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it is only necessary to check £(x) < £(.499) at each "corner" of £, that is

only for each x for which (x,y) € f. Thus in the algorithm GENERATE, Steps 3
and 4, where random points, Kyseoes® s are selected, we might instead have used

Fal
for the xi's, the x's corresponding to the corners of £.
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I.e., we need only check £(x) < £(1/2) for the points L RS TEREPE L
However, if we are using two variables x and y in the description of

Q (see algorithm ALL-SOME, Section 3), and are trying to tally the formula
fy) < £

for x din interval Il and y in Interval 12, it is also necessary to consider
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Thus x 1is allowed to take the values Xl’XZ"°"XlO’ which lie within Il and
once x 1is given such a value, §, y 1is also allowed to take these values
Kpseeo X (within 12) as well as other values "close to" x (see Section 3.6)
and points corresponding to them. Of course, this lacks generality but can be

shown to be adequate in certain theorems about inequalities. For instance,

it was successfully used in the examples of Section 4.

2

“We say a point x' corresponds to a point x" (with respect to £) if

£(x') = T,
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Using the example of the previous section (3.5), if Il is (1/2,b], and

12 is [a,x), then =x would be allowed to take the values X4'+§,, Xgs Xgs Xoo

X190 %g* And once x is given the value Xgs then y 1is allowed to take the

values Xis XKoo XS’ S CIRAVE Xpe Y11




~28~

AM1. LUB A f dis continuous on [a,b] 5 a <b>I2ela,b] Wx ela,b](£(x) < £()),
where,
LUB. VACR (A7 0rdnvxeAlx< ,)

= (Y xeA(x <) \wylVzeAlz <y)—= 2 <y])).

Our objective in each of IMV and AM1, is to instatiate the set variable A
of the hypothesis LUB, and thereby reduce both IMV and AMl to theorems in first
order logic.

Notice that they both have the form (1), p. 4 , where for IMV, H{£)
is

continuous fa,b] x £(a) < 0 , 0 < £(b)

and for AM1, H(f) is

continuous fla,b].

and following the steps described on pages 4 - 6 we obtain formula (4), p. 6,

with

P(£,8) = (£(2) 20 A 0 < £(2))
for IMV, and

P(£,0) = xela,b](£(x) < £(2))

for AM1.
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Example 1 (IMV)

N £[f is continuous on [a,b] A a <b
Nnf(a) <0 A0 < £(b)
—> 3Q(2 = sup{xefa,b]: Qx)}
7 AN 2'ela,0) Fxe (47,0 Qx)

A~ dx (2,1 Qx)

A £ = 0)]

a call to INTERPRETATIONS yields &4 = 0, b = 1,

F={00-.002.203 -6 D} .

N\ - 1

A call to CALCULATE-L yields g = 1/2. (In the spirit of the "calculate vs.
prove" remarks in Section 1, we of course call on the program to calculate a value

of L satisfying the theorem (for a particular £)).



For these values of a, b, £ and £, the formula (7) reduces to

!

;:%’Q{(V’ 2'€[0,1/2) Ix¢ O@' »1/2) Q(x)

an
A~dxe(1/2,1] OQx
14

A call is made to GENERATE-1({).

(We suppress the arguments n, Z° and 'x) which (by Rule 1 of GENERATE) recalls

itself on wl and wz.

GENERATE(V £ €[0,1/2) Ix e(2",1/2) Q(x))

{

¥y

By Rule 3, the points %?,...,ﬁé are selected as Qi = 0, Q; = .2, R% = ,3,

12 = .499f and calls are made to

(8) GENERATE( I x € (0,1/2) Q(x))

%) GENERATE(d x € {.2,1/2) Q(x))
(1) GENERATE(Z x ¢ (.3,1/2) Q(x))
(11) GENERATE(Zl x € (.499,1/2) Q(x))

We are using the “cormers’ method described in Section 3.5.
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These are intersected (by Rule 3 of GENERATE) to obtain

{£(x) < 0}

Recapitulating from (7'): a call was made to GENERATE(wl) which

yielded

(12) {£(x) < 0}

Next a call is made to

(7" GENERATE(Y,)

= GENERATE(’\’Bxa(fL/Z,l] Q(x))

By Rule 5, it calls first

cENERATE( J x € (1/2,11 Q(x)),

which yields
{0 < £(x)}

and this 1is negated to obtain

(13) {£(x) < 0}

Then by Rule 1, {(12) and {13) are "intersected” to obtain

(12) {£(x) < 0}

as the final answer. (In intersecting {12) and (13) {fx) 5.0} is treated as

{£(x) <0, £(x) = ob.
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For these values of a, b, f and ¢, the formula (7) reduces to

wl
JQIVL'e[0,1/2) Fxe (2',1/2) Q)

a"
A~Fxe{l/2,1] Qx
‘

¥y

A call is made to GENERATE-1({).

(We suppress the arguments n, Z7 and 'x) which (by Rule 1 of GENERATE) recalls

itself on wl and wz.

GENERATE(VY £ €[0,1/2) Ix e(2',1/2) Q(x))

1 N

v

1

By Rule 3, the points R’,...,Qi are selected as %i = 0, Q; = .2, 2% = .3,

Qi = .499? and calls are made to

(8) GENERATE(3 x € (0,1/2) Q{x))
(9) GENERATE(I x € {.2,1/2) Q(x))
(10) GENERATE(Z x £ (.3,1/2) Q(x))
(1D GENERATE( X x € (.499,1/2) Q(x))
< e et e e e e e e o e e

We are using the "corners" method described in Section 3.5.
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and each of these, by Rule 4, select points XiseoosX from (2;,1/2) and
calls

GENERATE(Q(Xi))

which in turn calls TALLY.
For example, when &' takes the various values shown below, the cor-

responding values of Xys+0,X are chosen and calls to GENERATE(Q(xi) and TALLY

yield the results shown.

Q *5 Result of Call to TALLY

(actually a singleton set in each case)

0 .001 fx) <0
o2 0 < £(x)
o3 f(x)‘< 0
.4999 f{x) <0
02 .2001 0 < £(x)
.3 f(x) <0
.4999 f£(x) <0
.3 .3001 £(x) <
.4999 £(x) <
499 .4991 f(x) <0
. 4999 fx) <0

Then from Rule 4 of GENERATE, we obtain the union of these various sub-~
groups for (8), (9), (10), and (11). TI.e., {f(x) < 0, 0 < f(x)} 1is returned
from (8); {f(x) <0, 0 < £(x)} is returned from (9); {£f(x) < 0} 1is returned

from (10); {f(x) < 0} is returned from (11).
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These are intersected (by Rule 3 of GENERATE) to obtain
{£(x) < 0}

Recapitulating from (7'): a call was made to GENERATE(@l) which

-yielded
{(12) {f{x) < 0}
Next a call is made to

(7" GENERATE (1),

= GENERATE(~dx € (1/2,1] Q(x))
By Rule 5, it calls first
GENERATE( o x € (1/2,1] Q(x)),

which yields

{0 < £}
and this is negated to obtain
(13) {£(x) < 0},
Then by Rule 1, {(12) and (13) are "intefsected” to obtain
(12) {f(x) < 0}

as the final answer. (In intersecting (12) and (13) {f(x) < 0} is treated as

{f(x) <0, £f(x) = 0D).
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This answer (13) is checked against other values of £, and, finally the

set A in Theorem IMV is given the value
(14) {x: a <x <b s flx) <0}

which is a correct instantiatiomn.

Incidently, when A is instantiated with this value {14), the theorem IMV

is reduced to the first order theorem:
wx(a <x<b A f® <0 - x<0)
AnNVy(dz(a <z <bna f(z) <O - z <y L <y)
A f is continuous on [a,b] A f(a) €0 A 0 < £(b)

—=>  £(R) <0 50 < £(0).

Of course we would need to add the definition of continuity and, unless one

uses a general inequality prover like [4], also add the axioms for the ordered

reals.



YA

Example 2. (AM1).

Vf[f is continuous on [a,b] n a <D
—> 3Q( = sup{xe[a,bl: Qx)}
A ¥2'ela,l) Txe (R, Qx)
A~3x e(®,b] Qx)

ANy €la,b] (£(y) < £(2)))]

A call to INTERPRETATIONS yields & = 0, b = 1,

= {0 0GL .2)(3 -.2)(.5 .5)

(.7 =.3)(.9 .3)(1 0O}

e

a call to CALCULATE-L yields & = 1/2
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As in Example 1 we obtain (exactly) the formula (7'), and calls are then

made successively to

(15) GENERATE (1)
(16) GENERATE (¥, )
an GENERATE(Y,)

The call (16) returns the list

(18) {Yyela,x) (£(y) < £(x)), dye (x,b1(£(x) < £(y)), 3y e (x,bl{£(y) < £(x))}
and the call to (17) returns the list

(19) {vyela,) (@) < £}
and (18) and (19) are intersected to obtain

(20) {Vyela,x) (£(y) < £G)}

which is returned by the call (15).

We will now examine some of the details.

The answer (19) may seem strange, but recall that it is a list of
formulas (about x) which do not hold for x in [%,b], which incidently (see
Rule 5) is the list of the negations of formulas which do hold for x in (&,b].

Let us now examine the call (16).

(16) CENERATE( v €la,2) Fxe(L',8) Q)




Rules 3 and 4 are used to select (Ri,...,ﬁa) equal to (0, .1, .3, L499), and

for each &', K. peeesX @S shown below.
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L4991

In the following table

ALLl is ¥ ye€ia,x)
ALL, is w7y € [a,x)
ALL., is ¥y e (x,bl]
ALL, is Wy e (x,b]
SOME1 is +4vyela,x)
SOME, is Ty €la,x)
SOME. is v £ (x,b]

SOME, is

4 Gy e (x,b]
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£(y) <
£(x) <
£(y) <
£(x) <
£(y) <
£(x) <

f£(y) <

A

£(x)

1f one of these is primed, then <

L4999

.3001

.4999

L4991

L4999

ALLz is

GENERATE(Q(Xi)

3
{ALLESOME3SOME4;

{ Tt 1 "

¥8 A1
{ALLZ

1% 131
{ALLl

2

{SOMElsOME SOME

{ALLZ 5

Ay kxS %
1ALL1

3
SOME SOME3

3
3
)

SOMEA}

}

}

{SOMﬂlsOMEZSQMEBSOMEA}

{ALLlsOME SOME,

3

3

T 1
{ALL180MUESOME4;

{ 57 (] H

}

£(x)
£(y)
£(x)
£(y)
£(x)
£(y)
£(x)

£(y)

is used instead of <.

yela,x) £(x) < £(y)

GENERATE( x e (2',%) Q(x))

{ALL ALLZSOME

1 SOMEA}

3

{ALLlALLZSOMﬁlsoMEZ

SOME3SOME4}

{ALLISOMElSOMEZ

SOME3SOME4}

{ALLISOMEBSOMEA}

For example,
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These are now intersected to yield

(18) {ALLlsOME3SOME4}

from (16) GENERATE(wl)

The call (17) GENERATE(Y,),
(an GENERATE(-3 x € (1/2,1) Q(x)),
causes (by Rule 5) a call first to
(17" GENERATE( Ix € (1/2,1) Q(x)).

The negation of the result from (17") is returned for (17).
Rule 3 is used to select (.5001 .7 .9 1.) for (x1 X, Xq XA)’ and

GENERATE)Q(xi)) is called for each to obtain the results shown below.

X5 Result from GENERATE(Q(xi))
. 5001 {SOME1 SOME2 ALLB}
- b
.7 {ALLZ ALL, )
.9 {SOMEl SOME, ALLB}
1.0 {SOMEZ SOMEl}

The union of these

{SOME, SOME, ALL, ALL, ALL

1 2 Z 3 4}
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is then returned from the call (17'), and this is negated to vield

% % ¥ A %
(19) {aLL , ALL', SOME' SOME', SOME 3}

from call (17).

Finally, (18) and (19) are intersected to yield
{ALLl} ={ yela,x) £(y) < £}

from the call (15).
This is checked against other values of ?, and finally, the set A in

Theorem AM1 is given the value
{x: 2 <x <b A Y yela,x) £(y) < £(x)1.

Probing a bit deeper, let us see how the values shown were obtained from
the calls, GENERATE(Q(xi)).

First a call is made to TALLY which fails and then (by Rule 6 of GENERATE)
a call is made to ALL-SOME, which selects points yl,...,yk in the intervals

[4,x.) and y!,...,y, in (x,,g}, and calls TALLY for each such y. and y:.
i 1 k i i 3

For example, when x, = .3, the points (0 .1 .2999) are selected for

¥ % 2
(y1 ¥, ys), and (.3001 .5 .7 .9 1) are selected for (yl yz,...,ys).
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x5 75 Result from TALLY Result from ALL-SOME
™
.3 0 f(x) < £y)
.l ¥
.2999 "
‘ {Vyela,x) £(x) < £{y),
v
I ~
3ye(x,b] £(y) < £(x),
.3001 £(x) < £y
5 £ < £(3) Jyel(x,bl £(x) < £(y)}
.7 f(y) < £(x)
.9 f(x) < £y
i
1.0 J

and similarly for the other X,

For the particular P used in Examples 1 and 2, it was not necessary
to choose the xi's throughout the interval (2',%), but in fact we needed
only select ome such X, ".lose" to L. This is true because we are dealing

with the least upper bound axiom, which gives a set A for which
2 = sup A,

and hence the descriptionm of A need depend only on points X "near" L. (Of

course, this can also be determined by the quantifier structure of YJ.
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B. Other "cute" examples.

In each of these examples the routine GENERATE is given a

s ~
function f and a value £, and it is expected to provide a predicate Q(x)

for which

E = sup{x: Qx)} .

N~

These examples are strange (cute) in that the value £ does not represent a

sy
zero of £, or is maximum on [0,1], etc.

In each case we give only the results and show none of the details.

ex 3. £ o= {0 0)(.1 .3)(.3 =.2)(.5 .5)(1 0)}
2-.1,8=0,b=1
? AN
5‘ / V}“*.%
H K\\
i , / “ F
/ / N\
L f ] xx&
| ;"; / \
r/ /
/ AN
y f
3 H H i i i o g ‘“w,.%
> 50 1 z i . 5 - 1,
) 3 /
L «€

Result: Q(x) = ¥y e [a,x) Fz € (y,x) £(y) < £(=2)
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ex 4. F= [0 01 .23 25 .97 =39 .3 0)}
2=.9,4=0,b=1
\\§
AN
A % /\
i ii \' 5 b
0 N /
; \'h
\f 5 \/ ?\ 1
L ;k Q‘
Result: Q(x) = IJye(x,blf(x) < £(y)
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{0 1).3 005 .57 0)(1 1)}
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Result: Qx

This is a simplified part of a more

program (see Comment at the end of Section

Q{x) =

Jy e (x,b1(F z ela,x)

¥
’~

¥

~ Tz e(x,y)

71

~ Zzely,b]

¥

£(z)
£(x)
£(x)
£(x)
£(x)
£(z)
£(x)

£{x)

< £(x)
< £{(z)
< £(y)
< £(z)
< £(y)
< £(x)
< £(2z)

< £(y)

1y e (x,bl Jz e (yv,b](f(x) < £(z) < £(y))

complicated answer returned by the

2), namely

< £(y)
< £(y)
< £(z)
< £(y)
< £(z)
< £(y)
< £(y)

< £(2))
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Other simplified parts are
gy e(x,bl Tz e (x,y) (£ < f(y) < £(2)),

- and

Jye(x,b]l Fzely,bl(E(z) <£(x) < £(y)),

but note that

Fye(x,b] 2z e (y,bl(fx) < £(y) < £(z)

is not a solution.
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5., Comments

5.1 Higher Order Logic.
Since instantiating set variables is a part of higher order
logic one could also use procedures 1ike those of Andrews [5], Huet [6],
Darlington [7]1, or possibly Bledsoe [8]. 1In general we would expect these to
be less efficient than the technique discussed here, but further experience

is needed.

5.2 Conjecturing

The central component of this work is the routine GENERATE
which attempts to general (describe) a predicate Q(x) satisfying a particular
form P(Q{x)). This is much in the spirit of Lenat's work [2], where various
conjectures are derived from examples.,

In Lenat's work as well as ours, there is givén a set of
examples and the program is asked to determine "what is true' about them.
There is a difference however: whereas Lenat asks all that is true {about

his examples), we ask what is specifically true about certain objects in (7,

such as £f.
Such conjecturing seems to play an important role in all of
human endeavor, and we would expect a prominant place for it in future auto-

matic reasoning systems.

5,3 Calculate vs. Prove

We cannot over emphasize the importance of being able to

~

calculate properties about a particular £ rather than prove the same pro-

perties about the uninstantiated variable f.
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For example, for the continuous function
/\~>\ 2
£ = AX (4x -~ 4x7)

A
it is rather easy to automatically calculate that £ = 1/2 is the maximum of
ral
f on the interval [a,b] = [0,1]. However, it is indeed difficult to prove
automatically that any continuous function of [a,b], with a < b, attains its

maximum on that interval.

5.4 Other Example Theorems.

We hope to extend these results to other example theorems
such as

Heine~Borel Theorem

Nestled Interval Theorem

Baire Category Theorem

Balzano-Weierstrass Theorem

etc,

In many of these one will work with families of sets (intervals) instead
of functions. There is a natural analogy bet&eeﬁ piecewise~wise linear con-
tinuous functions (plcf's) and finite families of intervals. Accordingly we
would expect instantiations which consist of a finite family of intervals,
to suffice for many applications, But infinite families will also be needed.

Let us consider briefly the Heine-Borel theorem.

Theorem (Heine-Borel Theorem). If F is a family of open intervals covering

[a,b], then there is a finite subfamily of F which covers [a,bl.

3
b

é.ww.jww 3 & 3 ’ 3 i{zmwwwﬁmw (},,;W
e
&




1t turns out that one can use the Least Upper Bound axiom to prove this

by putting

A={x: a<x<b, 2HCF (4is finite 5 H covers [a,x])}

e A 4 1 e e

Q{x)

But how doeé one generate (automatically) this Q(x)? TFor example, suppose we

are given

[a,b] = [0,1]

(- 25 3-0

Bl

-~ 1 1
F sZ)(’i

(3

n = 5,6,7,000

L
1000 °

"o

=L
2
A ~
Question: What is true about x and F (in terms of "finite subfamilies

of FM.

Answer: 3 <¢F (H is finite A vy (0 <y < £-— 3B e H (v €B)))

But it is not clear at this time how such a description can be efficiently

generated.
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