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Some Automatic Proofs in Analvsis 23 December 1982
W, Wy Bledsoce

i Introduction

The work described in this talk is malinly that of our own group, or
that of others that we Know best,

buring the last few vears a limited number of theorems in introductory
Analysis and related areas, have been proved by automatic theorem provers,
These £all in the following subareas:

Set Theory
Elementary Set Theory

Theorems in set theory reduiring Induction
The Limit Theorems of Calculus
Intermediate Analysis
Elementary Topology

We list below a number of these theorems, and describe in a general
way some technicques used in their proofs. All of these have heen proved
by "stand=alone" provers, with no human help,
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LIST OF THEOREMS PROVED

is Set Theory
{1 Elementary Set Theory
el A A

e 2 A< Ap B

H

o3 AUBULD) (AvuB)uC
o4 AN(BNC) s (ANBINC

5 AUBNACL

4

(AUBIN(AYC)
6 ANBYC)

]

(ANBY (AN C)
, 1
7 Sb(ANB) = §Sb(A)Y /N Sb(Y)

etc,

1«2 Set Theory Theorems Requiring Induction
W= Tw
o2 W=Wwn spw

L]

1.3 Higher order set theory theorems
1 4xy = byy = x =y

N
«2 (Cantor’s theorem) N is not denumerable, (N here is the sel

integers),
2. The Limit Theorems of Calculus

2,1 (Limilt of a sum and product)

I£ lim  £(x) = U and 1im g(x) = K , then
%0, ° =
(+) 1im (£+9)(%) 5 L+K
o>
and (e) Iim (£:.9)(X) = LK,
W00

mnmnm—--uww-—-—nﬂﬂﬂ—nﬂn--ﬂwmnnnmumnuumwmnw—nn-qnw-,n-u-umm-uu—-——nm--—n-maumc» T

1 Sb(X) means the family of subsets of X, i.e,, Sb(X) = {Y: Y& X},

2, #e use here the definitions: 0 = empty set, 1 = {0} , 2 = {o0,1} ,
etc,, W =140,1,2,3, ...} . And G F 1is the union of the members

of F, 1,60, O F =\U 2
AE F
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242 The sum of two continuous functions 1s continuous..
2,3 The product of two continuous functions is continuous,
2.4 The composition of two continuous functions is continuocus,.
2,5 Differentiable functions are continuous,.

2,6 A uniformly continuous function is continuous,

Intermediate Analyvsis (0On the Real Numbers),.

3s1 If the functlon £ 1is continuous on the compact set S
then £ is uniformly continuous on §,

3,2 If the function £ is continuous on the ccmpac{fset S
then £{S] 1is compact,

3,3 If a sequence sy converqges to some limit p , then s,
is a Cauchy sequence,

34 If s, 1s a Cauchy segquence, then S, Converges to some
: limit De

3,5 1f a sequence s, converges simufitaneously to a and b,
then a = b,

3,6 1If the function £ 1is continuous at the point a, and

1im s, = a, then 1im f(s5,) = f(ay,
n=g =0 fesp o0

3,7 (BalzanosWelerstrass Theorem), If 8 is an infinite, bounded set,
then there exists an accumulation point p of S,

3,8 Let f and g be two continuous functions, Then the set of points
on which £ and ¢ agree is a closed set,

3:9 If, for the seguences X, and Yy, , we have

lim %, = a and 1im Yo = b,
1 =y S0 nePon

then lim (x + v ) = a+ b, and lim (x.y) = a ‘b,
ne=p =0 " " n=poeo NN

3,10 It x, 1s a sequence and 1lim x, = a/% 0, then
n=p GO
Iim i!xﬂ = 1/a ,
neP o0
311 {(E¥plicit examples).

1 1im n/(n + ) =0,
n=sp 00

W2 If £(x) = 2x%+ 3x + 1, then £°(a) = 4a + 3,
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3012 (Intermediate value Tneorem), If £ is continuous on (a,pl,
a< b, f(a)< 0, and 0 = £(b) , then ¢£(x) = 0 for
some x in ([a,bl.

4, Elementary Topology.

4,1 If a set B contains an open neighborhood of each of its points,
then B is open, :

4,2 1I£ F is a family of open sets covering the regular tXopological
space X, then there_exists a family G of open sets whicCh covers
X and for which GC & F,3

1t should be noted that this list does not represent all the theorems
(in analysis) that can be proved automatically, but rather all that nave peen
proved, A particular research group might spend most of its time develoring new
methods rather tnan trying to extend the number of theorems that have been
proved automatically,

This 1list of theorems need explanation, because a numwber of metnhods
(sometimes special heuristics) were used in their procofs. And a casual
reader cannot properly understand what has been done until he nas a
feeling for tnese methods and their applicability to other theorems,

For example, the method of REDUCTIONS (Rewrite rules or *demodulators®l
was used to "builde=in" elementary set theory into the prover {1}, thereby
making it easy to prove automatically the theorems of 1.1, and making it
possible to prove those of 1.2 by induction, This and algebraic simplificatior
and other methods will be discussed in later sections,

Blso a special 1limit Heuristic [2) w#as used to prove the limit
theorems of calculus, 2. Later some of these were proved without this
special heuristic, but the limit heuristic made all such proofs easier,
A method of variable restriction was also used for these other tneorems,

B technigue based on Nonstandard Analysis (3] was used to prove
the intermediate analysis theorems 3.1=3,11, and the limit tneorems 2.1,
This interesting method qreatly simplifies proofs out nas limjted
applicability. :

A method for automatically instantiating set varliables (4],
along with technigues for handling general inequalities (5], were
used to prove 3,12, 4.1=4,2, and a number of others,

Much of real analysis uses inequalities in a fundamental way, Special
provers have peen developed to handle ground inegualities theorems (those
without variables) and general ineguality tneorems (those with variaoles
to be instantiated), Also special methods nave been developed for
nandling equality,

3, G denoted the family of the closures Of members of G, i.e.,
G = {A;y AEG} , and (HE< F) means that H 1{s a refinement of F,
i.,e,, each member of H is a subset of some member of F,
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5 prover for a particular theory {(such &% the flrst order logle) is
said to be complete for that theory 1f {t Ccan prove all theorems witnin the
theory. It is a decision procedure if it camn also detrect nonstheaorems,

Completeness {5 important in ATP bpecause & prover is not worth anuch ¢
it exhibits very little generalitv, On the other hand, exoverierce so far
r&as sShown that complete procedures nhave tended to be weak, In the sense that
they take too long te prove easy theorems {(or cannot prove them at all).

So various attemﬁ% have been made to obtain speed without sacrificing (muchn)
completeness,

There are two basic types of automatic provers in use, Resolution based
provers (6,7,8) and Natural Deduction type provers {9,2,8 Ch 6)l. These are
described briefly below,

Resolution based provers tend to be complete whereas Natural Deduction
provers tend not to be, especlally when various auxiilary procedures are
added (for speed)},

For both Resolution and Naturai Deduction a theorem is first converted

¢ guantifier=free form by a Skolem@;ation process and then prov9dg {5ee
Section 2.2 belowl,

The theorems listed above were all proved by Natural deduction or

Regsolution (or both), using the various procedures and heuristics listed
in the following table,
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Thepremns Type of Prover REDUCTIONS special deuristics Complete?
—— and and Procedures
Simplifications?
1, Set Theory
1.1 Elem set Th, Nat Ded, yes none . no
Resolutign
1,2 Set Th, Thms
using induction  Nat Ded, Res yes Tadvedion no
1,2 Higher order Resolution no Higher Order no
get th thms Resolution

2. Limit Thms
2:122.6 Nat Ded yes Limit Heuristic,
varlable restrictions no

3, Intermediate Analysis
3o8=3.11, 2.1=2,6 Nat Ded yes Non=standard Anal, no
var restrictions

» ¥4
3;12(?81'1:)4 Nat Ded, var elimination and ves -
2:1.1(#%) Resoclution based yes Shielding term

removal

4, Elementary Topology

§.4=4,2 Nat Ded yes Set Varliable no
instantiation

ap-q:--w-n-*---—----—-—----Q—--ﬂ-_--—‘---ﬂ--—---‘-‘---n——--—-wnu‘-n-———Q-----’—-

4, This is an inequality theorem derived from the the Intermediate Value
theorem, See [5] and Section 5.2 helow,

5, This prover [5] is complete for the first order logic, but the actual
implementation which proved this theorem used manditory variable elemination
which i{s not known to be complete,

The limit heuristic used in the proofs of 2.1=2,.6 and the non=standard
analysis technigue used in the proofs of 3.1=3,11, are very powerful agents
¢or theorems in the domain for which they apply, but unfortunately do not
seem to have much applicapility in other areas,

on the other hand the Reduction and simplification routines have general
applicability throughout all mathematics, and seem to be an essential part of
any good prover, especially in analysis. And the Variable restriction and
variable elimination tecnnigues seem to have general applicapility wnherever
real {nequalities (with variables) are encountered, It is not clear at this
time what generality the set variable methods, used in 4.1=4,2, and 3.12,
#1ll have,
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2, REDUCTIONS, Skolemization, and Induction

Zqd s3ilding=in Elementaryv Set Theorv,

& number of researchers have eyxevcised thelr orovers on thecrems
l1ike those 0f 1.1=1.6 from elementary sel tneory, with varving
degrees of success, One difficulty with such experiments has been
that the (human) user nas had to alve (o tne prover, as additional hyvpotheses,
a numbey of axloms and definitions €from wnhlen these simple Theorem are
derived, This does not appear to be a difficulty until one realizes
that when a prover is given Coo _many hypotheses the proof time
1% drastically increased {becau§§§ there a3rfe many more ways for Variables
Lo natchil. Alsoc wnen the prover 15 #orking on harder theorems, which use
¢hese elenmentary theorems as lemmas, one 1S obliged to add these theorems
themselves as additional nvpotheses or forever carry along the needed
axioms and definitions, Not surprisingly, such procedures cannot prove
difficult theorenms,

A& similar situstion applies to the ordered €ield axioms, for tne
real numbers,

In both cases we declided to "build=in® these theoriez in such a
#a&Yy tThat such elementary theorems, when encountered in the proof of
other theorems, are pnroved automatically without the need for any
additional axioms and definlitions,

The heart of the bullt=in porocedure used by our group, is a set
of REDUCTIONS or rewrite rules, whereoy certain terms are aiways
revritten as other eqguivalent terms,

For example, one of our reductions is
X €& (ANnB) s X & A A X & B

Thus whenever an expression of the form x & (AN B) apprears within
any formula being processed by the prover, 1t is immediately replaced
by (X&Ah A x&8), This a one=way thing, (X€A A KX&B) is never
replaced by x& (ANB),

The Wos et, al. group at Argonne Natiomal Laboratory, also uses
such rewrite rules (they call them "demgdulators®) in their prover,
which has achieved a great deal of success.,

The prover in {1] employed & RFDUCTION table of about thirty
entries to prove most theorems of elementary set theory.
Table 1 lists some of tnese, and Table 2 1ists some the definitions
used in those proofs,
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Some REDUCTIONS

INPUT OUTPUT
fe x &€ (AN B) X&C A A x€8
2e x & (AUB) xXEA © x€B
3e A&Sb B ACS B "
4, A S (BN C) AC B A AEC
5¢ t &€ {x: P(x) } pu:)(b %
ves
10, < a TRUE
11, A& A TRUE
12, AN A A
13, P A TRUE P
sevs
Table 2

Some DEFINITIONS

A = B (set equality) AL B A BE A

AS B Vitte a =« té€&B)

nﬂﬁnﬂnq-u--—---—---q-—-—--——---—-—--‘----—--QQ------—————n--wu—-—--n---n-—u-----

6, Rule 3 was actually used with the output (AS B8 A AE U), where U is
the universal set, Similarly for Rule 5,
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Let us conslider two examples to see the effectiveness of these reductions,

gx1, Va Vs (r €ay m)

-

(13 A& AU B The Goal
L, &R => & (Ay B) Defn of = !
L, €A e> t €A Vv t,E€B REDUCTION Rule 2
TRUE ©

o TR R R0 R o VIR g TR T S T O G OR 696 S 0 e R R G D R T e SR G2 OO0 2 OO0 o P R P map O o v O U v OB 5 gun 2R 0 &5 U S T TN W B BN s G G o W B 8 g T o W OB 555 om eud 5 W 95D 9% G R

7o Here it instantiates the definition of & Tnis orover [i],
) {see Section 3,2 below), deoes not automatically instantiate gvery
- defingion where possible, but does so only under limited control,
In this case, when it had nothing more that it could do, {t instantiated

{only) the main connective of the conclusion,
8, Thils prover, as are most, is able to detect that such expressions as
(e => Pval), (PAQ => PaA@Q), etc, are true,
Ex2, Va Vs (soan8) = sbea)n sbes) )
(1) Sb{A N B) = Sb{A) M 8b(B) The Goal

(Sb(A N B) & Sb(A) N Sb(BI] A [Sb(A) A 8b(B) € Sb(AM B)]
Detn of = 7

CUED) Sb(A N B) & Sb(A) M Sb(B) Subgoal 1
t & Sb(AMB) => t & (Spb(A) M Sb(B)] Defn of ¢
t&anNs => £t & 5b(A) A t & Sb(®) REDUCTION Rules 3,1
t & A A tl 8 «> t S A A t & B REDUCTION Rules 4,3
TRUE
(1 2 Sb(A) N\ Sb(BY & Sb(a N B) Subgoal 2

Proved similarlv,

Pastre (23] has generalized the notion of Reductions in a prover that
has proved most of theorems of {,1 and 1,2, and others,
/ 2A
Notice that the REDUCTIUON table is a convient place to store unit facts
such as (@Z & A = TRUE), (ANA =a), (P A TRUE = P), ete, Such
rules can be powerful simplifiers when used within a large proof,

Actually the use of reductions rules is just a way of "sybstituting
equals for equals”, because each entry in the reduction table is an equality
or an equivalence, The real savings in efticiency comes from our insistence
that it substitutes only one way, (E.g,, 1t always replaces XE(ANB) by
(€ A A x€B) but never the other wav.) Tnis greatly reduces the combinatorics
of the search, whenever such a one=way subsStitution can be done, “hen can it
he done? 4hen is it possivble to replace all equality axloms of a given tneory
bY &n eqguivalenl set s%/;edﬁctiens witnout loosing completeness? ITnis question

e
P
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is addressed by the fleld of Complete Sets of Reductions (14~16]., For example,
ordinary group theory lends itself to such & treatment ([14], See also
Lankford®s paper in this volume,

Reduce tables, such as the one above, have peen generalized to include
conditional reductions, whereby a rule is invoked only if some condition is
gatisftied, For example, the rule

IF P G H ~Pp H
would rewrite the formula ( IF (0£x) 2x+i 5 ) as 3,
i€ it has a4s a hypothesis that x<=1.

2.2 S8Skolemization,

As mentioned earlier, most automatic provers require that a formula be
quantifier=free when it is presented for proof, For example, tne theorenm

Vx [ p(x) => Q(x) 1 A P(a) -> a(a)
is converted to the form
[ P(x) => Q(x) 1 A P(a) -> Q( a),

where a 1s a constant and x is a variaole that can be Instantjated during
the proof process, (In this examnle x is oboundi to the the value aj,

‘This process, which is called skolemizatinn, can pe automated for any formula
in first order logic ({7,chap 4; 8,5ect 1.5 ) 1. The more complicated
example,

¢ Vx 3y pexeyd) => Q)
is skKolemized to
( P(x,9(x)) => Q ),
The “g® is a new function symbol, called a skolem function symbol, The

hypothesis asserts that for each x there is a (correspondinj) y for which
P(x,¥Y) . Since the y depends on x, we write it as g(x),

When instantiating a definition the computer must take account of the
position in the theorem of the formula being replaced, 1in order to insert
the proper skolemization, Thus if (A < B8) 1is replaced by
Vx (x€ R => Xx&B8) in the theorem

{ H - A € B)
(where H Is some hypothesis), we get
( H - (xoé-A - x°€ 8) ),
where X, is a new skolem constant, but {n
(AL B =3 C 3,

e geg

{ (x€EA => xX€B8) > c ),
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where X 1s a varlable which can pe instantiated during the proof.

2.3 Using Inductioen,

A number of researchers have used induction in automatic proots fig8,1,19,
10l. The main difficulties in using induction automatically, is in determining

€1} HWhen to use induction,

(2 Wnhat variable to induct upon, and

{3) vwhat to use for the induction hypothesis,

For example, in the proof of 1,2,1, W= T« , when the subgoal
(%) X & =3 (& X => t&€ad )
is encountered, the prover decides to try induction on x with the

formula (¥) itself as the induction nypothesis, Thus It was required to
prove the two subgoals

(€0 => tEwD )

and

XEw @A Vs (sex => s€ul )  em==> (L€ SCST X => L€ ),

which it could do,

In this example it was able to use the subgoal (%) itself as the
induction hypothesis, But of course, this sometimes will not WOork, we
often must use a genevalized induction hyoothesis, I»n discover such a
needed generalized induction nypotnesis remnains an essentially unsolved
problem for automatic provers, Except for the work of 3oyer and “oore [10],
no automatic prover uses any induction hypothesis other than the subgoal
itsel¢,

2,4 Simplification of algebralc expressions,

As mentioned earlier, automatic provers have difficulty coping withn
the ordered field axionms for the real numbers:

X 49V =B ¥ & % Xey = Voy

#

% ¢ (¥ ¢ Z) {2 + vy ¢ 2z £: (V- Z3

(x.vy).- 2

Rely # 23 = %e¥ ¢ H.7%

when these are qglven as additional hvootneses of the theorenm peing proved,
because there are so many way§ in which the variaoles x,y,z 1in the formulas
can match the terms of the theorem being proved, (#e believe tnis is the

reason that most efforts in Automated Theorem Proving have been im areas
other than real analysis)
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We nhave been able to, avoid adding such axions by again using REDUCTIONS,

,to simplify each algebragc expression to a canonical form., Such simplification
is widely used in computer mathematics, especially in such systems as

MACYHA, which performs automatic differentiation, integration, equation
solving, limit taxing, etc, See [20)., Such automatic simplification

nas found increased use in ATP since apbout 1970,

3, Types of Provers
3,1 Resolution.

POIER At e ]

As mentioned earlier there are two pasic types of automatic provers in
use, Resolution and Natural peduction., Resolution [5,7,8] is a refutation
method whereby a quantifier=free theorem is negated and converted to
conjunctive normal form (CNF) and then shown to be unsatisfiable (inconsistent)
vy performing a series of simple inference steps (resolutions), For example,

the theoren
Vx ¢ Pex) => 0(x) ) A~ P(a)  =>  Q(a)
g¢irst has its guantifier removed
¢ P(X) => Q(x) ) A P(a) > Qcal,
(x is now a variable which can be instantiated), and then negated
¢ P(x) => Q(x) ) A P(a) a ~ 2(a),

and placed in CNF,

i 2 3
(~VP(X) v Q(X) ) A P(a) A Ca)

fhe disjuncs 1,2,3, are called clauses
1. ~P(x) v Q(x)
| 2e P(a)
3. ~G(a)
Clauyse { is resolved with Clause 2 (with substitution a/x) to obtain
4, Q(a),
which is tnhen resolved with Clause 3 to obtain
s, I,

a contradiction, ©See the references quoted above for details, and also
rReference [11) for a brief elementary introduction to Resolution and ATP,
A11 theorems in first order logic can pbe proved in this way by Resolution,

3,2 Natural Deduction,

Natural Deduction is a procedure whereby the theorem peing proved is
manipulated by a set of production rules, in which a qoal is converted to
sne or more subgoals [9,2, 8 Chap 6], The initial g3onal is first converted
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to quantifier-free form by skolemizatlion, but pot negated,

The prover in [9) is given a geal G and a hypothesis H, and is required
to find and return a (most general) substitution 8 for which (HS => G&)
is & tauytology. Some o©f its rules are:

14, (H—> A A B) "SPLIT™
If (H=>4) returns &
and (H==> BG ) returns A
then return oA .
( DoAd is the composition of the substitutions £ and ) . See [7,p.761)

H2, (H A P => () "MATCH®
it P& =z C& , return &

B7¢ H A (A =>» D) ==» ( FRACKCHAININGY
I£ (D=>>C) returns £
and (H=» A8 ) returns A ,
then return HoAd .

To prove the example

\{X { P{xJ => Q(x}) } A Pla) =3 a(a}

L4

" pacfenaining (Rule H7) is applied to the originsl goal

GOALs  ( P(x}) => @(x) ) A Pla) ==» Q(a)

to obtain Subgoals 1 and 2.

SUBGOAL 1: ( Q(x) =% G(a) )
returns & = a/x, by matching (Rule H2),

SUBGOAL 2: ( P(X) => Q(x) ) a P(3) ==> P(x) (a/x)
returns TRUE (because P(x) (a/x) = P(a) ),

S0 a/x 1s returned for tne original GOAL, to complete the proof.

The procedure in [9] 1s not complete put seems to be adeguate to
prove a wide variety of theorems. A similar but extended system by
LovelandAStickle [8] is complete (can prove all tneorems of first
order legic). See (9] for a list of other papers on Natural Deduction
type provers, The theorems listed {n Section 1 were all proved Dy
Natural Deduction or Resolution type provers, Also some used various
neuristics and procedures as indicated in Section i,

3.3 Provers for Higher Order Logic,

Andrews?® prover wnich is described elsewhere in tnhnis volume has
successfully proved Cantor’s Theorem 2,3,2, and a number 0f otnhers.
See also [21=25],
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4, Limit Heuristic

The Natural Deduction prover (21, used to prove the limit theorems of
calculus 2,1=2.6, employed 2a 1imit nheuristic and a variable restrijction
mechanism, as well as reduction and simplification routines,

LIMIT HFEURISTIC: when proving a goal of the form
[B] < E

in the presence of a nypothesis of tnhe form
lal < e°

(and other hypotheses H), first try to find a substitution G, for which
BS can be expanded as & non=trivial 1linear combination of AT , 1.€6s

[ B = kK A 4+ L ]G'

where O 1is a most general substitution, and, if this is possible, then
try to prove the following three subgoals:

sG1: |kl < M ) for some M, 0 < M <O2,
sg2:  |al < E° => |al < E/(2-¥) Jgoq

s63:  |ul < E/2 Igom 00y,

where T , Oy G&,, are returped from subgoals $G1, S5G2, and SG3,
respectively,

‘ So, for example, in proving that tnhe limit of a product of two functions
{s the product of their 1imits (if the two limits exist), the prover encounters
the goal ‘

‘f(x).q(x) - Ll-HL < £

in the presence of the hypothesis

/

(and other hypotheses, H) where E, x, and x, are variables, Using the 1imit

neuristic, it expresses ( f(x).g(x) = Ly-Ly ) 3s 3 linear combination of
{ f(x‘) ] L'), as follows:

lf(x,) -u| < E

£(x)g(x) = L,'bg = ge(x) e [ £(x) = L,1 + g(x)-L; = L)Ly,
VS [RSPA — - I \ e et s st
B K A L

£
/ with supstition U = (x/%,), and then proceeds to prove the subgoals

Shis \atxal <
sb2;  \£(x) = L| < E = leexr = o, | < esc2em
sb3:  |atx» Ly - L, |l < E/2,

/ where %, M, and E, are variables. (See section 5, in regard -60 proving these
inequalities),
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5 zﬁequéiity Provers
nne of the most uraent needs for automatic proofs in analvsls i{s an
efficient tecnnique for handling general inegualities, Ground inegualities
are velatively easy, but those with variables to instantliate are not,

5,1 VYariable Restiric NS

Dne such fechnigue is due to Slagle and Norton [12]s Another is the
yariaple restrictions of BRledsoe {131, dWhen faced with & subogoal 0f thne
form (3 € x < 3} this prover will not instantiate x witnh a particular
value such as 2.5, but instead will glive 2 the "restriction «i 3>%,
fupnicn simply means that x is between 1 and 3) and store this fact in
the data base, leaving % as a variapnle to pe instantlated by later subgoals,
0f course any value %, of x obtained subsejuently nust satisfy tne restrictior

fi <X°< 33,

For example in proving the theorem,

~

P(2,5) => A% (1< x<3 A P(X)) v
¢he prover first encounters the subgoal
{1 P{2.5) => {1 € x € 3)

which 1t satisfies by giving ¥ the restriction <1 3>, but leaving x as a
variable; and then encounters the subgoal

(2) (2,53 => PO

which it satisfies by giving x the value 2.5, It then finishes the proof
by verifying that 1 < 2,5 < 3, #hich is inmediate,

This concept was used in [2) in proving the limit=of=a=product theoren,
nentioned in Section 4. 1In proving the fnree subgoals Sbil, Sp2, and
Sb3,(see above) the prover encounters the fhree supgoals

(i3 (0 < D3,

() ¢ [x=af <D => |x=a] <0,

(3) (|x=aj<o = |xe=al <Dy ),

H

(as well as other supbgoals) where U is a variable and D, and %@ are constants

The brover satisfies Subgoal (1) by giving D the restriction <0 =0 >,
and then updates tnis restriction to <0 D,> to satisfy Subgoal (2). (It
contains in its data base the facts that D, and D, have restrictions
€0 GO »,) Finally, it satisfles Subgoal {3} by further updating the D
restriction to <0, min{ﬁi,q@ -

Several other supgoals in this proof are also satisfied by varilable
restrictions, This technique along with tne algebraic simwplification that
accompanies it, nelps avoid the explicit use of the inequalities axioms
and the real field axioms, wnich ténd to clutter and degrade an autonatic
DYOVET s
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pther methods for handling inequalities with varliables are given in
section 5.2. Methods similar to these and others iike Slagle and Norton®s
{12}, have been very useful in proofs that arise in program veritication (26,3

5,2 Variable Elimination and Shielding Tern Removal,

Another approach to general inegualities (on the reals with variables to
we instantiated), is found in ([Sl. This is a resolution based porover which
uses

Inequality Chaining
Variable Elimination
Shielding Term Removal

These will be descrived shortly, The resulting prover is complete for the
girst order logic (271,

First a tneorem is negated and converted to clausal form (see Sect, 3,13
1f the resulting clauses are ground, {i.e., have no variables to be instane
tiated, the proof is usually easy, T[here are a number ot fast decision
procedures for ground inequalities (28,291,

We will first describe variable elinination (VE) which plays a central
role {n the prover, Consider the clause .

(L X<a Vv b<x, (x is a variable)
which was derived by negation from the formula,
(2) 9x (a < x = b)
to be proved, Since (2) is equivalent (on the real numbers) to
(2°%) a<o
{t follows that (1) is equivalent to
(1%) b < a .,
So we canT%lace (1) by (1), thereby eliminating the variable x.
Similarly, the clauses,
x££ a v b < a,
X < a,
¥ <4< a v X%=b v ¢ <X
can be replaced by (b <« a), 0 , and (¢c £a v ¢ < b), respectively,
Thus in proving the simple theorem
asb == Tx (a<x20b),

it §{s f£irst converted to clausal form,
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2, %X < a v b <X,
and then VE is used te obtain

3, b < a 2, VE X
and then Clauses 1 and 3 are resolved és obtain

4, O i, 3 v
to complets the proof,

A similar proof does not work for the three clauses &

1. gy} € b v 1 £y

2. v/< gty 1€ vy -
3. b £ 1
ory
because the variable vy c&nnot be eliminated from either 1 or 2, =

But If we first "chain® 1 and 2 on gfly) we get,

4, V¥ < b 12 vy i:2, remévina gl{y)

and then VE can pe applied to 4 getting,
5§, 1< b , ' 4, YE v
6o LI 3,5

The term g{y) in the above iz called a "shielding term®, because
it shields tne variable vy; once all § 1ding terms (0f a particular
variable) have peen removed that variable becomes eliglble for elimination,

Inequality chaining [12] is simply the concept of applying the
transitivity axlionms

XELY A VEZ =" X £ 2
X<y y € 2 e X € 2

egtc

to two 1iterals, as was done Iin the above examples to the literals,

gly) £p and Yy < g(y) to get y < b, Also unification is permitted,
eeUsp, Yy € gyl and g(¢) &« b result in ¢ < b,

It is also possible to chain on the variaple y’in Clause 2, but
note that it can match In three wWavs. in fact tnere are 12 different chaliln
resolvents from Clauses 1,2,3, if we allow chaining on variables, and only
chree if we do not, #e avold this proliferation of clauses by forbidding

ehaining on variables, +#ithout chaining on variables the prover {s still
complete,

gandom chalining on terms tends Lo greatly enlarge the searcnh space,
even without ehaining orn variables, sSo we nave attenpted to devise an
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overall strategy which will gudide tne searcn, Three facts motivate
this strategy

. Ground proofs are easy

., VE removes variables from clauses (makes them "more ground®)

, Shielding term removal tends to make variables eligible for VE
So our strategy 1s as follows:

, If a ground proof 1is possible, do it

. If not try to eliminate a variable by VE

If no variable is eligible for VE then try to remove a
shielding term by chaininag (but don’t chain on variables)

This can be depicted this way

GROUND PROOFS

0

VARIARLE ELIMINATION
SHIELDIB;G TERM REMOVAL

Algebrajic simplification and reductions are also used in this prover,

Such a system has been shown to bhe complete for first order 1logic
[27]1. (Recall that any first order literal P(X,,X;,re00r%,) can ove
converted to an equivalent ineauality literal a(X,,XzseeersX,) < 0,)
gur implementation described in (5] uses mand@gory VE, whereoy VE must
pe applied to any clause with a variable wnich is eligiole for VE, and
the parent clause discarded (a nighly desirable act since we seek to
remove all variables), The completeness proof aiven in (27] does not
allow manditory VE: it is still an open question whether the prover
is complete with mandftory VE.

Wwe now give a few other examples theorems, followed by the Corres=
ponding clauses, and proofs (or parts of proofs),

e ( VE(O<CE =>AagB+E ) ===> AZH)
Clauses

1, £ €0 v A& B +E

2, B < A
3, A & B 1, VE &
s, O | 2,3

IN

@ \/it(0<% => A< B(Z) +& ) A B(%)f—.C]-—-—» A
( ¢ is a variable, B( £) is a function of E e

c g
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1. =

0
2, Blg) =¢C

v ALB(E) +&

3. € < A

Z:"%Wgwgmg REC + & 1,2

5, A £ C 4, VE &
6, O 3,5

@ The sum of two continuous functions is continuous,
Clauses
1o £(xg) + gixc) + 8, < f{'xeis v alx,) v
£0Xo) + (X)) + £, < flx) + alxe) S
2, 0 < &,
300< S v £ £o0

L

IN
o

S,E(x&}ﬁiiy}%g v §g¢-xe<y v ga*%y(xo v £%0

¢ @
10, x¢ £ x,+ § v S0

/ where § , £, £7, and y are varlables,

Xxg is @ sfolem function of § , gﬁ
is a skolem function of ¢ , etce ;

11, 9lxg) + & < alxe) + & v £(x,) + 3(x) + & < £(Xg) + 9lxg)
S£0 v S+ x, < X,V & + X, <X v £E£0 1,5, %x:./v,
e K & 5 e removing sf(xg)

LR

18, £,¢< e +8 v geD v 5,<8 v £20 v S5r<S v £'20
19, s, <e+e v S %0 v S0 0 v £50 v '« 0 18, VE

e 8 @

24, [

@ 3.12° (From tnhe intermediate value theorem = See Section 7).
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[
Cilauses (we will omit the v symbol between lgterals of clauses;

i, x < a b € X
2. W ]

3. ] "

4. ® 1

5 b < X 0 € £(x)
6, < Z. « b

1 Y 4
Te " f(zﬂ)ﬁ.
[ ]

8, y < zﬁ
9, a < b

10, £(ay<£ o

11. 0 = £(b)

12, 0 < £(x) f{x)

f(x) £ 0

0 £ £(x)

x<£ 1

aven

0

<0

t, < x
§ < tp X <8 0 < £(s)
tx £ s s ¢ % £(s) ¢ O

where x, s, and y are variables, and tx, ZD are functions of x and y

respectively,

The prover described in [5] was unable to prove this theorenm,
are too many ways to match even with our strategy,

There
But a later version by

Hines (not yet published) using multi=step planning, has been able to prove

this and others,

6, Proofs using Non=standard Analysis

it {s well known that a number of proofs of theorems in real analysis ar

made easier by the use of non=standard analysis [173.

This is also true for

automatic proofs; the theorems 3.,1=3,11, 2.1=2,6, were proved by the prover
described in [3] py first convertina them to "nonestandard form" and then
£inishing the proofs using various properties of the non=standard concepts,
Some Concepts, Properties, and Definitions
in None=standard Analysis
X Ny means that x and y belong to the same monad (17)
(L.e,, "X and y are infinitely close together")
~ " {s an equivalence relation (in particular, it 1is transitive)
st(x) means the standard part of x

st(x) Yy X
Standard X%

Standard st{x)

means that x is an ordinary real number
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Y

X My w> stix) o stly)

S is compact iff Yx (xe 5 => st(x) & 5 )
£ is continuous at v {ff \/y {Standard p , ¢ o4 ¥ = > $(r) ~ £(v3 )

[ ~

£ {s uniformly continuous on S if¢

Vies YVyes xag vy = £00 & £y) )

The theorem,

1¢ £ is continuous on the compact set S, then
£ ig uniformly continuous on $,

is proved by first converted it to non=standard form,

(x & 5 = st{x}Y & 8 3 Compact
(r& 8 o VY& 5 A Standard 1 4 T 3 ¢ = ® £{r) o4 £(y} )

Continuity
x,€ 5§ ., LES A X, NV,

sy £(x,) & £(y, )

and then establishing the £ollowing factis:

X, € 8, Y, & 5S¢ X, 00 Yy Given (Hypothesls 3)
st(x,) & S, sty )& 5, Hypothesis 1
Xo 08 stixy), VYo ¥ Stivp) Property of -
Standard st(x,), Standard st(y,) Property of 7
stix,) o stiy,) Property of 2 5, since X, ¥,
£(x,) o £(st(x,)) Hyp 2, with st(x )/r, x /v
~ E(stly,)) ' Hyp 2, w#ith stixp)/r, stly, J)/y
~ £(y, ) Hyp 2, with st(y, /1, y, /Y
£(x,) 2y £ly,) - Transitivity of o

The prover descriped 1iIn [3] uses a typing nechanism (whereby entities
are typed as "real", "infinitesimal®, etc), and a data base of relevant

facts, reductions, simplification, etc, to facilitate its proof, and
others like it.

as was mentioned earlier, the prover nas great sucCcess on thosSe theorems
¢or which 1t applies but is seve@?y limited in its applicabilitys
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\// 7. Set Variable Instgitiation
Theorems in hianher order logic are in general harder to prove than
¢irst order theorems; higher order logic is incomplete and (proper)
nigher order instantiations are more difficult to find, When the higher
order variables involved are all universally quantified, then the theorem
is essentially first order, but when one Oor aore higher order varliavles are

existentially quantified, the proof is often much harder. Examples are:
the set variable A 1in

Ia< rR ¢ A is dense in R , (R ~s A) 1s dense in R )3
the function variapole £ 1in
ﬂf \V’xe R ( Continuous f x , ~ differentiable £ x )3
the family variable G in
1f F is a family of open sets covering a regular topological
space X, then there exists a family G of open sets #hich covers
X and for which the family of closures of members of G is a
refinement of F;
and the set variable A in
3,12 (Intermediate Value Theorem)
VA(A#¢A bounded A => 1 (1 = sup A ))
A a<b oA f is continuous on fa,b] A £f(a) = 0 = £(b)
— Jx tag xg b A £(X) =0)

Andrews® prover, described elsewhere in this volume , is ideally
suited for such theorems, See also (2i=25), These provers, though
powWwerful in concent, have yet to be developed to the point #here they can
prove even moderately nare. theorems in nigher order logic., (Though there
are a number of interesting exceptions). Therefore we have looked to
special ad hoc methods to nandle a subset of higner order logqic, those
theorems which require tne instantiation of a set variable,

So given & theorem of the form

Fa p(ay
we desire to give a "value” to A of the forn
A = {x: Q(x) },
where Q(x) is described in terms of the symools of P(A), The central
concept in this work is to determine this value for A (i.e., the
description of 0) in a series of steps, by keying on subformulas of

the form

1) ‘ ( x €A ==> P(x) )
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(2) t & A '

and others, within the theorem, E£ach of tnese trigoers the bulilding of
a partial description of 4 (e.,q., {x3: P(x) } for (1)), and these partial
deseriptions are combined to make up the cowplete description,

The basic notrtion for this {s due to Darlinuton (30) andi Bledsoe [4],
and is also closely related to some earlier work of 8enmann [31] on a
decision procedure for monatic logic. ISs¢ d«,‘g E}(o’g‘[j

fnce a description, {x: G(x) } has peen obtained, the symool "A"
in the theorem is replaced by {x: Q(x) }, and the resulting first order

theorem is proved, Examples 3,12, 4.1=4.,2, and others were proved using
these methods by the prover descrivped in (4],

When this prover was applied to the intermediate value theorem 3,12
{see above), the value

A= {x: X< b A flx) =0}

was obtalned, which, when substituted for A in the theorem, resulted in
the new (first order) thecorem

3,42° ( LUR o Li A L2, 8 = b £(a) £ 0= £(b) s 3
S (a=sx=sb Ao £(X)£ 0= £(x) )

where LUB, Li, and LZ are as £ollows
LUBs ([ Ar (r £ Db a £(r)=20) A 3u\?ji (t £ ba £(8)XE 0 => t £ u))
a3 A1 [ W% (X< b A £(X) 2 0 e=> x= 1)
AVy (Vz (Z=Z b A £(2)5 0 ==> 2 £ y) w=ed 1= y)}]:
Lie Vx (agx€b s 0 <fix) ==> Tt (t <cxaVs (£ <s2x=>0< £(s))):
L2% Vx( # £(x) € 0 ==> §t§ﬁ<ta\%sixss<ta> £{s) < 03)J.

(In this proof we nave used the continuity lemmas L1 and L2 instead of the
£ull gdefinition of continuity of £},

while 3.,12° is of first order, it too is a difficult theorem for automat:
provers (and falrly hard for humans).

puring the f£irst pass when the value {x3 x < b A £(x) =0 } was ovotains
for A, the prover also obtained the binding 1/x, Of course the proof of 3,1!
becomes much easier when this value, 1, 1ls substituted for x, In fact the
general=inequalityv prover (5] described in Sestion 5 can easily prove 3,12°
when x is replaced by 1 and cannot when x is left as a variablie. (A more

recent version by Hines (unpublished) has proved 3,127),

1t is {nteresting to note that the original theorem, 3,12, though ot
nigher order, is nevertheless, easier tp prove than its tirst order derivate,
3,127, provided that both the instantigion for A and and that for X are
used in the second pass. This is consistent «#ith human behavior; most
mathematicians tind 3.12 easier to prove directly than 3.12°%,
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8, Remarks

Much remains to be done if we are to have automatic provers which
even begin to compete with their human counterparts, We feel that
such power will not become availlable until we begin to incorporate
yet Other concepts, such as

Analogy

The use of examples (as counterexamples, and as alds in
discovering the proof) ([32]

Use of speclal cases
Conjecturing (see Lenat’s paper in this volunme)

and much better overall planning (agenda mechanisms, etc.), See [9],
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