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POINCARE CONJECTURE: TIf M3 is a connected compact, 3-manifold without

boundary, and ﬂl(MBB) =1 (d.e., M3 is simply connected), thep M3 is
homeomaophic to 83.

This conjecture was originally given for k-manifolds, but all cases
have been proved but k = 3. So we will consider only the 3-manifold case.

We will try to get ideas about proving (or disproving) the conjecture
by looking at a number of examples. The natural way to proceed is to construct
a number of examples of compact, simply connected, connected, 3-manifolds,
without boundary, and

(1) Verify that each is indeed homeomorphic to'S3, or

Verify that one is not (and thereby disprove the conjecture),

(2) Try to determine a pattern in these examples that will suggest

a general proof,

(3) Try to generate conjectures, which if true, can act a lemmas to

help in a general proof.

One problem with the above plan is that it is very difficult to construct
examples of non-trivial, compact, simply connected, connected, 3-manifolds, with-
out boundary. So we have trled to transform the problem into one in which
such constructions are easier, and where computers can be employed to quickly
generate many such examples,

FACT: Every compact, simply connected, connected, 3-manifold without boundary,
MB, can be represented as a handlebody H of some genus n (number of handles),

n
together with a set {Ji}i=l of distinct simple closed curves on the boundary,

=4

Bd H, of H, for which Bd H - U J} is connected. This representation cor-
i=1 -

responds to writing M3 = H LJ,Ul P._U B3 , where each Pi is a pillbox glued to

’ ' n
H along an annular nelghborhood of Ji and B is a 3-cell glued to H U 'Ul Pi‘w
l:

n
along the 2-sphere boundary of H L}_Ul Pi .
l“_"



If n = 1, then H is a torus.

If n = 2, the H is a bonelike object, with holes in the ends.

FACT: Every compact, connected, 3-manifold, without boundary, M3, can be

triangulated, by images of tetrahedrons. (Since M3 is a 3-manifold it is

locally like three space, and since it is compact, it can be covered by a
finite number of 3-space image ''patches'". Furthermore, we can assume that
M? is covered by a finite number of compact patches whose interiors cover M3.
Each of these compact patches is triangulated; the overlapping parts of
the "tetrahedrons" (continuous images of tetrahedrons) are then adjusted (see
) so that the result is a trangulatipon of all of M3 by the tetrahedrons,
The one-dimensional skeleton of this triangulation (i.e., the edges of
the tetrahedrons) is used to build the handlebody: the handlebody is just a
neighborhood of this skeleton. (Such a neighborhood exists which preserves
the basic structure of the skeleton, as can be seen by subdividing the
tetrahedra in a special way and making the neighborhood of the J-skeleton a
union of these smaller pieces.(see\ ).

The complement of the first handlebody is also a handlebody.



If we are given one of these handlebodies H, of genus n, and n curves
on the boundary of H (satisfying certain conditions) we can discard the second
handlebody (and recover it if needed). Those n curves correspond to the one-

dimensional sides of some of the 2-dimensional faces of some tetrahedrons in

the triangulation. (See ).

Simply connected. Given the set {Ji} izl of simple closed curves in the

representation of M, one can determine whether M3 is simply connected by
checking whether a certain group is trivial. This will be explained below

when we consider the case where H has genus 2.

Case n = 2
We want to consider first the special case where H has genus 2 (n=2).
Our objective 1s to examine the curves Jl and J2 on H in the case when M3
is simply connected, and hope to see some speclal features Qf Jl and Jz

which will allow us to conclude that M is homeomorphic to 83.

So we seek a method of representing curves on Bd H.

v

The first step is to represent a single simple closed curve J on Bd H.
Any such curve J can be broken into pieces, namely the part of J on Tl (the
left hand torus), the part of J on Cy (the connecting cylinder), and the

part of J on T.



has (p,q) = (1, -1).

For T , i = 1, 2, let the collections be (pil’qil)’.(pIZ’in)’ (pi3,
qu). (We will call these 'red arcs', 'white arcs', and 'blue arcs',

respectively). (See p. ).

We see that the boundary points for all these arcs, are interlaced

around the curves Yi at the ends of Cy. Thus boundary points (in Yi) are

divided into six subsets

A, B ,C., A", B'

i i’ i i i? ¢

'
i b4
where all red arcs (those in the (pil’qil) collection) go from Ai to A'i,

the white arcs go from Bi to B'i, and the blue arcs go from Ci to C'i.

(See p. ).



In the interesting cases, (Note: The only case where this cannot be
done is when J can be pushed entirely onto one end.) J can be maneuvered
into a neat position where J N Cy consists of parallel straight arcs running
from one end of Cy to the other and for each Tl’ T2’ J N Ti consists of arcs
which fall into three collections wehre each collection of arcs 1s a collection
of parallel arcs on Ti' Fach collection is a (p,q) curve on Ti where (p,q)
are relatively prime integers and p represents how many times longitudinally

the curve goes around Ti and q is how many times meridionally.

For example, assuming a fixed orientation, the following arc

i

has (p,q) (0,1), while the arc

has (p,q) = (3,2), and the arc



So any curve on Bd H in 'nice' position (i.e., straightened out this

way) can be specified by:

* The pairs (pij,qij), i=1, 2; j=1, 2, 3 (actually, I believe that

once you have settled on (P

13’q13) is determined.)

* the number of points ays bi’ c,s in Ai’ Bi’ Ci’ (i.e., a; = lAi},

A

* and how the points in Ai’ B,, C., A", B' |, C'i, are connected to

Ars B C.» A'i’ B'i, C'i, by arcs in Cy.

We also let N, = a, + b, + ¢,, the number of arcs on torus T,. Note: N, = N,.
i i i i i 1 2

Similarly, if we have two or more simple closed curves Jl, Jz, cee J.,

i
on H, which do not intersect, then (Jl U Jz U eee U Jj) N Cy consists of
. . . U - n
straight arcs in Cy from Y1 tO Yy and for 1 - 1, 2, (Jl U Jz U Jj) Ti’

consists of arcs which fall in the three collections (red, white, and blue)

mentioned above. The boundary points of these arcs can again be divided into

six subsets

where all arcs in the red, (pil,qil), collection go from Ai to A'i, etc.

(The case we are interested in is when there are just two curves Jl and JZ,

i.e., J = 2. But the process we use sometimes results in the other cases

which are discarded.)

Example: N =4, ay =2, bl = 1, ¢y =1, a, = 1, b2v= 1, e, = 2,
s = 0 (The "shift", in going from Y, to YZ).
Here there are two curves (j = 2), J, and J,. (See p. ).

1 2
Example: N =8, a=3,b=2,¢=3, a=4,b=3, c=1, 5= 2.

Here again there are two curves, Jl and Jye (See p. ).



Z!-,A:Z,}):-.'.,C:l
A' =1, b' =1, ¢' =2
s = 0 (the "shift", in going from Y1 to yz)

it

Example, N

Here there are two curves (j = 2), Jl and JZ'



Example. N=8, a=3,b=2,c¢c=3
a'=4,b':3,c'=l

s = 2 (the "shift", in going from Y1 to yz)
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Here there are two curves (j = 2), J, and J,.



‘Every simply connected, compact, 3-manifold, without boundary, and with
genus 2, can be represented with curves with the following additional property:
Jl goes longitudinally around Tl once (in total), and around TZ, zero (in
total). More precisely, any curve Jl might enter or leave any one of the sets

Al’ Bl’ Cl’ and any one of the sets AZ’ B2, Cz; the above condition requires

that Sll = 822 = +1, and S12 = 521 = (0, where the sums Sll’ SlZ’ 821, 822,
are defined as follows: If Jl n Tl has
A\
kl arcs from Al to A 1° and

)
k—l arcs from A 1 to Al’ and

1
k2 arcs from Bl to B 1° and

1
k_2 arcs from B 1 to Bl’ and

k3 arcs from.Cl to C'l, and

\ 4
k_3 arcs from C 1 to Cl’

then put S, = (kl - k_l)pll + (k2 - k_z)pl2 + (k3 - k”B)PlB .

And if (Jl n TZ) has

kl arcs from A, to A'z, and

2

1
k_1 arcs from A 5 to A2, and

etc.,
put 8, = (ky = k_Ipyy + (ky = k_)pyy + (kg =k )pyq »

Similarly for S and S

21 29° Right.

In addition to this requirement that

S10 7 8y = # s S5 =870
we hope to show that, without loss of generality, that the curve Jl meet all
three colors in Tl and J2 meet all three colors in Tz. (For otherwise, the

conjecture would be trivially true).
These are severe constraints, of course, but they do not yet guarantee
3 .
that we have a manifold satisfying the property that M~ is simply connected.

To check for simple connectivity we need to know that the group



P -1 -1 P 1 -1 1 P -1
{a,b: a 1 b 2 a 1 b 2 a 1 ves =1, a 1 b 2 a 1 b 2 eee = 1}
g I ]
condition on Jl condition on J2

is the trivial group. (Each p and 1, in the above is equal to + some Pijo

The a corresponds to T, and the b to TZ)’

1
Let us recall here, the definition of the fundamental group in the

case of a 3-manifold of genus 2 (i.e., the case we are cqnsidering). Let

H be a handlebody of genus 2, with holes Hl in Tl and H2 in TZ .

We place on Bd H around Hl and H2 two simple loops a and b, with orientation.

Each curve J, like the one pictured below, corresponds to an element

of the fundamental group W,(MS).

In the above example J has 3 arcs on each side., Starting from the
point labeled 0 we go twice around Tl’ so the word that J represents is.

ﬂl (the handlebody) has the form



2.1 ~1. -2 -
aba L 2a 1

b b

in general a curve J has the form

Pli PZi Pli PZi Plik F

21
(1) a b a b v a p (kD

.

The two curves on Bd H yield the two relators for ﬂl(MB). So

ﬂl(MB) fab: ( )=1, C ) =1}

where (. ) are filled in by strings corresponding to J. and J, as in (1).

i
As was mentioned earlier we wish to construct examples of compact,
simply connected, connected, 3-manifolds, without boundary, and use these

examples to make conjectures that might help prove or disprove the Poilncare

conjecture. We will try to do this, for the genus 2 case, using our new

representation. This is done by producing two curves, Jl and JZ.

Recall that

N = the number of arcs on T1 (= the number of arcs on T2)

= = " 1"
a, iAl| the number of "red" arcs on Tl ,
b, = IBl] = the number of "white" arcs on T, »
cy = IC1| = the number of "blue" arcs on T, »
a, = IAZ] = the number of "red" arcs on T, »
b2 = 132[ = the number of "white" arcs on T, »
c, = |C2\ = the number of 'blue'" arcs on T, »

N = al -+ bl + Cl = az + b2 + c2 .



Let s = the "shift", as the curves cross the cylinder Cy from Yy to Y, (See

examples in ). Note that when we select values for (n, ais b2, a5 bz,

this determines the values of cl and -c2.

Given a particular set of values for the parameters N, a ., b ses 5,

11

a computer calculation can be made to determine the number j of the curves

on Bd H, and cylindrical information of each, such as sequencing through the

sets A C A

15 B19 l: 'ls B

' 1 ' 1 1 s
1 C 10 A2, BZ’ Cz, A 9 B 9 C 9 (See Fig. ).
This behavior of these J's on the cylinder is independent of their precise
behavior on the tori, which is determined by the parameters (pij,qij),

We propose the following procedure:
PROCEDURE:

1. Select values for (N, a;s bl’ a,, b2, s) for which j = 2,

s),
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