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FUNCTION SYMBOL ELIMINATION

W. W. Bledsoe

Abstract. Function symbol elimination (FSE) is a lot like variable elimi—

nation (VE). In VE, a variable symbol x, which is eligible in an inequality

clause, can be removed, leaving an equivalent, more useful, clause. In this

paper we present a similar rule for (partially) removing function symbols

f (where f represents a continuous function on the reals), and show its

use in some proofs,



1. Introduction

Variable Elimination (VE) has proved to be a useful tool in the auto-

matic proofs of inequality theorems, especially when used in conjunction with
shielding-term removal [1,2],

A variable symbol x is said to be eligible in a clause C , if it
does.not appear within the arguments of an uninterpreted function symbol [1].

For example, x is eligible in (a < x \v x < £(y)) but not in (a <xvx< £x).

Variable Elimination Rule:

“If x ds eligible in a clause C and x occurs in C only in the

literals

(1 a x; 1= 1,n ; x_i b.,; 1= 1,n

o<
i -+ ]

then C is replaced by its VE-Resolvent C' which is gotten by removing the

literals (lj from C and replacing them by literals
(2) a, i_b. , 1= 1,n; j = 1,n.

It should be noted that if either n or m is zero, then no literal
is- added to replace those deleted. The rule is extended appropriately to

include the symbol '<',

Examples

Ex. 1. C= (a i.x vX4b) 3 C = (a % b)
Ex. 2. C=(x<avx<bvl ;C' =4
Ex. 3. C = é $xux j_b v i) <ec

(x is not eligible in C so it cannot be eliminated).
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It is the purpose of this paper to define a similér rule for (parti-
ally) eliminating function symbols f, where f répresents a continuous
function on the reals. We prove its soundness in Section 4.

First iet us give some motivation. A clause C of the form

! ? : ,
(a iﬁx v ¥ §b), where x does not occur in a or b, represents the (un-

negated) theorem,
(3 .Ex(a <x < b).

and (3) is true if and only if (a < b). Thus C can be replaced by
C' = (a i_b).

The existence of such an x, between a and b, in (2) is guaranteed
by the denseness of the real numbers.

A similar situation holds for continuous functions on the reals.
U= ge)
/Q/M N ‘%

= /
NEa . ¥

F{g"UY“Q_ L

For example, in Figure 1, we know that there is a number ¢ between a and b
for which f(a) < f(e¢) < f(b), (provided that f is continuous), because the
values of f(x) are denée between f(a) and f(b)., This property of continuous

functions is usually expressed as the intermediate value theorem




2. TFunction Symbol Elimination

In all that follows we will assume that f is a continuous function
of one real variable. This assumption could be indicated by simply carrying

along the additional literal
~ continuous £

but we will suppress that for brevity.

FSE-Rule. {(Tentative)

If f represents a continuous function of one real variable, and C

is a clause of the form

(&) f(x) <u vw<fx v Vix f'ci) v V(dj <x)v E,
i ]

where x is a variable symbol which does not occur in Ci» dj’ or E, then

we may add its FSE-resolvent C'

u < f(y)  £(z) <w yw<u , E
(5) o
v Y(y < Ci v 2 < Ci) v Y(di <y 4, < z),

i 3 J
where y and 2z are new variable symbols.
It should be noted that the FSE-rule does not actually eliminate the
function symbol £. In fact there is no net reduction in f's! But it does
introduce new variables y and 2z, which can be instantiated separately.

This will be further discussed below.



Note that the second line of (5) contains only <'s (no <'s). (This
will be modified in the general FSE-rule stated below). The rule will now be
extended appropriately to include the symbol '<' ,

In ofder to include an option for either < or < in the rule, we will

use symbols such as < , < | < [ < [ <, 1In any particular use, each of
J

. wa LR 1

these symbols will represent < or <, For example
(a <b—>a<hb)

is a theorem no matter whether < is < or < (but it must have the same value

for both of its occurrences).

-

'Furthermore, we will use the notation <' to mean < if < is <, and
- L

\] Y
< otherwise. Similarly for < , E , etc., and the notation (< ,<) will be

»e

equal to < if either of < or < is <, else it is < ,

If £ represents a continuous function of one real variable, and C

is a clause of the form

@ ) <u v w<i® v Vix$e) v V(dj J<x) v E
- *e i j

where x - is a variable symbol which does not occur in Cis dj’ or E, then we

may add its FSE-resolvent C',

u < f(y) v £(2) <w v w<u v E
(5")
< <
\{‘if(yiciv z5e)dy g(d

< d, <z
jJYVJJ)’
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where y and 2z are new variable symbols, and < is (< ,<). If < or < is

<, then the < and 5 in (5') can all be made < (which results in a stronger
1 :

more useful resolvent).

Examples.
Ex. 4. C=(f(x) <ec v d <f(x) a_é_x
C'= (¢ < f(y) v £(z2) <d v d <c
v acx<y v a < z)
Ex. 5, C=(f(x) <c v d<f(x) v a <x)

C'= (c < f(y) v f(z) <d v d <c



3. Example Proofs using FSE

Theorem LS1. Continuous f A a <b <c A f(b) < f(a) < fle) —>

Ix(b < x AN £(b) < £(x) < £(a)).

Sl
/'"m/" -%\
X
A Y A
i
Clauses.
0., continuous f
1. a<b (not needed)
2. b <e¢
3. f(b) < £(a)
4, f(a) < f(¢) \
5. x<b v f(x < £(b) v £(a) < £(x)
6. £(b) < f(y) v f(z) < f(a) v f(a) < £(b)
vy <b z <b 5, FSE, f(x)
7. f(z) <f(a) v f(a) <f®) v z <b 6, bly
8. f(a) < f(b) ¢ <bb 7, 4, c/=z
9. ¢ <b 8, 3

10. || o 9,2.



Theorem LS2. Continuous f A a <b < c A £(b) < £(a) < f(e)

— Ix 3y 3z (z <y <x A £f(y) < f(x) < £(z))

Clauses.
1. a<b
2. b.<c

3. £(b) < f(a)
4, f(a) < f(c)

S Y2z oy x<y y £ <f(y) v £(2) < £(x)

6. f(y) < £(y") v f(z") < f(z2) v £(2) < £(y)
y<z vy <y s2'<y

7. £(z') < f(2) v f(z) <f(y) v vz vz'<y

8. f(z') <f(a) v b<a y z'<hb

9. b<a vc<hb

10. [

FSE, f(x)
y/y
3, a/z, bly

b, c/z'



Theorem IMV1. Continuous f and a <b A f(a) < f(b)

> Fx(a <x <b A f(a) < £(x) < £(b)) \

Clauses,

1. a<b
2. f(a) < £(b)

3. b<x v x<ay f(x) <f(a) v £(b) < £f(x)
b f@) < £(9) v ) < £(b) v £(b) < £(a)
Vb < y Vb<z vy<avz<a ' 3, ?SE, £ (x)
5. £(z) < £(b) v f(b) <f(a) v b<a vb<zvzc<a 4, aly
6. £(b) < f(a) v b <a 5, b/z

7. r] 6, 1, 2



Theorem IMV2. Continuous £ A a <b A f(a) <c < £(b)

s> Fx(a <x < b A £(x) = ¢).

Clauses.,
1. a<b
2. f(a) <c¢
3. ¢ < £(b)

4 x<a v b<x v Iix <c vec<ik

(Note: f(x) = c has been replaced by ¢ < f(x) < c.)
5. ¢ <f(y) v f(z2) <e¢c vV y<a vz<avb<y y yb<z
6. f(z) <ec vV a<a vz<awvb<avb<z

7. b <a

10.

4, FSE, f(x)
5, 2, aly
6, 3, b/z

7,1.



4. Soundness of FSE

Df. [Ix,yl = [x,y] U [y,x]

i

C=xyD = xy) U (3,%)

(Similarly for [[x,y ) and { x,y0.)

‘Thus [[2,17 = [1,2], {1,307 = (1,3], etc.

Theorem 1, If £f is continuous then

YuoVw[ JyFz(E(y) <u<w<f(z) A vxe(ly,zD P(x))

s Tx(u < f(x) < w A P(x))

"

11.

5 Lt Peodt

S
T Ve e

Proof. By the intermediate value theorem there is an x in (y,z) for

which

u < f(x) < w.

But this implies u < f(x) < w, and since P(x) holds for all x's in (v,zD,

the proof is complete.
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Theorem 2. If f dis continuous then

NMuvwl Jy Hz(£(y) <u <w < f(z) Avxelly,zll P(x))
—> dx(u < £(x) <w p P(x))

Proof. If u < w, use Theorem 1, otherwise use the intermediate value theorem

to choose an x in [[y,z]] for which f(x) = u = w. Then by hypothesis,

P(x) holds.

Theorem 3. If a # b, then

\q’xa([a,b])[/i\(ci ix) A /j\(x 5 dj)]

= /i\(ciia/\Ciib)/\/ﬁ\(af—dj/\b—(—dj)'

Proof. Let a # b. We complete the proof in 7 steps. Steps 1 and 2 are
obvious; step 3 follows from steps 1 and 2; step 5 follows from step 4;

the proof of step 6 is similar to that of step 5; step 7 follows from steps 5

and 6.



Step 1.

Step 2.
Step 3.

Step 4.

a <b->[Vxe(a,b)(c < x) E(cia)];
a <b—>[¥xe(a,b)(c <x) = (c <a)l.
a<b-—>[Yxe(a,b)(c <x) = (c <a)l.

“vx€e(a,bD(c <x) = (c<a A c < b).

Proof. If a < b, then Qla,b D) = (a,b), and by Step 3

and

Thus

Step 3.

Step 6.

Step 7.

(c

i

A

\jXE(I_a,bD(c<x) a <b)

~—>» (¢ <a p c<h),

(c <a A c<b)—=(c <a)

>\ x € (a,b)(c < x).

the result holds for a < b, Similarly it holds for b < a.

1

: ) < < <
vx e (a,b) I\ (ciix) /i\(ci__a/\ci___b)

1t

X € b A < 4, AN < d, b <4,
\/X(I_a,])J(XlJ) J(a‘*J/\”‘J>

vx€e€( a,b) [/}(cigx)/\ /j\(xj§dj)]

< < A < < .
/i\(ci__a/\ c; <bIA ¢ (a___dj /\b_dj)

QED.

13.
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Theorem 4, Vxe[[a,b 7] [/i\(ci

HeA

x) A /j\(x ; dj)]

= <
Aleg fane

oA

b) A aAla £d, N b < d.
) /.']\(JJ JJ)

Proof. The proof is modeled after that of Theorem 3 except that we have
Ta,b T instead of (]:a,b;D, and in Steps 1-3, we have the hypothesis,
~a < b, instead of a < b, and the right sides of Steps 3~7 employ i and

§ instead of <. Only Steps 1-4 are given.

Step 1. a2 <b-—>[Vxela,bl(c <x) = (c <a)l
Step 2. aib—é['\{xs[a;b](c<x) Z (e < a)]
Step 3. a_b-—>I[Vxela,bl(c < x) = (c < x)]

(¢}
A
o
~

Step 4. N xe[la,b ]],(cfx) = (c<a A



Theorem 5. If £ is continuous then
Vu‘dw[%yazv(f(y)f_u <w < f(2) '

N i}-\ (cif.y AN

— Ix(u < £(x) < WA /i\(ci f x) A A (x ; dj))]

and
YVuYwl Iy 3z2(£(y) <u <w < £(z)
o < <
/\/i\(cii<y A c:iiz}/\/j\(yj dj A zj<dj))

—  dx(u < f(x) <w /\/i\(cifx) A j\(xj<dj))]

;

- = . - n< 0} l< . - i
Proof., Let P(x) = /l\ (cl £ X)) A /J\ (% 3 dj) Then the first part of

15.

Theorem 5 follows from Theorems 1 and 3, while the second part follows

from Theorems 2 and 4.

QED.



Theorem 6., If f is continuous then

(6.1)

Juiw[vx(f(x) <u v w < f(x)

\V4 < \ <
v i(xici)\/ ; (dj b x))

e Ny Vz(u < f(y) VOf(z) Sw v ow <u

(6.2)

and

(6.3)

e Ny Vz(u < £(y) VO f(z) <w v ow <u

(6.4)

Proof.

A\ < < V < <
vy (y c; vV oz ci)\/ ; (dj vy oV dj z))]

JudwlVx(f(x) <u v w < £(x)

. \Y < Vv <
\/ i(xici)\/ j(djjx))

v VvV < N < \V
P 0 feg Y zfedv 3 (d

Negate the parts of Theorem 5.

. 5
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y oV dj § z))]

16.

QED.
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The soundness of FSE follows from Theorem 6, because the clauses of
the FSE Rule are the clausal forms of parts of Theorem 6. (Except for the
common part E in (4') and (5")). B

For example, if both < and < in (4') are <, thenbf‘is <, and (except
for E) (4') and (5') are the clausal forms of (6.3) and (6.4), and if one of
< and < in (4') is <, then < is <, and (except for E) (4') is the clausal
form of tﬁ.l) and (5"), with its § and § replaced by < (see remark at the

end of the FSE rule), is the clausal form of (6.2).

Completeness. The FSE-elimination rule is obviously complete since the FSE-

resolvent C' is does not replace C, but is added as another clause.
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Replacement of C by its FSE-resolvent.

We cannot replace C by C' in the FSE rule, becasue the implication
replace

in Theorem 1 in this Section cannot be reversed. For example, if

f£(x) = sin x

u= =2, w=+2,

we see that
dx(u < £(x) < w)

but not

Jy dz(£(y) <u <w < £(2)).

This is unfortunate because a replacement rule (such as the VE-Rule
[1]1) is much more powerful than an addition rule, because the prover can cease
to generate resolvents from the clause that is replaced. In the case of FSE,
we can only require that the program "prefer" the resolvent C' over C but

not discard C altogether. Such "preferring" can be implemented by an agenda

mechanism such as that used in [3].



Intermediate

19.

Value Theorem.

Since
that one can
hypothesis.
the examples

theorems, is

FSE is based on IMV (the intermediate vaiue theorem), it is clear
gét the same effect as FSE by simply adding IMV as an addition
But this seems to greatly increase the proof search, at least for
given in this paper. More experience, in the proofs of harder

needed before the effectiveness of FSE can be fairly evaluated.

For example, the following is a proof of Theorem LS2, from Section 3,

using IMV.
1. a<b
2. b <c

3. £(b) < f(a)

4, f(a) < £(e)

5. y <z v

7. ‘ "

x <y v f(2) < f(y) v £(2) < £(x)

u<f(s) v £(t) <u v f(zstu) =u

" " V s < zstu

1" " V z t
stu <

11. c <bh V

12, f(zo)

u<E(B) VO£(E) <u v £z, ) =u 6, 3, b/s
u < f(b) v f(a) <u v f(zbcu) = u 9, 4, c/t
£(a) < £(b) V £(z)) = £(a) 10, £(a)/u
where z) =z, o 5
= f(a) 11, 2, 3
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14,

15.

16.

17.

18.

19,

20.

<
I A

b < zq i
[ similar to Steps 9-12

z.< cj
f(b) < f(zO)

t <s vu<f(s) ~v f(t) <u v

' < Ny < / <
z N Z oy 2Y VU < f(y) v £(z) <u

t<s vu<f(s) VvV £(t) <u V

y<z ¥Vs<ywvuc<f(y) f(z) <u

(Now u 1is eligible in 16 and can be eliminated)

t<s vy<z vs<y vV

£(t) < £(s) v £(t) < £(y) v £(2) < £(s) v £(2). < £(y)

2y <bv b<ay b<b

]

Even the proof of IMV2 is easier using the FSE rule,.

20.

7, 3, 4, 2, 3

8, 3, 4, 2, 3
12, 3, sub =

5, 6, z /x,

stu

sub =

16, 7

17, VE, u

18, 15, 3, zy/t,
b/s, bly, a/z

19, 13, 1
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Eligibility,

In VE it is required that the variable x being eliminated f;om a clause
be eligible in that clause. (See definition above). While no such requirement
is explicitly given for FSE, an implied one is there, in that we require that
x (the argument in f(x))'not occur in the cys dj’ or E. But the symbol f

itself can indeed occur in other parts of C with other arguments,
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