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Here finally is some material for your report, much too much. Please
cut it down as you see fit. I did not have it all typed (yet) because that
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questions.
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AUTOMATIC THEOREM PROVING

by Woody Bledsoe, University of Texas at Austin

A talk -given before the Advanced Technical Planning Committee of CAU-I, in

Dallas, Texas, August 24, 1982,

There is an active group of ATP researchers at UT-Austin under the
direction of Woody Bledsoe, Bob Boyer, J. Moore, and Frank Brown, which includes
6 professors and about 12 graduate students. Also, Don Good heads a large group
there working on Program Verification (the Gypsy project). Other AI researchers
at UT-Austin. include Bob Simmons (text understanding), Gordon Novac (Automatic
Physics programs), and Elaine Rich (Expert Systems).

Woody Bledsoe and Michael Ballantyne are studying the feasibility of
establishing an AI Laboratory at the Woodlands, a new city north of Houston.
This laboratory (WAIL), if established, would be funded by the Mitchell Energy
Corporations and other corporations in the Houston area. This would be part of
HARC (Houston Area Research Center) at the Woodlands, which has already been
given 110 acres of land and several million dollars.

A good introduction to ATP can be found in What Can Be Automated?,

ed. Bruce Artin, MIT Press 1980, pp. 448-462. This appears .as (*) in the list

of references given here.
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BOOKS

Chang and Lee. Symbolie Loglc and Mechanical Theorem Proving,
(see List of Reference in this book.)

Donald Loveland. Automated Theorem Proving: A Logical Basls.. Careful definitions
and proofs, especlally on Resoclutlon. ‘

Nils Nilsson. Principles of Artificial Intelligence. Chaps, 46,

J. A. Bobinson. Logic, Form and Function. (The inventor of the term RESOLUTION.)
* Especially Chapters 11-13. '

Robert Kowalskl, Loglc for Problem Solving. (The inventor of Loglc Programming, '
SL-RESOLUTION, Resolution graphs, etc.). ~

Boyer and Moore, A Computational Logic. The "Boyer~Moore" system,

Feigenbaum and Feldman., .Computers and Thought, Section 3, ZEarly papers on ATP
by: Newell, Simon, and Shaw, and Gelernter and Loveland.

J. Siekmann and G. Wrightson. Collected Papers on Automatic Theorem Proving.
Forthcoming from Springer. Three volumes. (Martin Davis' history
of ATP will start the first volume; W. Bledsoce will write such a
history for the third volume.) ’

INTRODUCTION

* . . . .
)"Automatlc Theorem Proving" (by W.W.Bledsoe), in What Can Be Automated? (NSF COSERS Study).
Ed. Bruce Artin, MIT Press 1980, pp. 448-462.

*) "Non-resolution Theorem Proving," W. W. Bledsoe, A, I. Journal 9 (1977), 1-35.

JOURNALS
International Journal of Artificilal Intelligence; (AL Jour.)
Journal of the Assoclation for Computing Machinery. (JACM)

Machine Intelligence (MI-1 -MI-9)

IEEE Transactions on Computers

_CONFERENCE REPORTS

Proceedings of the Fourth Workshop on Automated Deduction, Austin, Téxas, Feb. 1-3, 1979.

5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980.

6th Conference on Automated Deduction, New York, Jume 7-9, 1982,

Lecture Notes in Compurer Science 87, 138, Springer-Verlag 1980, 1982

Proceedings of IJCAI 1969-1981, |

Proceedings of AAAI National Conferences, AAAI, 445 Burgess Dr., Menlo Park, California, 94025



What is ATP?
Proving theorems.Automatically (by computer)
e.g., Pythagorean Theorem

Heine~-Borel Theorem

Schroeder Bernslein Theorem, etc.

new theorems

What has been done? Later

How? "
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Applications of ATP

Program Verification
esp. Man-mac}ine theorem proving and proof checking
Now in use, somewhat (ISI, UT, Stanford, UT, --)
Program Synthesis (Waldinger-Manna, Balzer, ...)
Data Base Inference
Very important, but needs work
See Minker, et al, book (logic and data bases)
Truth maintenance?
Probabilistic inference
Logic Programming (Kowalski, et al.)
Expert Systems (MYCIN, PROLOGUE, PROSPECTOR, etc.)
Mathematics
Proof checking (see silide)
Man-machine (Assistant'’)
File of theorems

Any automatic decision maker



PROOF-CHECKING

J. Morris ~ "all" set theory theqrems in A, P. Morse's book.
de Bruijn - all of Landau's book.

Boyer-Moore - prime factorization theorem, etec.

PV projects at UT, ISI, Stanford, SRI, ...

Suppes-Kreisel - CAI course in Set Theory to Godel's Incomp. Th.

. Weyhrauch - FOL

Excellent application érea, but has not been done right.
The user has to bend to the computer (let's change that).

Interesting, challenging, open problem.

Neveln - current APC project at UT.



These three pages are from Reference (*).

‘ One of the earliest ATP programs was Galernter plane geometry prover.
For example,

Theorem. Two vertices of a triangle are equidistant from the median to the

side determined by those vertices.

GIVEN: Segment BM = Segment MC, BDJ AM, CE_L ME.

GOAL: Segemtn BD = Segment EC.

- SOLUTION:
Angle DMB = Angle EMC . Ve;ticle Angles
Angle BDM = Angle CEM Right‘Ahgles are equal
Segment BM = Segment MC ' Given
CEM is a triangle Assumption based on diagram
BDM is a triangle Aﬁsumption based on diagram
A CEM = A BDM Side—angle—anglé
Segment BD = Segment EC Corresponding elements of congruent
triangles

This 1is the machine's proof though we have omitted some of its steps for

simplicity of presentation.

In this proof the machine proceeds ("reasoniﬁg backwards'") as follows:



Its goal is
Gl ‘Segnent BD = Segment EC ,

S'o'it consults a list of solutions for this type of goal and finds (among others),
that two segments can be proved equal by showing that they are corresponding parts

of congruent triangles. Since BD is in A BDM and EC is in A CEM, 41t selects

the subgoal

G2 A CEM = A BM .

Now 1t consults another list for ways of proving two triangles congruent. It £inds:

(a) three-sides, (b) side-angle-side, (c) side-angle-angle. . It sets the subgoal
c3 "three-sides" for A's CEM and BIM .,
This fails (after a good deal of work).‘ So it séts the subgoal

"~ G5 . "side-angle-angle" .

There are several ways this can be achieved, one of which requires the three sub-

goals

G6 ~ Segment BM = Segment MC
G7 Angle DMB = Angle EMC
G8 Angle BDM = Angle CEM .

The machine finds subgoal G6 among its premises. In solving subgoals G7 and
G8 it consults a list of methods for making two angles equal, and finds (among’
others): '"verticle angles are equal", and "all right angles are equal." Since

it detects from the diagram that angles DMB and EMC are verticle angles, and
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that angles BDM and CEM are right angles it successfully concludes the proof .

of subgoals G6 -G8, and therefore G5, G2 and G1. In the second stei) of the proof

G2.1 _ A CEA = A BDA
G2.2 A CEA = A BDM
G2.3 A CEM = A BDA

G2 ) : A CEM = A BDM ,

But, by constructing in its memory a "general" diagram of the situation
(which is its representation of the drawing in Figure 2), the machine

easily checked by measurements that subgoals G2.1 - G2.3 -could not

be ‘true, but that G2 sgeems alright. Thus it selected only subgoal )
G2 and thereby drastically reduced the search time. .

| This idea‘of filtering out false subgoals is generalized and ‘used in many
areas of automatic theorem proving. For example, in group theory a false subgoal

can be discarded by testing it on known groups (such as the Klein four groups).

-
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FIRST ORDER LOGIC

Examples See next two pages.
Quantification of individual variables
This is the challenge of this age, to prove all theorems in first-order logic.

A complete proof procedure was devised by Herbrand in 1930

Herbrand Procedure

So we are finished?

No. It was too slow!

Can methods be devised so that computer provers can compete with humans?

surpass them?

That's the challenge.

Where are we now?
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1930

I 171177

1955
1959

1960

1960-65

1965

196 5-70

1970

1970's
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CHRONOLOGY

"Herbrand Procedure"

(also Skolem Presburger, etc.)

COMPUTERS /[ / [/ [/ /[ ][]/

Logic Theorist NSS Rand (Principia Math.)
Geometry Machine Gelernter

Herbrand Procedure Won't Work. Gilmore

Too Slow.

Improved Hilbert Procedure Davis, Putnam, Prowitz, Russians

Wang's System

RESOLUTION J. A. Robinson
efficient, excitement
Refinements of RESOLUTION
"Natural Deduction Systems" ' Bledsoe, Nevins, C. Hewitt,
Lovelaﬁd, etc.
Both types

Applications



.

Newell~Simon-Shaw (Chap. 2 of (1)

38 of 52 theorems)
Wang

(all of (1); > 350 Theorems)

(1) Principia Mathematica (Whitehead & Russell)

(2) Propositional Logic

Gelernter
A number of theorems in plane geometry

(not requiring constructions)
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Much of the research in ATP during the last fifteen years has been
stimulated by J. A. Robinson's introduction of RESOLUTION in 1965 (see the books
by Chang and Le‘e, Loveland, or Robimson). A succinct easy-to-read, introduction
in RESOLUTION is given in Reference (%),

Another kind of ATP research utilizes the '"Natural Deduction
Method (see reference (¥%)),

Natural Deduction is governed by a set of (production) rules.

They use the implication symbol "', For example,

John is a boy —» John is a male,

or more generally

P -Q

where P and Q are statements which are either true or false.



fvatural Deduction Rules

(for the Ground Case - no variables)

P P>
TR

Psa, 7R AD-SHT

P> Q%R
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When variables are admitted, we have expressions of the form
For allx (x<0-x<1).

and write this
Vx x<0-x<1.
Thus we use the symbol "%W'" as a shorthand for "for all", and similarly use

"3 for "for some'". The following rules for the IMPLY natural deduction prover,

are taken from reference (¥%),



NATURAL SYSTEM

(H = G)
H IS A SET OF HYPOTHESES,

G 1s A GoAL.

To FIND A SUBSTITUTION & FOR WHICH -

(He — Ge)
IS A VALID PROPOSITIONAL FORMULA.

EXAMPLE, | |
P(AY A (PCXY=> Q(x)) =D Q(a) -

’

ANSWER: @ = Alx

o

a




14,

I3,

I5.

17,

115,

IMPLY RULES

A PARTIAL SET FroM [12)

(H=>AA B | “SPLIT

IF (H=> A) RETURNS
AND  (H=3>B0) RETURNS
THEN RETURN  8eX

<

>

(H v Hy =>0) . "CASES”

(e~

IF (Hl-_-:b C). RETURNS
AND  (Hp® =25 () RETURNS
THEN RETURN  6°2

S

H= 0O
| Put C':= REDUCE(C): H':= REDUCE(H)
CatL (H'=»C(C")
(H=p(A=>B)) “PROMOTE"

CALL (Ha A=> D),
(H =>0)

Pur  C’:= DEFINE(D)
Cact (H= (")

~ Sume 3
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H2.

Hb.,

H7.

HI.

(H = 0) = ~ "MATCH"
IF He= Ce, RETURN 8, |

(Aa B =DO © “OR-FORK”
IF (A =>0) reTurns © (noT NIL). RETURN ©.
ELse CauL (B=> ()

Ha (A=>D)=>( . "BACK-CHAIN":
IF (D =2»() RETURNS 8, "
anp  (H =2 ADJRETURNS .,

~ THEN RETURN ©°2

Ha (h=B)=DC B T
~ PuT A’:= CHOOSE (a,B), B':= OTHER(A.B)
CaLL (H(a'/B") =2>C(a"/8")),

SLipE 24
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(@A Pla) => P(x),\@>
- AND-SPLIT N I
1) (Qa PEY = Pivd)

(@=>P)) - o

4/,::, o | L ‘~ Hz.

D (G4 PEY => @)

w=e¢y  we

Gl T  we
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" ExampreUSTNG IMPLY

Tugoren.  (P(A) o V(PO — Q) — Q).

P W (POO ~ Q6= 0 grensde st o
(P(a) => () s |
FAILS
(PG = Q(x)) => Q)
Q0 = ) W
~ ReTurN & = AlX -  ,>  H2
(PRI=> P (alx))
ReTurn TRUE.
RETURNS AlX,

Sme 25



Boyer-Moore (UT-Austin)

RECURSIVE FUNCTION PROVER

e.g. Proving Theorems about LISP functions
EX. ORDERED (SORT L)

For Hard theorems, the user suggests a series of lemmas which it proves

(like proof=-checking) l
Ex. Prime Factorization Theorem

Ex. 'Verified" a simple compiler for algebraic expressions (McCarthy)

Ex., Halting Problem (unsolvability) 1982

Applications: PV, Proof-checking, related to programming

Uses: Induction, Generalization, etc., etc.

30
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ATP is a part of AI, but more than that,

Earliest Provers had AT features
(1) knowledge base

(2) reasoning rules

Later provers tended toward (2) alone.
Why is there still a pmoblem?
Why not use EMYCIN and TEIRESIAS?

Ans.: These (EMYCIN and TEIRESMS) are best for applications needing
(1) much expert knowledge, and

(2) shallow reasoning.

This is fine for many of life's problems, but ATP's needs are more severe:
(1) much expert knowledge,

(2) deeper reasoning.

o Expert knowledge is hard to encode for advanced mathematics., It is
easy to prove all geometry theorem of a certain type.
hard to discover the proof of a new theorem.

. hard to discover a new theorem.

o Ongoing research in ATP is exciting. We will not have time to even mention

much of it here.
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Theorems which do not contain variables to be instantiated (bound)

are called ground theorems.

State of the art remarks

All ground theorems (that arise naturally) are easy to prove

by modern ATP programs., But much needs to be done to handle

theorems with variables,

Assertion: Much of the difficulty in ATP will be eliminated if we have programs
that can
. successfully fetch the appropriate lemmas (and not useless ones)

. properly bind these lemmas' variables.

Assertion: Many of the concepts used successfully by human provers have yet to
be property exploited by ATP programs:
. use of examples
- as counterexamples (some done)
~ as guides to proof discovery (a little has beeh done)
. conjecturing (Lenat's work, little else)
. analogy (very little)
. Agenda Mechanism - to control the search (two Ph.D.'s theses)
Special-purpose subprovers
- equality packages (lots has been done) (see slide)
- inequality packages (lots has been done)
. Domain specific heuristics
Many other ideas that we are considering are not mentioned here. These

have much in common with AI research,
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Man-machine interactive prover and proof checkers are expected to play

an important role in future ATP. Examples of these are

. Program Verification (mentioned earlier)

. Wos and Winker's Prover at Argonne National Laboratory

. The Boyer and Moore prover for recursive function theory
. The proof of the four-color problem in topology

. Our current attempts to prove the Poincare conjecture.

A man-machine prover must allow the user easy access. The user must
not be asked to prove easy things, the machine must be able to detect when it
needs help from the user and to communicate with him on what is needed without
excessive work on the user's part. Such an interface is used in the Don Good

PV program at UT-Austin but needs much improvement.
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If the axioms and supporting theorem ("lemmas') shown in the slide are
to be supplied ahead of time by the user, then the user would have to prove
the theorem before he asks the computer to do so, Ridiculous! Whereas a really
good man-machine prover will have many such lemmas "built-in" and will elicit
others from the user as needed in the proof.
. Several proof checkers have been built but most suffer from the fact
that the user cannot submit his proofs in natural form. Work is underway to

partially remedy that,



WOODLANDS AI LABORATORY
WALL 37
3 Aygust 1987

Mike Ballantyne and Woody Bledsoe are conducting a study on the
feas ibility of estaplishing an AT Laboratory at the wWoodlands,

The wWoodlands is a new city located about 40 miles northwest of
Hous ton on Interstate 45, wnich has heen under planning for twelve
Years, is now partially bullt, and promises to be one of the lovelliest
communities in the world, It ls peing built on a2 olan that provides
for tpne environmental, soclal, and emplovment needs of its citizens:
extensive wooded parks whicn permeate all of the housing areas, dolf
courses (the Houston Upen is plaved vearly on one of the woodlands” golf
couvrses), tennls courts, swimming polls, ice skating, etc,
hous Ing areas (in &all vrice ranges), schools, churches, community
centers, businesses, high tecnnology industry (including energy and
medical), research and development jaboratories, etc, 1t is deslignes
to provide all levels of housing needs and jobs for every adult who
lives there, We feel that this will be one of the cholcest places
to live and work.,

The woodlands AI Laboratory (WAIL) will be part of HARC (Houston
Area Research Center = See attached brochure) which 1ls assoclated with
the University of Houston, Rice University, and Texas A&M, and which
is attempting to bring regearch and development laboratories to Tnhe
Wood lands. The Woodlands Corporation, which is principally ownerd hy
The Mjitchell Enerygy Corporation, has donated a 150 acre site to HARC
and provided several million dollars In starte-up funding for the next
few vears, It I1s envisioned that other Energy and sedical
related industries in tne Houston are would sustain the funding for

the long run, (A 150 acre slte has also been donated to the Texas
Medical Center),

The Woodlands AT Laboratory would initially conctentrate on applied
Al, such as expert systems, industrial robotry, etc, which will bhe
useful to businesses and industries in the 4Woopdlands and Houston areas,
especially those related to energy, medical, and conmputing research,
deve lopment and applications, and later expand to others such as
Natural Language interfaces, proaram verification, vision, problem
solving and search, knowledye represention and acquisition, tneorem
proving, program syntnesis and understanding, etc,

Initial housing and funding for WAIL will come from those
‘provided to HARC, We fee]l that the existing and projected
funding Is very secure, and tnhat wAIlL will be able to survive the
incubation stade and become a strong, well Known, laboratory,.

As part of our feasiblility study we wlll talk with a number of
individuals throughout the country and abhroad, These include prominent
Al researchers from Universities, research laboratories, and industrial
AI groups, and otners in research and development laboratories
throughout industry:

stanford, WMIT, CmU, U, Md, U, Texas, Rutgers, Rochester,U.Penn,,
U, 1llinolis, Yale, etc.

SRI, IsI, SuUMEX, BBN, etc



schlumberaqer, 17, Falrc 1, Hewlett=Packard, Machine Intelligence
Corporation, etc

Texas Hedical Center, D Anderson Hospital, etc
We are seeking advise on the following points:
Possiple Projects for WAIL
Applications oriented
Long range research projects
Existing AT Projects (in otner Laboratories)

Prospects for heading and staffing WAIL

General Advice



