ry

July 1982

USING EXAMPLES TO

GENERATE INSTANTIATIONS

FOR SET VARIABLES

W. W. Bledsoe

PRELIMINARY VERSION

ATP-67

Abstract. Examples play a crucial role in automated theorem proving, not only
as counterexamples to help prune unproductive subgoals, but they serve to help
guide proof discovery. In this paper we show how examples (interpretations)
might be used to help determine instantiations of set variables. We also dis-
cuss the role of piecewise-linear continuous functions, and give some results

of computer runs using these methods.

D

Table of Contents

1. IntroductiOonN.ccoscscsscocososscsoccasansascs

2. Generating PredicateScccsccoccoscossscscosse

3. Obtaining InterpretationS.s.cesccsccsesacscs

3.1

3.2

3.3

3.4

3.5

3.6

4, Experimental ResultsS....ceocccocns

5, CommentS..oossccsccscasscocs

5.1

5.2

5.3

5.4

ReferenceS . .ocecssosossscssacssssos

Higher order logic...ceceveconcse

Calculate vs. Prove..cooos

Other Example Theorems.....

Human Supplied InterpretationScesssecs.-

Piecewise-linear continuous functiomns.

Infinite number of COYNErSeccsccsccscse

Piecewise-linear functions with "knees"
. A

Using the cormers of f..o.ceeccncacaces

Choosing points from open intervals....

Conjecturing..cceecocessccsscocse

20

20

20

22

24

24

25B

27

41

41

41

41

42

44

1. Introduction

This is part of an effort to use examples (interpretations) to help in
automatic proof discovery [1]. We believe that examples are not only useful
as "counterexample sieves', to prune the proof-search tree, but also can be
used to help guide the search. One way this is done, is in finding instan-
tiations of variables. See [1, Section 2}. Here we show how examples might
be used to help instantiate set variables.

One reason that examples are so valuable in theorem proving is that
they allow us to calculate, as opposed to prove. And since calculating is
usually easier than proving, this gives an advantage. But of course the re-
sults from examples are less general, so the attack has to be balanced - with
some calculation and some proving.

Let us start with the following problem:

Given a continuous function £ on [a,b], with maximum value

at x = R,

A
To find a subset A of [a,b] for which £ = supA.
Describe A in general terms, in terms of f, a, b.

.8,

A= {xela,b]l: Vy < x £(y) < £(x)}
We desire to generate such an A automatically. How? Why?

Motivation for this Example.
If we wish to prove the theorem that

AM1 "Fach continuous function on a closed interval, attains its

maximum on that interval,”
using the least upper bound axiom

LUB "Every non-empty, bounded, set A has a least upper bound,

sup A",

then we must have a value of A (i.e., a description of A in terms
before we can utilize LUB in the proof.
Once A has been given, the theorem will have been reduced to

in first ‘order logic about general inequalities.

of £, a, b),

a theorem

More generally, when we are trying to prove a theorem of the form

(1) A F[H(E) —> e [a,b] P(£,0)]

using the LUB axiom to produce a set A for which £ = supA, then (1) can be

written

) WEMH(D) —> A ¢ [a,b] P(E,suwp A)],

(a higher order theorem)

which is equivalent to

(3 \/E[H(f)—> JQP (f,sup{xela,b] QxID]
EoZes
H{f)
o s S - - U .-.\
AM1 f[f is continuous on [a,b] A a <b

—-» Jlefa,b] Vxela,b] (£(x) < £(R)]

e
P(£,0)
e.g.
’ H(E)
U S e vt s e
MV W f[f is continuous on [a,b] A a <b

A f(a) <0 A £(B) >0

i 32 ela,b]l £(2) =0

LS

P(£,9)

1f we further assume that for each f satisfying H(f), there is a

largest & in [a,b] for which (1) holds, then (3) is equivalent to
(4) E[H(E) > JQ(L = sup{x € [a,b]: Q(x)}
~n Y 'ela,l) Fxe R,

~Yx e (2,b] ~ Q(x)

A P(E,00)]
A o T
}.‘__‘_1 % i 3 — «?
a A L b

So our objective is to prove

(&) NSE[H(E) —> 3Q(% = sup {xela,b]: Q(x)}
W Ve (2,8 Txe (D) Q)
A~ 3xe(2,b] Qx)

This has the general form
(5) v E[H(E) — Q P(Q,D)].

So for this form of theorems our problem is:

Given H and VY .

Generate Q for which (5) holds. How? We propose to do this

(automatically) by using interpretations (examples) £ of £

(and interpretations of the other function and predicate symbols

appearing in H and V).

We will first state our problem in a more general setting and then {(in

Section 4) return to the forms (5) and (4) as special cases.

2. Generating Predicates

Suppose that “# is a list of uninterpreted function symbols and predicate
symbols (which does not contain the symbol Q). Let = {p T s T << =),
A= {§_<} , and let H and Y be functions over the symbols of g”¢;k%{¢f{Q}.
By an interpretation of ff we mean a list of interpretations of its members.

For example, if (7 is {a,b, %, £} , then ;T is {Q,g,@, £} , where &, b, Q, g,

could be 8 = 0, b =1, 2 =1/2, f = ax(2x - 1), for example.

Now suppose that we are to prove a theorem of the form
(6) WHGY) e EQ Y (L@,

The object then is to find (generate) a Q which satisfies (6).

We propose the following general method for finding Q.

A I

(i) Obtain an interpretation Qf‘of Q? which satisfied H(Cﬁ Y.

(ii) Generate a predicate Q, in terms of 7, which satisfies

WO ,Q)

A

A

)
7

(iii) Test Q on other s

(iv) Prove (6) using the (Q so obtained.

0f course, finding Q 1is equivalent to proving a theorem in higher order
logic, which requires the higher order variable Q to be instantiated. The
central idea is that: if a Q can be found which satisfies w(é;,Q) for a
7f's (which satisfy H(ﬁ%)), then hopefully that Q will also satisfy ¥ C",Q) .
We will indeed see that that is the case for some special instances given in

Section 4 below.

We will defer discussion of Step (i), the fabrication of 7, until Section 3

(a subroutine, INSTANTIATIONS, does this), and concentrate now on (ii), the

generation of Q for which w(ﬁé,Q) holds. Step (iii) is rather straightforward,

*
and Step (iv) is not within the scope of this paper .

™,

So let there be given an interpretation o satisfying H(j;), We &esire
an algorithm GENERATE which will gemerate a Q satisfying W(i;,Q). Of course
such a Q may not be unique (even for a fixed \2‘).

1f the algorithm GENERATE is indeed to generate such a Q, then it must

o~ A
use an association between the members of 7 and those of (¥ . Because, Q 1is

to be given in terms of the symbols in "?, not «j? , and it must satisfy the
condition w(*?,Q) where every P in 7 has been replaced by an interpretation
?.

It is not obvious how to build such an algorithm GENERATE, but somehow it
should key on the structure of . The following, GENERATE, is a first attempt

at such an algorithm. It is built on several additonal assumptions, given below,

about ° and .

*

It is often the case, as in the examples of Section 4, that once an instantiation
Q of Q has been given, the resulting theorem VATHC#) s P(#,Q] is first
order. And while it still may not be easy to prove it, nevertheless, lends

itself to standard procedures.

~10~

We will assume that complete tzging7x< information is available on VY, Q,
and members of 7. Thus, for example, Q might be a predicate over the reals,
so that for each x € &, Q(x) is either true of false. (E.g., Qx) Z £(x) < 0).
For our first version we will assume that Q is a function of one real
variable x. (In general we might restrict Q to a function on TR .)

We will start with a call to

GENERATE(n, 77, ¥,'x),

Fas

#
£

with n = 1, and where /= ¢ x - and "x is the argument of Q. % is treated as

a set of bindings, tying members of 7 to those of 1%: (I.e., <5 is a substitution).

7~ will be expanded as new variables and their instantiations are added. If A

is a formula then A/’ is used to denote the result of applying the substitution

gQ to Al
The integer n is the number of variables used in the description of Q.

1f n = 1, then Q is expressed only in terms of X, e.g8., 0 < f(x); if n =2

then Q 1is expressed in terms of x and 7y, e.g8., vyela,x) £(y) < £(x); etc.
The first call to GENERATE is made with n = 1. 1If this fails (returns NIL),

then n is increased by 1 and a new call made to GENERATE, etc., up to a maxi-

mum allowable value for n.

(1971), 414-432, [5].

-11-

GENERATE(n, /4 , ¥, X)

The objective is to find a Q for which YO <,Q) /7 is true. x

a variable, it starts as 'x, the argument of Q

Form of U ACTION
TR Put Q= GENERATE(n, ~, U5, %)
Q2 — A (H 13 wz’ ")

Return (Ql g Qz)

(Each of Ql and Q2 is a set of formulas).

Note: alternatively we might generate Q1 and verify it

it dn wz (or generate Q2 and verify it in wl).

wl v wz Put Ql GENERATE(n, 7, wl’ X)

L
o
]
o~

.qu, ")

-

. *
3. vwx'efa,b] P&',Q) Select randomly% points Xy seoeXy from {a,b],

including the endpoints.

Put [- {=",x)}

O
il

GENERATE(N,75,P(x_,Q),x), 1 = 1,2,...,k

Return Q1 ' Qz feee (3 Qk

*
4, 7x'ela,b] P(x',Q) Select randomly points x from {a,b],

1,00.,Xk

including the endpoints.

Put A% Lo (x'xy)

L
i

GENERATE(n, %7, P (x,,Q) ,%), 1 = 1,2,...,k

Return Q1] Q2 Uosse |y Qk

* -
Similarly for open and half open intervals {(a,b), [a,b), (a,b]. In these cases
the open endpoints are not selected for x, but "nearby” points are selected (see

Section 3.5).

+The number k wused here is a parameter supplied by the user. See Section 3.5
below for an alternate way of selecting the X, when f is a piecewise linear

continuous function,

~13—

. Put Q' = GENERATE(N, 4 , ¢, x)
Return “~Q'*
Q(ﬁ)** Put L= £ L {(x,8)}

x-1list = {x} , &-list = {&}

If n =1, return TALLY(Z, x-list, g-list, x)

Else return ALL-SOME(n, /*, x-list, £-list, %)

Since Q' is a list, the list of negations of its members is returned.

*% A . . ~ D
Recall that ¥ dis a real number in [&,b].

~14~
TALLY (4, x-1ist, £-1list, x')

is a set of Predicate and function symbols,

Iy

oo interpretations for members of

b4
x-list is a set of variables (e.g., {x,y,2}

®-list is a set of real numbers, instantiations for x-list,

/7 is a set of bindings:

A,
L [1} . A . D
o=l x ‘}ftﬁx—llst X x—llst;

\

X' 1s a variable, the last element of x-list,

4l

This routine is supposed to determine "what is true" abour F v R-list
(for %' only) and record that information in terms of . x-list.

(NOTE: This is similar to the conjecturing of Lenat [2]. See Section 4

below.)

Let Hl be the first and second level terms of o x-list (i.e., constants,

variables, and one-level application of function symbols to these (part

of the Herbrand Universe)).

Let ¢ be the atoms associated with Q(, E , and Hl, but only those con-

taining x'.

Let S be the set of all atoms A of ./ for which A7 is true, and for

which A is not a tautology.

Return the conjunction of S.
{note: 8 might be NIL)

A/ is defined to be the result of replacing any member of S x-list

in A by the corresponding value 7~ o ®-1ist,

~15-

The following is an example of the use of Tally:

{f, a, b, &, 0} , = {< <},

{xx (2x - 1), 0, 1, 1/2, 0}

X)) , R =1/4

H= {a, b, x, £(a), £(b), £(f(a)), etc.}
A= f(x) < £(x), £(x) < f(x), f(x) <0,
f(x) <0, 0 < £(x), 0 < f(x), etc.}
.«"\ o
Putting ' for 7 and simplifying we get
tautology
A S S
U = {2x - 1< 25 <1, 2x - 1<2x -1, x < 1/2,
x < 1/2, 1/2 < x, 1/2 < %, etc.},
/\ -
¢ g/ ={0<0, 0<0, 1/4 < 1/2,

1/4 < 1/2, 1/2 < 1/4, 1/2 < 1/4, etc.},

9p]
i

{f(x) <0, £(x) <0, etc.} .

Remark. The list S might be rather large unless additional restrictions are
placed on H. So in TALLY, it is convenient (for efficiency purposes) to have

further "typing" information which, hopefully can be derived automatically from

the theorem being proved. For example, in proving the theorem:
continuous f ~ a <b A f(a) <0 < £(b)-—7 dx (f(x) = 0)

we note that: a, b, 0, x, £(z), £(b), £(x) all have type Real. But in the

context of this theorem this set can be partitioned into two subsets

{a, b, %} "x-axis reals"

and

{f(a), £(b), £(x), O} "y-axis reals"

So in TALLY we should not build atoms of the form x < 0, a < 0, but only
those of the form f(a) < 0, £(x) < 0, etc. Such additional knowledge was used
in the above example and in those of Section 4, This concept requires much

further study.

-17-

ALL-SOME(n, (/, x-list, ®-list, ﬁo)

This routine (if n = 2) is supposed to introduce a new variable 'y, and
give it some values SAERERIS A in [a, §0), and yi,...,yi in (ﬁo, b}, and tally
"what is true" about each of these yi's and y{ 's, (in terms of ~ryx-list), and
finally deduct statements of the form Vyela,x) P(y), Jye(x,b] P(y), etec.,
and return these, If n > 2, then yet another variable 'z is introduced (for

each Vo y;), n is decreased by 1, ete.).
1. Select randomly Yiseees¥,, from {Q,ﬁo), yi,,..,y& from (ﬁo,b]f

) . R A
2. For each i, put :i = %’u{('y,yi)f, <y =0u{(y, Y;)}

(NOTE: 'y is a new variable symbol) .,

x;-list = x-list v {y}, ﬁi—list = R-1ist 5;{yi}

/\'_ " - /\— 2 R
Xi list X-1ist w {yi}

3. If n = 2, Put Qi = TALLY (-, ,x -list, xi—list, 'y)
Q; = TALLY{(/# ,Xl~llst ;—1ist, Tv)
Else put Q, = ALL-SOME(n - 1,;?i, x -list, ﬁi—list, yy)
/
A - -1 (,) /\y__ N T
Qi ALL~SOME(n - 1, 10 %y list, Xy list, yi)

4. Put QQ = COMBINE-ALL-S (Qi, i=1, k, [&, 20))

QQ'= COMBINE~ALL-S @}, 1=

|
[
~
P
he)d
jon)
»
o
P
~r

5. Return QQ u QQF

We show here only the case n = 2 for n > 3, the procedure is appropriately
generalized to handle intervals of the fornm (xO,y), (yi,ﬁo ,» etc., as well

as [4,%) and (xg,b}

~-18-

Notice that we have arbitrarily restricted the new variable 'y (see 1,
above) to the intervals (&, ﬁo) and (ﬁo, b]. This might be too restrictive,
Perhaps we should have alsoc considered y's in the intervals, (%., ﬁo) for

each ﬁj in X-list, or other possibilities.

In the case n = 3, the predicate Q will be described in terms of three
variables x, y, z. 1In this case, after the vy have been selected as indicated

in Step 1, another call to ALL-SOME will cause (by Step 1) points to

Zysereszy
A N

be selected from each of the intervals {ﬁ,xo), (ﬁo,b], (ﬁo,yi), (yi,xo), i=1,k,

Similarly when n > 4,

COMBINE-ALL-S(./, y, B)

This is used by ALL-SOME.

Here . ig a set

.»’il,:s’;z,..o., vfp}

' r
o=]

where each ‘ﬁi is a result from TALLY. The %fi are treated as sets rather

than conjunctions,

}

A’,i = {‘_, il’...’,\ning
1

and B is an interval {QO,QO), (QO,g], (§O,§i), etc.

and for each AfE(JRJ, let

[vyeB - if Je forall i, i=1,p
)= ¢ o o de "
q(| :
L odyeB S otherwise

and return the conjunction of the members of the set

{q(): Jeo | oq) # 03

(This might be NIL),

~19A~

The Algorithm COMBINE-ALL-S as defined here produces the simplest answer

from a set @%, as depicted by the following examples.

EX 1.

B
f

Hex) < £ {£(y) < £(x) 1}

B = (x,b]
COMBINE-ALL~S returns

{Ty elx,blf(x) < fy, Ty e(x,blf(y) < £(x)}

EX 2.

= {{a B} {a c} {a D}}

it

where A, B, C, D are some formulas

B = (y bl
COMBINE-ALL-S returns

{Vz e (y,bla, 4 ze(y,b] B, dz ¢ (y,blC, 7z e(y,b]D}

~19B-

/= {{aBc} {BcCD}}

il

'z, B, A, B, C, D unspecified

<
[

COMBINE~ALL-S returns

{ 32ze BA, Jze€ BB,7z e RBC, Zz¢e B D}

But in EX 3 (and similarly in EX 2) it could have returned the correct

but more complicated answer

{Ez e B(A A B AC>9 4z e B(B A C AD)}

Our implementation of COMBINE-ALL-S allows both options; the simpler
version produces more tractable answers for instantiation of set varialbes (see
IMV and AML in Section 4), but the more complicated version was needed for EX 5

of Section 4.

3, Obtaining Interpretations 7.

s

A N
The fabrication of an interpretation '/ of 7 which satisfies H{(7) for

a given H, is itself a challenging problem. In general it cannot be handled
automatically.
It is not the main purpose of this paper to discuss the problem of

A
fabricating these (7's but in using them. However, we do have some suggestions.

3.1. Human supplied interpretations.

A

N

One possibility is that the user supplies the (7's, either
at run time, or in a convenient knowledge base which the program can effectively
access. See, for example, [3]. Such a collection of examples could accumulate
over a period of time and be used for a number of applications. In the examples
of Section 4, we show the obtaining of the needed interpretations by a call to

a subroutine INTERPRETATIONS.

3.2. Piecewise~linear continuous functions.
For the special case when the examples needed are interpre-
tations of continuocus functions on a closed interval of the real line, we might

employ piecewise-linear continuous functions (pclf’s) in a number of applications.

: X X
! X X 21.
: X X
: X X X X
: X X XX X
: x b4 X X X

X X X X X
H X X X X X
: X X X % X
-as-w--w--ax--n~--mwu-Xau—uwanwwxuﬂ'----'n-'-—-x-n-“-x-ﬂ---
: X X X X ¥
: X X X
: X X X
: X X X
» X XX
: A

H X

H XX %

i X X X

H b4 X b ¢

H % X X

: X X X

H X X b

H % X X

H ¥ pd ¥

H X X X

-n-:nnmwugnunmn-nnun-huvauxeuauﬁnﬁmmﬁnuunnnﬂx"-nmx.-u-l--tn

:0 ¥ X X 1

H ¥ ® X

: X X X

: X X X

: b ¢ X X

: X £ X

: X XX

H X £X

D X

H

: b4

H X

H X

H X ¥ X

H X X X

: X X X

: ¥ X X

: X X X

: X £ X

H X X X

-;:-'v-n-a*n"annn-"-nn—»uuwuwuﬂmmawuwm"mXﬂnxunt—uw—-un-

0 X X x 1
X X X
X XX
X

Computer Generated Piecewise-linear Continuous Functions
(Satisfying the hypothesis f£(0) < 0 A () >0

b 98 o8 o9 8e @ ot & BB 6C oo

iy -

~
These have the advantage that are easy to generate and use. Such an § with
n corners, can be generated for the interval [a,b], by generating n random
numbers KysKpse e s X in the interval {a,b}, (sorted), and n + 2 random numbers

yaSY13' ¢ e ,yn,yb, and putting
F = {(a,ya)(xl,yl) oo (xn,yn)(b,yb)} .

Such plcf's were used in the examples of Section 4.

If one needs a plef £ which satisfies an additional constraint H(f),
then one can either: generate £'s and test them until one satisfying H(g)
is found; or try to build into the generating routine the ability to restrict
such f's. Again this second approach appears to be difficult in general,

though we were able to realize it for special cases such as:
H(f): f(a) <0 A £(b) >0

or

H(f): YYxela,b] (£(a) < f£(x)).

It might also be useful to build up a special set of routines for handling
pfcf's, for evaluating f at specific x's (numbers), and for computing their

maximum, minimum, zeros, etc.

3.3 Infinite Number of Corners
If a plef with an infinite number of corners is needed, then
one might use a formula for computing the X and v, instead of the list of

number pairs. For example,

(1/n, (-1%2), n = 1,2,...

represents the plcf

g i s s

-1}

In working with such a plcf, the computer would deal with this formula instead
of with a list of pairs of numbers.
In addition to such a description, one might want to add a finite number

of fixed points (e.g., (0,0)).

— 0

3.4 Piecewise-linear functions with “knees',

S

If the interpretation f of f 1is required to be differ-~
entiable as well as continuous, we might want to place quadratic '"knees'" on

our plcf's,

or "cubic" knees if the derivative of £ is required to be continuous, etc,
~
Again one would need to develop a set of routines for evaluating £ at parti-
3 2 < - ~
cular x's, and for finding maxima, minima, zero's etc., for such f's.
~
We do not recommend that polynomials be used as f's because in order

to obtain an example with a few undulations, it is necessary to use a polynomial

of order four or higher, and these are very difficult to compute.

A

3.5 Using the "Corners™ of f£.

plef’s have another advantage besides being easy to compute.
For example, if we are trying to tally the formula
Fx) < £(.499)

for values of x within the interval Il’

