall structure
while seeing the detaiis of what he is interested in. He might be given better access to control the
overall priority mechanism. Perhaps he could say which hypotheses are critical and which are not.
He could also warn the cdmputer of traps it might fall into.

I certainly hope that I will be able to continue working with APRVR or a descendant and 1

expect that others will begin to work with priority-ordered agenda theorem provers.

APPENDIX A.

GENERALIZED SUBSTITUTIONS AND SOUNDNESS!

A.1 Introduction

APRVR is designed to prove the validity of formulas in first order predicate calculus. This
appendix will show that if the prover returns a substitution for some formula then that formula is
valid.

When a closed formula, E, is given to the prover, it Skolemizes the formula into an open

formula, S. If v;,vs,..., v, are the free variables in S, then the original formula E is equivalent to
3v; 3vp ... 30, S. : (1)

If some substitution # exists such that S8 is ground (contains no free variables) and S4 is true then

(1) is true. Likewise if there is some set of substitutions 6,,8,,...,6,, such that
56, VSV ...V S0,

is both ground and true then (1) is true.

It will be shown that if APRVR returns some non-NIL substitution 6 as the result of proving a
goal So%then fér any substitution ¢ such that Sf¢ is ground then 56c is true. From this it follows
that (1) and the original input are true.

A formula, P, will be termed ground-true if for any substitution o such that Po is ground,

Po is true®. This will be indicated by the notation

Yo Po.

IThis appendix is an adaptation of Appendix 3 of [Bledsoe-78]. The concept of generalized substitutions is
originally due to W. W. Bledsoe but APRVR is the first theorem prover to employ it. I developed and proved
the theorems contained in this appendix. Similar material also appeared in [Tyson-78].

2In this appendix, I will speak of substitutions as being the value of a goal In the implementation, information
other than the substitution is also returned but it has no relation to the validity of the proof and so will be
ignored here.

3Equivalently, P is ground-true if and only if Yv; Yuz...Vu, P is true where vV3,92,...,Un are the free variables
in P.)

Lemma 1. Properties of Ground-Truth. If P and @ are any formulas and # and) are
any substitutions, then
(1.1) VYo Po & P when P is ground.
(1.2) VYo Po = VYo Plo.
(1.3) Vo Po = Vo(P8 A P))o.
(1.4) VoPo = Yo(P8V P\)o.
(1.5) VYo(P A Q)o & Yo Po AVoQo.
(1.6) (Yo Po V Vo Qo) = Yo(PV Q)o.
(1.7) (Yo Po AVo(P = Q)o) = Vo Qo.

Remember that to show ground-truth it need only be shown that Po is true for all & such that
Po does not contain free variables.

To show that the prover is sound it is necessary to show that the rules used in APRVR are
sound. Induction will be used where the prover creates subgoals. Most of the rules used permit
straight forward proofs. For instance, the proof method that handles splitting when a disjunct is

found in the hypothesis requires the proof that
Vo{(A = C) A (B = C))bo = Vo{{A Vv B) = C)do. (2)

The left hand side is the induction hypothesis, i.e., that the subgoal ((A = C) A (B = C)) is
proved by APRVR with a substitution 8 such that ((A = C) A (B = C)) is ground-true. The
conclusion of (2) is what must be shown: that the returned substitution 6 must be such that the
original form, ((A V B) = C), is ground-true after ¢ is applied. Lemma 1.7 and the fact that the
two forms in (2) are equivalent proves (2).

The rules concerning ANDSPLIT, forward chaining, and backward chaining are more difficult
to prove. In applying these methods, two subgoals are proved, the values of which may be combined
into a generalized substitution, a generalization of the notion of a substitution.

Normally, APRVR can avoid the extra expense of returning (and later applying) generalized
substitutions when it composes substitutions and can instead use ordinary substitutions. The next
section will show the soundness of APRVR when it uses ordinary substituﬁons. The following

sections will define generalized substitutions and show the soundness of APRVR for those cases in

which they are needed.

A.2 Soundness Results for Ordinary Substitutions

When there are mo complications arising from conflicts in the substitutions returned from
subgoals, APRVR will return ordinary substitutions. In this section, APRVR’s ANDSPLIT will be
proved sound when ordinary substitutions can be returned. The equivalent theorems for backward
chaining and forward chaining are similar.

When APRVR encounters a goal of the form
H = (A A B),

it generates a first subgoal of

H = A

If this goal returns an ordinary substitution #, then a second subgoal
H = B§

is generated. If this goal returns the ordinary substitution A and it does not conflict with 4, then
APRVR returns the composition of the substitutions, §x, as the value of the original goal.

Before proving this is sound, it is necessary to formalize the concept of substitutions.

Definition. A substitution 6 is a set {a;/z;:1 < i < n} where the z;’s are variables

and the a;’s are terms and ¢; 3 z; and i 5% j = z; 5% z;.

Deflnition. If A is an expression and § = {a;/z;:1 < i< n}isa substitution then A8

is the expression obtained by replacing all the z;’s in A by the corresponding a;'s.

Definition. A composititon, 6, of two substitutions § = {a;/z;:1 < ¢ < n} and
A= {b;/yi:1 < i < m} is defined to be the set
On={exfz;1 <i<n}Ubsfys1 € i<mAl<Lj<n=y 5#z;}

A composition is clearly a substitution. Composition is associative: (A8)) = A(6))

57

Definition. The domain of a substitution § = {a;/z;:1 < § < n} is the set {z;:1 <
i < n}. The range of ¢ is the set {a;:1 < § < n}. We will say a variable occurs in the

range of 8 if it belongs to the range or if it occurs in one of the elements of the range.

Deﬂnitlcn. A substitution 8 is called normal if no element of its domain occurs in its

range.

If ¢ is normal then 88 = 8. If § is normal then Af contains no element in the domain of 4.

Deﬂnltidn. Two substitutions & and) are said to confllet if their domains are not

disjoint.

Lemma 2. If ¢ and) are normal and non-conflicting then) is normal if and only if

no element in the domain of 8 occurs in the range of A .

Proof.’ Proof of =

Suppose z is in the domain of § and occurs in b which occurs in the range of » . But by the
definition of composition, z is in the domain of é) and b occurs in the range of #1 . So 6 is mot
pormal.
Proof of =

Suppose 6\ is not normal. Then there is an z in the domain of #) that occurs in some ¢ in
the range of 4\ . By the definition of composition, either z is in the domain of § or in the domain
of) . Likewise either ¢ is in the range of \ or there is some a in the range of § such that ak = c.

Suppose z is in the domain of X . Since X is normal, if c were in the range of A then z can not
occur in ¢. Likewise z can not occur in a) . So z can not be in the domain of X .

Therefore z must be in the domain of §. Since # is normal, z can not occur in any ¢ in the
range of 8. Thus z can occur in a) only if z occurs in the range of A . So no matter where ¢ comes
from, z would occur in the range of A .

QED.

Lemmsa 3. If 4,)\, and 6\ are normal and 6§ and) do not conflict, then

A: = @),

Proof. 0\ and M@ only differ for elements in the domain of X\ . Suppose v is some such
variable. By the previous lemma, no element of the domain of 8 occurs in the range of A . Since
v is in the range of A, A0 = v) . So vAfX = vA) = v) (since X is normal A\ ==)). Since v is
in the domain of A and since § and do not conilici, v is not in the domain of §. So v# = v and

vIh = vX . So v\ = vAfr. So &\ = A,

Corollary. If 6, \, and 60X are normal and ¢ and) do not conflict,
Vo(HON = H\6)))o
and

o) = OA(O)).

Theorem 1. If ¢ is some substitution,

Vo(H = A)io 3)
AVYo(H = Bé)ro (4)
AVolHIN = H)p)o (5)
AVo(BIr$ = BO))o (6)

=Vo(H = A A B)dro

Proof. We need to show that if 7 is some substitution such that (H = A A B)#)\v is ground

then

H\y = A9y A BOY.)

We will do so for an arbitrary « satisfying that condition.
We begin by assuming

Hoxy. (8)
By the assumptions on 7, we know that (8) is ground. Combining (8) with (3), we then know
Abny (9)

is ground and true.

59

From (5) and the assumption of (8), we also know

Vo{H ¢)o.
Combining this with (4), we know
Yo(Box¢r)o.
Further combining this with (6) we get
Boxy (10)

which is both ground and true.
Thus by assuming (8) we derived both (9) and (10}, thereby proving (7).

QED.

By the previous corollary, it can be seen that the hypotheses about ¢ are satisfied by ¢ = @\

when 8, X, and @) are all normal and 6 and) do not conflict. This is the usual case.

Theorem 2. 114, », and 6 are all normal and ¢ and X'do not conflict, then

Vo(H = A)bo
AVo(H = Bé)\o
=Vo(H = A A B)o)ro

A.3 Generalized Substitutions
The previous theorem proves the soundness of APRVR if the substitutions returned are of a

particular form. By employing generalized substitutions these restrictions may be removed.

Definition. @ is a generalized substitution if
(i) @ is an ordinary substitution, or
(i) 8 has the form of either
(61 v 62)
or
(61 A 82)

where #; and #, are generalized substitutions.

Some examples are,
6y, 0V, ((61V62)A0s),

where the §; are ordinary substitutions.

Definition. If ¢ is a generalized substitution, then we define ¢ by
(i) ¢ = 6if 6 is an ordinary substitution,
(i) (6 Vo) = (8 A8)
(iii) (6 A62) = (67 V 82).

Definition. A generalized substitution is said to be a pure disjunction (conjunction)

if it contains no A symbols (V symbols).

Notice that this definition allows ordinary substitutions to be called pure disjunctions {and

pure conjunctions).

Definition. If A is a formula and 4 is 2 generalized substitution, f.hen A# is the formula
obtained by applying 6 from lefi to right, i.e.,
(i) AS is the usual result if 4 is an ordinary substitution,
(ii) A6 V 62) = Ab; v Ab,,
(iii) A(6; A 62) = Ab; A Ab,.

An iterated generalized substitution such as) can be converted into a generalized substitution

by applying) to 8. For example, if 8; and h; are ordinary substitutions, then

(61 A G2) (M1 V Az} == (0: 71 A O221) V (6122 A O2)2)
= (021 V Oix2) A(0:i)1 V 8222) A (221 V 8102) A (622 V 82)2).

A.4 Propertles of Generalized Substitutions

Lemma 4. If ¢ and) are generalized substitutions,) is a pure disjunction, and A and

B are formulas then)\’ is a pure conjunction and

61

41 (Y =296

4.2 ~(Af) =~ A¢

43 (AV B)) = A\V B\
4.4 (AAB)N = AN A BY
4.5 (A= B)) = (AN = B))

Proof. 4.1 and 4.2 follow directly from the definition of & and the properties of ~. 4.3 and

4.4 follow from the associativity of ¥ and of A. Then 4.5 follows from 4.3, 4.2, and 4.1, as follows:

(A= B)\=(~AVB)
= (~A\V B))
= (~(AN) V B)\)
= (AN = B)).

A.5 Generalized Substitutions in APRVR

‘Generalized substitutions can be generated when two subgoals are combined to prove a goal.
This occurs during ANDSPLITs, forward chaining, and backward chaining. In order to prove these
methods valid, it is necessary to specify what the first subgoal is, how its value is used in generating
the second subgoal, and how the values of the two subgoals are combined into the (generalized)
substitution that proves the goal.

In doing an ANDSPLIT on a goal of the form
H=(AAB),

the first subgoal is
H= A

If 6 is the value returned, it is then used in generating the second subgoal
H = B¢
If this subgoal returns a substitution of X, then the generalized substitution

L2V

62

is returned as the substitution proving the original goal.

Similarly, if a forward chaining is attempted on
(HA(P=qgQ))=C,

the first subgoal generated is

H= P,

i >this goal is solved by the substitution 4, the second subgoal generated is
[HA(P=Q)A Q8= C4.
If this is then proved with a substitution of \, the substitution
v

is returned as the value of the original goal.

Backward chaining is again similar. If the goal is
[HA(P:)Q)]:C,

the first suAbgoal is
Q=C.

If this returns the value 4, 2 second subgoal
H = p¢
is generated. If this is proved with a value) | once again,
XV A

is returned.

A.8 Soundness

We can now prove the soundness of APRVR when generalized substitutions are generated. As
before, we will do so only for ANDSPLITs. Proofs for other rules are similar.

Note that all the substitutions returned as the value of a goal are either ordinary substitutions
or, by the above rules, disjunctions of substitutions already returned from a subgoal; no conjunc-
tions are ever returned. Therefore, the substitutions (whether ordinary or generalized) that APRVR
returns are always pure disjunctions. Thus the values of the subgoals used as inductive hypotheses
in the soundness theorems must be pure disjunctions.

If we are proving

H=AAB,
and 8 is returned for
H=A
and) is returned for
H = B¢
then 6\ V X is returned for
H=AAB

Lemma 5. If 4 and) are pure disjunctions then
5.1 (H = C)o) & (H¥N = Co))
5.2 Vo(H = C)fo = VYo(HFN = Co\)o
5.3 Vo(H = C)0 = Yo(HIN = CoN')o
5.4 Vo(H = C)o = Vo(HI) = Ci)\)o

Proof.

5.1
(H=C)) & (HY = Co)
& (HEXN = Con)

5.2
VYo(H = C)o = Yo(H = C)fho
= Yo(H#N = Co\)o

5.3 Proof is by induction on the structure of).
Case 1.) is ordinary.
A ==}’ 50 5.2 applies.
Case 2. A=) Vs
We use the induction hypotheses:

Vo(H = C)oo = Yo(HE'N, = CoM})o,
Vo(H = C)io = Yo(HE'), = CoN,)o.
So we have
Vo(H = C)8o = (Vo(H' X} = CON})o AVo(HEN, = Coxy)o)
= Vo[(H&'N] = CON)) A (HEXN, = CoNY)|o
= Vo[(HO'X] A HE'M,) = (CON, A CoNL)jo
= Vo[HO'(\] A Xy) = CO(N; A N)]o
= Vo(H¢')N = CoN')o
5.4 Proof is by induction on the structure of) .
Case 1.) is ordinary.
= X s0 5.2 applies.
Case 2. X =) V Xo.
Wé use the induction hypotheses:

Vo(H = C)fo = Yo(H& N, = Co))o,
Vo(H = C)io = Yo(HE xy = Co);)o.

So we have

Vo(H = C)o = (Yo(HEN; = COM)0 A Vo(HE), = Corz)o)
= Vo[(HEN, = CO\) A (HEN, = COA)jo
= Vo[(H#'M\ V HOA5) = (O, V Cox,)|o
= Vo[HE' (M V hg) = CO(A\; V Ag)lo
= Vo(HO'\ = Ch\)o

Lemma 6. If 6 and X are pure disjunctive generalized substitutions then

Vol(AN A BE>) = (A A B)oNo

Proof. Proof is by induction on the structure of)\ .

Case 1. X is ordinary.

Since A =)\’ we need to establish
Vol(AS\ A BEN) = (A A B)i\o. (11)

This is shown by induction on the structure of 4.
Case 1.1. @is ordinary.
(AOX A BO)) = (A8) A BOX) = (A A B)ox.
Case 1.2. § = 8, V 6. We will use the induction hypotheses:
Vo[(A6:x A B&,X) = (A A B)oy)\o,
Yo[(A62) A BOo)) = (A A B)bz)o.
We need to show

((A6) A BE#)) = (A A B)oX)o : (12)

for all ¢'s such that (12) is ground?. We will show it for an arbitrary o satisfying that condition.

Abro A B&'xa = A(6; V b:)ho A B(#, A 8)0
=+ (Ab, 7o V Ab:00) A B#\\o A B¥yro
= (A6, Mo A B& \o A Béy)o)
V (48200 A Bé#i)o A Bé)o) :
= (Af 2o A BO\)o) V (Ab20a A Bo,)o) (13).

By induction hypothesis {(13) is ground since (12} is},

= (A A B)9, o V (A A Boo)o
= (A A B)(6, V 02))0
= (A A B)oxo

So (12) is shown for an arbitrary 0. So (11) is established.
Case 2. X == A; V Az. We use the induction hypotheses:
Vo{(AON, A B#)) = (A A B)o)i]o,
Vo[(A9N, A B#)z) = (A A B)oX,)o.
We heed to show

.{(AGX’ A B¢')\) = (A A B)))o (14)

“The substitution o can be presumed to be an ordinary substitution.

for all ¢ for which (14) is ground. We will show it for an arbitrary o satisfying that condition.

A6 A BENG = AB(N, A Ny)o A BE(\ V h2)o
= AONjo A ABXNo0 A (B8)0 V B8)q0)
= (AONja A ABNo A BE M0}V (A0 0 A Ao A B8 x,0)
= (AON,o A BEX10) V (46040 A B#2z0) (15)

By induction hypothesis {(15) is ground since (14) is),

=) (A A 3)9)\10 A\ (A A B)9A20
=({AA B)ﬂ()q v)\2)0
= (A A B)fro

QED.

A.7 Soundness Theorem for ANDSPLIT

Theorem 3. If § and) are pure disjunctive substitutions then
Vo(H = A)bo (16)

AVo(H = B¢)ro (17)
=Vo(H = A A B)6) V \)o

Proof. We need to show
(H=AAB)6\V) (18)

for every substitution o such that (18) is ground.

Rewriting this we get

(HE#No A HNo) = ((A A B)fho V (A A B)ho)

Now

Ho'No A H)No = AONo A HN o by (16) and Lemma 5.3
= A0)'o A B# ro by (17)
= (A A B)éxro by Lemma 6

= (A A B)éro V (A A B)ro
QED.

The only non-trivial rules left are backward chaining and forward chaining. The generalized

soundness theorems for these are

Backward Chaining:
Vo(B = C)bo

AVo(H = A8 o
=Vo((H A (A= B))= C)(6) V \)o

Forward Chaining:
Vo(H = A)bo

AVo((H A (A= B) A B8) = Coro
=VYo((H A (A= B))= C)6XV \)o

These require the lemmas

Vo(H = C)¥No = Yo(H¥\ = C&#)\)o,
Vo(H = C)¥'No = Yo(HON = Co\')o.

A.8 Examples

Example 1. P{z) = (P(a) A P(b))

This requires the generalized substitution ({a/z} V {b/z}). Without further knowledge of
where this goal is used, APRVR can not make the assumption that it had a hypothesis that stated
P(z) was true for all zz When APRVR can determine that t.his goal was generated from such a
situation, APRVR will simply return the empty substitution.

Example 2.
P(a,b,z) A Q(a,b,d,y)

A R(a,b,f) A R(e,c, d)
=(P(z,y,2) A @(a,y,2,¢)) A R{(z,y,2)

This is not a theorem. The proof of

P(z,y,z) A Qla,y,2,¢)

requires the composition of the substitutions {a/z,b/y} and {d/z, c/y}. With generalized substitu-

tions we then have to prove

R(z,y,z)({a/z,b/y,d[2} A (d/z,¢[y})

which translates to

R(a,b,d) A R{z, ¢, d).
This can not be proved from the hypotheses.

Example 3.
P(G, b, Z) A Q(a: br d: y)

A R{a,b,d) A Rle,c,d)
=(P(z,y,2) A Qa,¥,2,¢)) A R(z,y, 2)

* This is similar to example 2 but is a theorem. With generalized substitutions it is proved but

IMPLY (which does not have generalized substitutions) could not prove it.

Example 4. (P(f(z)) A Q(s(v)) = (P(y) A Q(z))
This theorem is proved using the generalized substitution ({/{g(y)}/v. 9(v)/z} V {9(y)/z})-

Example 5.
Q(e, 1(8)) = |(P(f(2)) = [P(/(s)) A P(3)]) A Q(z, y)}

The first step in proving this is to prove
Qa, 1(8)) A P(J(z)) = P(/(a)) A Ply).

This requires the combination of the substitutions {a/z} and {f(z)/y}. With generalized substitu-

tions we then need to prove

(Q(a, 7(8) = @z, ¥)){e/z, /(=)/v} A {/(=)/v})

which becomes

Q(a, 1(5)) = (Q(a, /(=) A =, (2))).

This is clearly not provable.

APPENDIX B.

EXAMPLES OF PROOFS BY APRVR

B.1 Proof of *2.13

Note: The ORR, NOTT, and IMPP are the disguised version of APRVR’s disjunction, negation,
and implication operators. The formulas in the proof presentation below the list of lemmas are
“pretty printed” in infix notation. Skolem functions and variables include in them the name of the
proposition from which they came. Variables are distinguished by 2 dollar sign ($). So P#1:018 is
a variable that derived from proposition #1.01 in Principia Mathematica.

This is the proof output from APRVR: 0
Proving

(ORR (P#2:13)
(N0TT (WOTT (HOTT (P22:13)))))

Using 28 lemmas:
(DF (IMPP Ps1:018 Q=1:01$)
(ORR (¥ODTT Pe1:018) Q21:018))
(I¥PP (ORR Ps1:2§ Pe1:28) Ps1:2§)

{14PP §+1:3% (DRR P=21:8% 0=1:3%))

(I¥PP (ORR Ps1:46¢ Qs1:48)
(ORR §s1:4§ Ps1:48))

(14¥PP (ORR P#1:5% (ORR Q#1:5$% Re1:5$))
(ORR Q+1:58¢ (ORR P»1:5§ R*1:58)))

(IMPP (IMPP Q21:6% Re1:8§)
{14PP (DRR P21:8% Q=1:8%)
(ORR Pe1:8% R21:8%)))

(IMPP (IMPP P»2:01$ (BOTT P22:01%))
(EOTT P22:018))

(IPP Q22:02¢ (IMPP P#2:028 §+2:028))

69

70

(IMPP (IMPP P22:03% (HOTT §»2:03§))
(IMPP Q¢2:03% (HOTT P32:038)))

(I¥PP (IMPP P#2:04%
(INPP Qe2:04% Rs2:04%))
(IMPP Qe2:04$
(IMPP P#2:048 R+2:04$)))

(IMPP (IMPP Q#2:05$ Rs2:058)
(IMPP (IMPP Ps2:05% Q»2:05%)
(IMPP P#2:05¢ R*2:088)))

(IMPP (IMPP Ps2:06% Qs2:088)
(IMPP (IMPP Q+2:088 R+2:06%)
(IMPP P#2:06% R+2:068)))

(IMPP P»2:078 (ORR P+2:07%$ é:z:o7$))
(IMPP P#2:08% P#2:08%)

(ORR (EOTT Ps2:18) Ps2:1$)

(ORR P#2:11§ (NOTT P+2:118))

(1MPP P22:12¢ (HOTT (HOTT Ps2:12%)))

Here is the “trick”. Backward chaining would not find a formula of this type. Once the
formulas that P->#$2 and P->#$3 are proved, the theorem is proved. With the normal (non-PM)

logical o})erators, this would not be needed.

(Goal 80) The formula
{ P->»82
-» { P->s83
-> ((P#2:13) ORR ---(P#2:13))))
vas found to be true: _
This was proved by matching (and possibly chaining)
with the hypotheses:
{ (Qe1:8% -> R=1:6§)
=> ((Ps1:6% ORR Q+1:68) -> (Ps1:8% ORR Re+1:8%))
)
Substitutions:
pP->¢$2 by (Q+1:8§ -> ---P22:13)
P->2$3 by (P#2:13 ORR Q+i:8§)
P21:8% by P#2:13

71

Re1:688% by ---P*2:13
(Goal 60) Nov it remains to be proven that both the
bypothesis and the hypothesis of the conclusion are true.
Then the conclusion of the conclusion (what is being
proven) will be kmown to be trus.
So we peed to prove:
((Qs1:88 -> ---(Ps2:13))
AND ((Ps2:13) ORR Q#1:6%))
(Goal 61) This has a simple proof:
The AND in the conclusior is splii into two
parts.
The first conjunct
((Ps2:13) ORR Q+1:6%)
is proved by:
This was proved by matching (and possibly
chaining) with the hypotheses:
(P+2:118 ORR -Ps2:11§)
Substitutions:
P#2:118 by P#2:13
Q#1:68 by -P#2:13
The second comjunct
(Qs1:6% -> ---(Ps2:13))
which becomes (after applying the substitution)
(-(P#2:13)
: -» ---(P#2:13))
is proved by:
This was proved by matching (and possibly
chaining) withk the hypotheses:
(P+2:114 ORR -P#2:11%)
Substitutions:
Ps2:118 by --Ps2:13
The two substitutions used im proving the two
conjuncts combine to form the substitution
Generalized substitution:
P22:118 by P#2:13
Q#1:88 by -Ps2:18
OR
Pe2:11% by --Psi:13

The generalized substitution is just an artifact of QKIMPLY not using variables standardized

apart for two instances of a lemma.

{Goal 61) The extraneous substitutions due to the
lemmas were removed, leaving

Substitutions:

0s1:8¢ by -P#2:13

{Goal 60) So we have established
((Pe2:13) ORR ~---{P$2:13))

72

B.2 Proof of *2.17

The following is a transcript of the output of APRVR during the proof of #2.17.
Proving #2:17
Using control system AGENDA-SYSTEY
Skolemization has already occurred.
Proving:
((-Q#2:17 -> -P#2:17) -> (P#2:17 -> Q#2:17))
Using lemmas:
(DF (P#1:01 -> Q@#1:01) (-P#1:01 ORR Q+1:01))
((P+1:2 ORR P#1:2) -> P#1:2)
(Qs1:3 -> (P»1:3 ORR Q#1:3))
((Ps1:4 ORR Q#1:4) -> (Q#1:4 DRR Ps1:4))

((Ps1:5 ORR (Q#1:5 ORR Re1:5))
-> (Q#1:5 ORR (P+1:5 ORR Re1:5)))

((Qe1:6 -> R#1:6)
-3 ((Ps1:8 ORR Q=1:8) ~-> (P%1:6 ORR Rei:8)))

‘((Pt2:01 -» -P$2:01) -> -P#2:01)
(Qs2:02 -> (P22:02 -> §¢2:02))
((Ps2:03 -> -{*2:03) -> {ge2:03 -> -P=2:03))

((P*2:04 -> (Qs2:04 -> Re2:04))
-» (Q$2:04 -> (P+2:04 -> R#2:04)))

((Q#2:05 -> Re¢2:08)
. -> ((Ps2:05 -> @82:05) -> (Ps2:05 -> Re2:08)))

{ (Ps2:08 -> Q=2:08)
-> ((Qe2:08 -> Re2:08) -> (P#2:08 -> Re2:08)))

(P+2:07 -> (P=2:07 ORR P#2:07))

(Ps2:08 ~> P»2:08)

{(-P»2:1 ORR P#2:1)

(P+2:11 ORR -P»2:11)

(Ps2:12 -» --P#2:12)

(P#2:13 ORR ---P#2:13)

{(--P#2:14 -> P*2:14)

((-P#2:15 ~> (#2:15) -> (-Q22:15 -> Ps2:15))

((Ps2:18 -> Q#2:18) -> (-Q*2:16k-> -P22:18))
This is the main goal:

Making O{(GOAL O)
{ (-Q#2:17 -> -P»2:17)
-> (P+2:17 -» §#2:17))

¥orking O (GOAL 452)
{ (-Q#2:17 -> -P22:17)
=» (P#2:17 -> @%2:17))
Making 1(THMOPS 10)
{ (~-Q#2:17 -> -P82:17)
=3 {P22:17 -> @32:17))

Borking 1 (THMOPS 462)
{ (-Q22:17 -> -Pe2:17)
-3 (P22:17 -> §32:17))
Making 2(HAND 20)
((-Q#2:17 -> -P#2:17)
-> (P#2:17 -> §%2:17))
(Nothing else to be done omn goal 1)

Forking 2 (HAND 472)
((-022:17 -> -P22:17)
-» (P#2:17 -> Q#2:17))

Working 2 (HAED 562)
{ (-Qe2:17 -> -P#2:17)
-> (P#2:17 -> Q42:17))

Backwards chaining:

Irying to match goal with conclusion of lemma:

74

{ (Ps2:0881 -> Q#2:0681)
->» ({(Qs2:0881 -> Re2:0681)
-3 (P#2:0881 -> Re2:0681)))
Making 3(GOAL 123)
{ ((ge2:0881 -> Re2:0681)
=> (P+2:0881 -> Rs2:0681))
= { (-Q*2:17 -> -P%2:17)
=> (P22:17 -> #2:17)))

A list of the first few goals on the agenda and their priorities:

--------- 2(562) 3(975) 0(1130)
Working 2 (HAND 562)
{ (-Q#2:17 -> -P22:17)
=> (P#2:17 -> Q#2:17))
Trying to match goal with conclusion of lemma:
((Q#2:0581 -> R#2:0581)
-> ((P+2:0581 -> Q»2:05$1)
-> (P+2:0581 -> R+2:0581)))
Making 4(GDAL 123)
(((Pe2:0581 -> Q¢2:0581)
-> (Ps2:0581 -> Re2:0581))
=» { (-Q#2:17 -> -P=2:17)
-» (P#2:17 -> Q%2:17)))

--------- 2(562) 4(975) 3(975) 0(1130)
Working 2 (HAND 582)
((-Q#2:17 -> -P»2:17)
-» (P#2:17 -> Q22:17))
Trying to match goal with conclusion of lemma:
’ ((Qe1:6%1 -> Re1:681)
=» { (Ps1:881 ORR Qe¢1:881)
, -> (P+1:681 ORR Rs1:681)))
Making 5(GOAL 123)
{ ((P=1:881 ORR Q+1:881)
-> {P+1:6$1 ORR Rs1:681))
=» { (-Q#2:17 -> -P%2:17)
-» (Pe2:17 -> Q22:17)))

--------- 2(582) 4(975) 3(975) 0(1130) 5(1145)
Working 2 (HAND 562)
: { (-@»2:17 -> -P#2:17)
~» (P22:17 -> §%2:17))

Working 2 (HAND 870)
((-Q#2:17 -> -P$2:17)

75

76

> (P$2:17 -> Q22:17))
frying to match conclusion of goal with conclusion of
lemma:
((Ps2:16%1 -> Q+2:1681)
-> (-Q#2:1681 -> -Ps2:1841))
Making 8(GDAL 708)
{ (-Qs2:16$1 -> -P+2:1681)
-> (Pe2:17 -> Q82:17))

... Some output not involved with the proof removed here.

--------- 21(732) 2(800) 28(852) 25(864) 23(884) 4(975)
3(975)
Working 21 (HAND 732)
{ (~-P#2:17 -> --§#2:17)
-» (P22:17 -> @»2:17))

Yorking 21 (HAND 864)
((--P$2:17 -> --Q#2:17)
-> (P#2:17 -> Q#2:17))
Irying to match comclusion of goal with conclusion of
lemma:
{ (Ps2:1883 -> Qe2:1843)
=> (-@+2:18843 -> -P+2:16$3))

APRVR reuses goals.

Goal being created found to exist already as goal 6 up to
repaming
Have to generate 2 remamimg goal
Making 37 (RENAME 908)
I

--------- 2(800) 28(852) 25(864) 23(864) 21(884) 4(975)
3(975)
Borking 2 (HAND 800)
{ (-§22:17 -> -P22:17)
-» (P#2:17 -> R22:17))
Trying to forvard chain with lemmas:((-P#2:1582
->» §32:15$2)
=» (-@#2:1582
->» P22:1582))
¥aking 38(GOAL 177)
{ (-822:17 -> -P22:17)
-» (-P22:1582 -> 0#2:1582))

APRVR handles multiple proofs.

Subgoal just created has 7 simple proofs
Goal 38 is proved with the value:
Substitutions:
P22:1582 by Qs2:17
ge2:1582 by -Ps2:17
liking parents: 2
Adding a new value to goal 38
Ne¥ value = Substitutions:
Q+2:1542 by (-Q#2:17 -> -P»2:17)
Waking parents: 2
Value just passed up is same as before
Value just passed up is same as befors
Yalue just passed up is same as before
Adding a nev value to goal 38
Nev value = Substitutions:
P#2:1582 by -P#2:17
Q+2:1542 by Q22:17
Waking parents: 2
Adding a nev value to goal 38
Hev value = Substitutionms:
P22:1542 by -Pe2:17
§*2:1542 by --032:17
¥Waking parents: 2

Working 2 (HAND -800)
((-Q%2:17 -> -P%2:17)
=» (P*2:17 -> §#2:17))
Matched hypothesis of goal 2 withk hypoitbesis of lemma:
- ((-P#2:1582 -> Qs2:15$2)
-> (-Q#2:1582 -> Ps2:1582))
Iry to prove conclusion of lemma implies
conclusion of goal.
Goal being created found to exist already as goal 17
Applying that substitutior would result in this goal being
repeated
Matched bhypothesis of goal 2 with hypotheszis of lemma:
((-Ps2:1582 -> (+2:1582)
-» (-@#2:1582 -> P#2:1582))
Iry to prove conclusion of lemms implies
conclusion of goal.
Making 39(GOAL 50)
: ((~-(-8#2:17 -> -P»2:17)
-> Pe2:15$2)
=>» (P#2:17 -> Q22:17))

77

Matched hypothesies of goal 2 with hypothesis of lemma:
((-P»2:1582 -> Q#2:15$2)
-» (-Qs2:1582 -> Pe2:15§2))
Iry to prove conclusion of lemma implies
conclusion of goal.
Making 40(GOUAL 50)
((--P22:17 -> Q#2:17)
-> (P22:17 -> {22:17))

Working 40 (GOAL 502)
((--P#2:17 -> Q82:17)
=> (P#2:17 -> @#2:17))
Making 41(THMOPS 60)
{ (--P#2:17 -> §32:17)
~> (P82:17 -> @%2:17))

Working 41 (THMOPS 512)
{ (--P*2:17 -> Q2:17)
-> (P$2:17 -> g2:17))
Making 42(HAND 70)
{ (--P22:17 -> Qe2:17)
-> (P#2:17 -> Q#2:17))
(Nothing else to be done om goal 41)

Working 42 (HAND 522)
{ (--P22:17 -> @82:17)
-> (P#2:17 -> §%2:17))

Forking 42 (HAND 612)
((--P22:17 -> @82:17)
-> (P#2:17 -> Q#2:17))
Irying to match goal with conclusion of lemma:
' ((Ps2:0885 -> Q+2:0885)
-> ((Q#2:0885 -> R¢2:0685)
=> (P#2:06845 -> R+2:0685)))
Making 43(GOAL 173)
{ ((g+2:0885 -> Re2:08%85)
=> {P#2:0885 -> R¢2:08§5))
=> ((--P2:17 -> @%2:17)
=> (P#2:17 -> Q#2:17)))
Subgoal just created has 3 simple proofs
Goal 43 is proved with the valse:
Substitutions:
§s2:0885 by --Ps2:17
R=2:0885 by {e2:17
P#2:0845 by Ps2:17

¥Waking parents: 42
Value just passed up is same as before
Yalue just passed up is same as befors

Sorking 42 (HAED -812)
{ (--P22:17 -> 0#2:17)
-> (P#2:17 -> {#2:17))
¥atched goal 42 with conclusion of lemma:
{ (P+2:06885 -> (32:0685)
=> { (Qs2:0885 -> R»2:08$5)
v => (P*2:0885 -> Rs2:06%5)))
Now try to prove its hypothesis
Making 44(GOAL 170)
: (P$2:17 -> --P#2:17)
Subgoal just created has 2 simple proofs
Goal 44 is proved with the value:
No substitutions necessary
VWaking parents: 42
Value just passed up is same as before

Working 42 (HAND -612) -
{ (--P22:17 -> §32:17)
-> (Pe2:17 -> §»2:17))
Goal proved by backchaining via goals 43 and 44
Goal 42 is proved with the value:
Bo substitutions necessary
Waking parents: 41

Yorking 41 (THMOPS -INFINITY)
((~--P22:17 -> §¢2:17)
-» (P82:17 -> §%2:17))
Goal 41 is proved withk the value:
~ ¥o substitutions necsssary
¥aking parente: 40

¥orking 40 (GOAL -1180)
{ (--P$2:17 => §+2:17)
=> {P$2:17 -> Q#2:17))
Goal 40 is proved with the value:
, Ho substitutions mecessary
Waking parents: 2

¥orking 2 (HAED -800)
((-Q=2:17 -> -P#2:17)
-> (P32:17 -> Q%2:17))
Goal proved by forward chainiang via goals 38 aand 40

79

Goal 2 is proved with the value:
Ho substitutions mecessary
¥aking parents: 1

¥orking 1 (THMOPS -IBFIRITY)
{ (-822:17 -> -P82:17)
=> (P#$2:17 -> §22:17))
Goal 1 is proved with the valus:
No substitutions mecessary
Waking parents: O

Working O (GOAL -1130)

{ (-Q%2:17 -> -P22:17)

=> (P»2:17 -> §22:17))
Goal 0O is proved with the value:

Ho substitutions necessary
¥Waking parents:

sss Proved:
Ko substitutions necessary

Some statistics on goal types.

Goal type Total # Proved 8 w/Subgoals

GOAL 32 7 8
RENAME 1) 0
THMOPS 6 2 8
HAND [2 5
Totals: 45 11 ' 17

APRVR chose a goal from the agenda 53 times. The new goal was neither 2 new son nor 2
woken parent 22 of those times.
There were 53 changes of goals with 22 changes umexpected.

The proof as printed by APRVR.
Proving

(I4PP (IMPP (HOTT (Qe2:17))
(HOTT (P#2:17)))
(IMPP (P*2:17) (Qe2:17)))

Using a8 lemmas:

Same lemmas as in the trace output above.

81

(Gosl 2) Going to forwvard-chain usiag hypothesis
{ (-P22:15842 -> Q»2:1582)
C > (~Q#2:1882 -> P+2:15$2))
%o seb up Lbe chaiming we have io prove
{ (-(Qs#2:17) -> -(P*2:17))
-3 (-P#2:1582 -> Q*2:15%2))
¥hich is proved by:
{(Goal 38) This has a simple proof:
The hypothesis and conclusion of the IMPP
matched.
Substitutions:
Ps2:1542 by Qe2:17
Q*2:1582 by -P»2:17

{Goal 38)
(Goal 2) UWov we continue with the proof but are pow¥
proving

((--(Ps2:17) -> (Qs2:17))
-> ((P#2:17) -> (Q»2:17)))
{Goal 42) Going to back-chain using hypothesis
((P2:0885 -> (#2:0645)
-> ((Q#2:06$5 -> Rs2:0645)
-3
~ (Ps2:0685 -> R*2:0645)))
To set up the chaining we have to prove
(((Qe2:0885 -> Re2:0845)
-3
(P+2:0645 -> Rs2:0685))
-y { (--(P22:17) -> (Q*2:17))
=> ((Ps2:17) -> (Q#2:17))))
¥hich ie proved by:
{Goal 43) This has a simple proof:
The hypothesis and conclusion of the IMPP
matched.
Substitutions:
Q*2:0685 by --P#2:17
R+2:08845 by Qs2:17
P#2:0685 by Ps2:17
(Goal 43)
{Goal 42) ¥ow we contimue with the proof but are mow
proving
((P#2:17) => --(P%2:17))
{Goal 44) This haz a simple proof:
This was proved by matching (and possibly chainimg)
with the hypotheses:
(P22:11% ORR -P#2:11§)

82

Substitutions:
P#2:11$ by -P#2:17
QKIMPLY used a lemma to prove the goal. It returned a substitution including the substitution
for the variable in that lemma. The variable did not occur in the goal so could be removed from
the substitution.
(Goal 44) The extraneous substitutions due to the lemmas

vere removed, leaving
No substitutions necessary

(Goal 42) is proved by chaining.
(Goal 2) 1is proved by chaining.

B.3 Proof of AMS

Here is the proof of AM8 as recorded by APRVR. Unfortunately, this does not include any
trace of how the cases were generated (since that is not part of the actual proof). What APRVR
does is to backchain on the second lemma, resulting in two conjuncts in the conclusion. The first
of these matches with the first hypothesis and the second backchains on the third hypothesis. A
split is done on the OR in the first lemma and two different substitutions are found for one of the

disjuncts so two different sets of cases are created under goal 0.

Proving
{-»
(AND
(P (F (G ¥8)) (F ¥8))
(-> (¢ (F X$1) (F ¥8))
(P (G ¥8$) X81))
(-> (ot (P (L) 1I9))
(P (F (L)) (F I8)))
{(->
(moT (P I8 (L)))
(aED (P (T I8) X8)
(uoT (P (F X8) (F (T X€2))))))
(P (F U$) (F (T21 U$))))

Using a8 lemmas:
(OR (HOT (P X$2 18))
(30T (P Y$ X$2))
(AND (P X$2 Y8) (P Y$§ X82)))

(-> (aND (P X$3 Y§1) (P Y$1 Z$))
(P X$3 29))

(OR (P X84 Y8$2) (P Y82 X84))
(P X§5 X45)

(-> (a¥D (P X868 Y83) (P Y$3 X¢8))
(p (F x88) (F 783)))

Unfortunately, the proof mechanism does not record a description of why the cases were

generated.

(Goal 170) causes a case-split om the imstantiated
hypothesis

{ -(P (6 (181 (L))) (LM
OR -(P (L) (G (T81 (L))))
OR ((P (G (T#1 (L))) (L)) amD (P (L) (G (781 (L)))))
)
{Goal 224) The AED in the comclusiocn
({ -(P (6 (781 (L))) (U))
-> (P (F U8) (F (T21 U$))))
AED (-(P (L) (G (181 (L))))
-> (P (F U$) (F (181 U$))))
AMD (((P (¢ (T#1 (L)) (L))
AND (P (L) (G (181 (L)))))
-> (P (FU$) (F (T#1 U$)))))
is £plit into two parts.
The conjunct
(-(p (L) (¢ (781 (L2)))
-> (P (F U$) (F (181 U$))))
ie proved first:
{Goal 311) This has a simple proof:

A “simple proof” means that QKIMPLY was able to prove it.

This was proved by matching (and possibly
chaining) with the hypotheses:

(P (F (L)) (F (181 (L))))
Sobstitotions:
U$ by L

That hypothesis was the result of forward chaining using

-(p (L) 18) -> (P (F (L)) (F 18))
using (T#1 (L)) for 7§
and (P (F (G ¥8)) (F ¥8))
using (T#1 (L)) for ¥$
and ((P 343 Y$1) AND (P Y41 28)) -> (P X$3 Z$)
after promoting

=P (L) (G (181 (LD

{Goal 311)
{Goal 224) The remaining conjunct is
((~-(p (6 (121 (L))) (L))
> (P (F U8 (F (T81 U§))))
48D { ¢ (P (¢ (T81 (L)) N
AED (P (L) (¢ (721 (L))

-> (P (F U$) (F (T#1 U$)))))
vhich becomes (after applying the substitution)
((-(p (¢ (181 (L)) (L))
-> (P (F (L)) (F (181 (L))
Al (((P (G (T#1 (L))) LM
AND (P (L) (G (121 (L)N))
-> (P (F (L)) (F (181 (L))))))
{Goal 312) The AND in the conclusion
((-(p (G (11 (L))) (L))
=> (P (F (L)) (F (181 (L)))))
Al (((P (G (T81 (L))) (L))
AND (P (L) (G (T#1 (L))
-> (P (F (L)) (F (181 (LDIN)))
is split into two parts.
The conjunct
(-(rp (¢ (181 (L)) (L))
-> (P (F (L)) (F (T#1 (L)))))
is proved first:

The -(P (G (T#1 (L))) (L)) is promoted and a number of forward chainings occur. These
include using
(1) -(P (¢ (781 (L))) UM
with (-(P X¢ (L)) -> ((P (T X8) X$) AKD -(P (F X8) (F (T X8)))))

to generate

2) -(p (F (6 (181 (L)))) (F (T (G (181 (L)INN)
and

(3) (P (1T (6 (T81 (L)))) (G (T81 (L)))).

Then (2) is used with »

((P x¢ Y$) OR (P Y$ X8))
to get
(4) (P (F (T (G (T81 (L))))) (F (G (781 (L)))))
which is then used with

(P (F (¢ (¥8))) (F w8))
and (((p x$ 78) AED (P Y§ Z8)) -> (P X$ Z8))
to generate

(5) (P (F (T (6 (T81 (L))))) (F (181 (L)))).

This is then used with

((Pp (F X8) (F W) -> (P (G ¥$) X$))
to get
(6) (P (G (T8#1 (L)) (T (G (T81 (L))))).
From (2) and

(((P X6 Y$) 4ND (P Y$ X8)) -> (P (F X$) (F Y§)))
is generated (by reverse backward?haining)
(7) (-(P (G (T#1 (L))) (T (¢ (T#1 (L)))))
OR -(P (T (6 (T81 (L)))) (G (781 (L))))).

Combining this with {3] gives
(8) -(p (G (T81 (L)) (T (G (T#1 (L)))))

which contradicts (6). So the hypothesis gets reduced to FALSE.
(Goal 316) This has a simple proof:
At this point, one of the hypotheses
wag found to be identical to FALSE
and thus this was proved.
(Goal 318)
(Goal 312) The remaining comjumct is
¢ (P (G (181 (L)) (L))
AND (P (L) (G (T#1 (L)))))
=> (P (F (L)) (F (T#1 (LI
(Goal 318) This has a simple proof:
This was proved by matching (and
possibly chaining) with the
hypotheses:

Again, this is generated by forward chaining.
(P (F (L)) (F (181 (L))))
Ho substitutions necessary
(Goal 318)
(Goal 312) The two substitutioms of the
conjuncts combine to fors
Ho substitutions mecessary
(Goal 224) The two substitutions of the conjuncts
combine to foras
Substitutions:
0% by L
{Goal 170) 411 cases proved.
Adding in the substitution o get the cases gives a

substitution of
Substitutions:
U$ by L

REFERENCES

[Ballantyne-75|
Ballantyne, Michael and W. W. Bledsoe, Automatic Proofs of Limit Theorems in Analysis,
ATP-23, The University Of Texas at Austin, 1975,

[Bledsoe-71]
Bledsoe, W. W_, “Splitting and Reduction Heuristics in Automatic Theorem Proving,”
Artificial Intelligence &, 1971.

[Bledsoe-72]
Bledsoe, W. W, R. S. Boyer, and W. H. Henneman, “Computer Proofs of Limit Theorems,”
Artificial Intellzgence 3, 1972.

[Bledsoe-74]
Bledsoe, W. W. and Peter Bruell, “A Man-Machine Theorem Proving System,” Artificial
Intelligence 5, 1974.

[Bledsoe-77]
Bledsoe, W. W. and Mabry Tyson, “Typing and Proof by Cases in Program Verification,”
Machine Intelligence 8, Ellis Horwood Limited, 1977.

[Bledsoe-78]
Bledsoe, W. W. and Mabry Tyson, The UT Interactive Prover, ATP-17A, Univ. of Texas
at Austin, 1978.

[Boyer-75]
Boyer, R. S. and J S. Moore, “Proving theorems about Lisp functions,” JACM 22, 1975.

[Boyer-79]
Boyer, R. S. and J S. Moore, A Compuitalional Logic, Academic Press, New York, 1979.

[Bruell-79]
Bruell, Peter, An Agenda Driven Theorem Prover, Ph. D. Dissertation, The University Of
Texas at Austin, 1979.

[Chang-73]
Chang, Chin-Liang, and Richard Char-Tung Lee, Symbolic Logic and Mechanical Theorem
Proving, Academic Press, Inc., New York, 1973.

[Gelernter-59)]
Gelernter, H., “Realization of a Geometry-Theorem Proving Machine,” Proceedings of an
International Conference on Information Processing, UNESCO House, Paris, 1959.

89

[Good-75]
Good, D. L, R. L. Lordon, and W. W. Bledsoe, “An Interactive Venﬁcanon System,” JEEE
Trans. on Software Engineering 1, 1975.

[Lenati-76]
Lenat, Douglas B., AM: An Artificial Intelligence Approach to Discovery in Mathematics as
Heuristic Search, AIM-286, Artificial Intelligence Laboratory, Stanford University, 1976.

[Loveland-78]
Loveland, D. W., Automated Theorem Proving: A Logical Basis, North Holland, New York,
1978.

[Meehan-79)
Meehan, James, The New UCI Lisp Reference Manuel, Lawrence Erlbaum Associates,
Hillsdale, N. J., 1979.

[Nevins-74) ,
Nevins, Arthur J., A Relazation Approach to Splitting in an Automatic Theorem Prover,
MIT-Al-Lab Memo 302, MIT, 1974.

[Newell-57]
Newell, A., J. C. Shaw, and H. A. Simon, “Empirical Explorations of the Logic Theory
Machine: A Case Study in Heuristics,” Proceedings of the Western Joint Computer Confer-
ence, 1957.

{Niisson—SO]
Nilsson, Nils J., Principles of Artificial Intelligence, Tioga Publishing Co., Palo Alto, 1980.

[Oppen-78] o
Oppen, D. C., “A 22°° Upper Bound on the Complexity of Presburger Arithmetic,” JCSS
P
16, 3, June, 1978.

[Robinson-65]
Robinson, J. A., “A Machine-oriented Logic Based on the Resolution Principle,” JACM 12,
1965.

|Robinson-79]
Robinson, J. A., Logic: Form and Function, North Holland, New York, 1979.

| Teitelman-78]
Teitelman, Warren, Interlisp Reference Manual, Xerox, Palo Alto, 1978.

[Tyson-79)
Tyson, Mabry and W. W. Bledsoe, “Conflicting Bindings and Generalized Substitutions,”
Proceedings of the Fourth Workshop on Automated Deduction, Austin, 1979.

[Whitehead-70]
Whitehead, Alfread North and Bertrand Russell, Principia Mathematica to #56, Cambridge
University Press, 1970.

