Completeness of Inmput Resolution

with Instance Subsumption

by
Larry M. Hines

May 1983 ATP-74

This work was supported by NSF Grant MCS 77-20701.

ABSTRACT

Input resolution is unfortunately incomplete. This paper introduces
a new restriction for resolution which has a close relation to input resolution.
Resolution is allowed only if one of the parent clauses is an input clause or
subsumes an instance of an input clause and 1s an ancestor of the other parent.
This system is shown to be complete and is shown to be compatible with Loveland's

s-linear resolution.

TABLE OF CONTENTS

Introduction 1
Completeness Proof 2
SI-Clause Algorithm 4
Compatibility with S-linear Resolution 5
An Example Show to a Difference Between M.S.L. Resolution 6
and SI-input Resolution
Subsuming an Input Clause 7
Appendix 8
LIST OF FIGURES
Figure 1: An SI-input Resclution Example 1
Figure 2: A node in D' 3
Figure 3: Lifting D' to D 3
Figure 4: A node in Dl 5
Figure 5: M.S.L. Deduction 6
Figure 6: A M.S.L. Resolution Example 7

Introduction
Sk-input resolution will be used in this paper as an abbreviation for input resolution with instance
subsumption.

Definitions. Let S be a set of clauses. A clause R is said to be an Sl-clause if R subsumes some
instance of a clause C in S.{le., Ro C Co, for some substitution 0.!) An Sl-input resolution is a
resolution in which at least one of the two parent clauses either is an input clause (i.e., is in S) or is an
Sl-clause which is an ancestor of the other parent. An Sl-input resolvent is a resolvent of an Sl-input
resolution. Ap Sl-input deduction is a linear deduction in which every resolution is an Sl-input
resolution. An SI-lnput refutation is an Sl-input deduction of [1 from S.

Example. Consider the following set of clauses. The instance of the input clause which is subsumed is
indicated at the side of each Sl-clause.

S(a) v "T(a)
“R(x) v "S(xJ
~@{a) v R(x)
Q(x) v R(x)
T(x)

T{x)
~R(a) [subsumes ~R(a) v ~5(a)]
~Q(a) v R{x)

~Q(a) [subsumes ~Q(a) v R(x]]
Q(x) v Rix)

R(a) [subsumes Q(a) v R(a)]

Figure 13 An Sl-input Resolution Example

re C Cr for some substitutions # snd 7 is the exact translation of R subsumes some instance of C. Yet since we may

rename apart the variables in R and C, # and ¢ can be composed. Let o == § o 7. Thus we have Ro C Co, for some
substitution o.

Completeness Proof
Lemma 1. Let S be an unsatisfiable set of ground clauses. If C is a clause in S such that S- {C} is
satisfiable, then there is a Sl-input deduction of [] from S with top clause C.

Let k(S) be defined to the total number of appearances of literals in S minus the number of clauses in
S. k(S) is called the excess literal parameter by Anderson and Bledsoe [1]. If [] is in S then C must be []
and the lemma is obvious. Assume [] is not in S. The proof is by induction.

If k(S) = 0, then S consists solely of unit clauses. Let L be the sole literal in C. Since S is unsatisfiable
and S - {C} is satisfiable, there is a clause C’ in S - {C} such that C' = ~L. Clearly [] is an Sk-input
resolvent of L and ~L. Thus the lemma holds for the base case k(S) = 0.

Assume the lemma holds when k(S) < n and consider the case where k(S) = n and n > 0.

Case 1. C is not a unit clause. Let C= C'vL where C' is a nonempty clause. Let
§; = (S-{C}) U {C’}. Clearly, S, is unsatisfiable and S, - {C’} is satisfiable. However, k(S,) < n.
Hence, by the induction hypothesis, there is an Sl-input deduction D’; of [] from S, with top clause C’.
Let D, be the deduction obtained from D’, by putting L back with C’. Clearly, D, is also an Sl-input
deduction from S, of [] or L with top clause C. If it is the former, we are done.

If it is the latter, let S, = (S- {C})U {L}. Clearly, S, is unsatisfiable and S, - {L} is satisfiable.
However, k(S,) < n. Hence, by the induction hypothesis, there is an Sl-input deduction D’y of [1 from S,
with top clause {L}. So by combining D, and D’, we obtain an Sk-input deduction of [] from S with top
clause C.

Case 2. C is 2 unit clause. Let L be the sole literal in C. Since S is unsatisfiable and (S - {C}) is
satisfiable, there is a clause C' = (C®* v ~L)} in S. If C® is empty, then let D be the deduction with the
sole resolution of C against C’. Since C and C’ are input clauses, D is an Sl-input deduction from S of []
with top clause C.

If C® is not empty, consider S; = (S- {C'}).

Case 2.1. S, is unsatisfiable. Since k{{C'}) > 0, k(S;) < n. Since S- {C} is satisfiable, S, - {C} is
satisfiable. Thus by the induction hypothesis, there is an Si-input deduction D of [] from S, with top
clause C. Since S, is a subset of S, D is an Sl-input deduction of [] from S with top clause C.

Case 2.2. S, is satisfiable. Note that k(S; U {C*}) < n and that S; U {C*} is unsatisfiable. Thus by
the induction bypothesis, there is an SI-input deduction of [] from S; U {C®} with top clause C*. Let D
be a deduction whose first resolution is C against C’ to produce C® and whose remaining resolutions are
D’. Clearly D is an Sl-input deduction of [] from S with top clause C.

Lemma 2. If S is an unsatisfiable set of clauses and C is a clause in S such that S - {C} is satisfiable,
then there is an Sl-input deduction of [] from § with top clause C.

Since § is unsatisfiable, by Herbrand’'s theorem there is a finite minimally unsatisfiable set S’ of ground
instances of clauses in S. Let C' be the instance of C in S’. Hence, S’ - {C’} is satisfiable. By Lemma 1,
there is an Sl-input deduction D' of [] from S’ with top clause C'. From the Sl-input deduction D’, we
now show that we can produce & Sl-input deduction of [J from S. Let ', i > 0, be the resolvent derived
at the ith step in D’ from r’,; and ¢’; ;. By definition of Sl-input deduction either ¢’ | is an input clause
orc’, = r‘j for some j such that j < iand r’}- is a Sk-clause.

A\
Ve
\

- -Figure 25 - Anodein D’

In the case i = 1, 1", and ¢’ are both in §". (r’y = C’)

Using the Lifting Theorem, let D be a lifting of D’ to a deduction of [] from S. We will show that D is
an Sl-input deduction of [] from S.

Let r;, i > O, be the resolvent derived at the ith step in D from r;; and ¢; .
c

Fia i-1
r)\ c)
-1 7 i1

H

Figure 3: Lifting D' to D

“"Clearly, D is"a linear deduction which means that at each step in D at least one parent is either an input
clause or an ancestor of the other clause. So we need only to show that if neither parent is in S, then one
of the parents is an Sl-clause. We will show that if ¢, ; is not in S, then ¢, ; is an Sl-clause.

Assume ¢, , is not in S. Clearly, then, ¢’; ; is ot in S’ and, since D’ is an Sl-input deduction, for some
i<ic = r’j, where r’j is an Sl-clause. Since T subsumes r’j and r’j subsumes some clause ¢’ in §', T
subsumes an instance of a clause e in S where ¢ is the lifting of ¢’. So, T is an Sl-clause and, hence, ¢, is
an Sl-clause.

Since D is a linear deduction and in every resolution in D one of the parent clauses is either in S or is an
Sl-clause, D is an Sl-input deduction of [] from S.

SI-Clause Algorithm

Let Rl be a list of literals in a resclvent R. Let Cl be a list of literals in an input clause C. R subsumes
an instance of C if and only if (SubsumInst Rl CI) returns T. Thus R is an Sk-clause only if for some input
clause C, (SubsumInst Rl Cl) returns T.

(SubsumInst (LAMBDA (Rl Cl C12)
(COND [(NULL R1) T]
[(NULL C1) NIL]
[((LAMBDA (Sigma)
(AND Sigma
(SubsumInst (SubstSig Sigma (CDR R1))
(SubstSig Sigma (APPEND C12 C1))
NIL)))
(Unify (CAR R1) (CAR C1)))]
[T (SubsumInst R1 (CDR Cl1) (APPEND C12 (LIST (CAR CL))))1))).

(SubstSig Sigma Cl) instantiates the literals in the list Cl with the substitution Sigma. (Unify Lit1 Lit2)
returns the mgu of the literals Litl and Lit2.

Compatibility with S-linear Resolution

In [3] Lovel.nd proposed a linear resolution system, called s-linear resolution, which had a subsumption
restriction. An s-linear deduction D from the set S of clauses is a linear deduction, B;, B,,..., B, such
that at least one parent clause of B;, 1 < i < n, is either

1.in S or

2.2 clause B}, j < i-1, chosen so that the resolvent B, subsumes an instance of B ;. {Le.
B,c C B, 0 for some substitution ¢.)

In s-linear resolution the subsumption is between a resolvent and one of its parents; whereas, in Sk-input
resolution it is between one of the parent clauses and one of the input clauses. Though the restrictions are
quite different they are compatible.

Let S be a set of clauses. An SIS-input resolution (Sl-input and s-linear) is an SI-input resolution such
that if neither parent clause is an input clause (thus one parent, say C, is an Sl-clause) then an instance of
C is subsumed by the resulting resolvent.

C\R/ C

That is, if neither C nor C' is in S then C {or C’) is an ancestor of C’ (or C) and is an Sl-clause (i.e,,
Co C C®o for some substitution ¢ and for some C* in S} and for some substitution 4, Ry C C'x (or
Ry C Cp). An SIS-input deduction is a linear deduction in which every resolution is a SIS-input
resoclution.

Lemma 1. Let S be an unsatisfiable set of ground clauses. If C is a ground clause in S such that S - {C}
is satisfiable, then there is a SIS-input deduction of [] from S with top clause C.

The proof is only slightly different from the proof of lemma 1 with the Sk-input replaced by with SIS-
input. The only change is that we must show that in case 1 under the inductive hypothesis that D, is an
s-linear deduction. Consider those resolutions in D, where L was added to the resolvent in forming D,

from D’,.

N

3
vVl <y

r\’i\r[
\

Figure 4: A nodeinD,

Since r'; subsumes r'; ; (D’; is an s-linear deduction}, r’; v L subsumes r’, ; v L. Thus D, is an SIS-input
deduction from S; of [] or L.

Lemma 2. If S is an unsatisfiable set of clauses and C is a clause in S such that S - {C} is satisfiable,
then there is a SIS-input deduction of [] from S with top clause C.

The proof differs from the proof of lemma 2 with Sl-input replaced by SIS-input in only one substantial
way. We must additionally showed that if ¢, , is not in S that r, subsumes an instance of r; ;. (See Figure
3.) Since D’ is an s-linear deduction, r’; C 7'y ;. Thus 1, subsumes an instance of r, ;, namely ', ;.

An Example Show to a Difference Between M.S.L. Resolution and SI-
input Resolution

Resolution with merging was first proposed by Andrews in [2]. It was later strengthened by Reiter in [4].
Anderson and Bledsoe in [1] combined Loveland’s s-linear resolution [3] with merging. Since there may be
some confusion about the difference between these versions of resolution and Skinput resolution, an
example is given to illustrate the difference. The version considered here is Anderson and Bledsoe's.

Definitions. Let R be a resolvent of clauses C; and C, with mgu §. R is a merge clause if there are
literals L, and L, in C; and C,, respectively, such that L6 = L,f and if neither L, nor L, were the
literals resolved on. A m.s.l. deduction (merging, subsumption, linear) of R from a set of clauses S
with top clause C, a clause in S, is any deduction of the form:

v
\/

R? Cz
\ /

Figure 5: M.S.L Deduction

R,i=1ton, isa resolvent of the two clauses immediately above it. C,,,i=1 to n, is either in S or
is a R‘3 for somre j < i-1. If G, is not in S then R; subsumes R, ;, G, is a merge clause, and the literal
resolved upon in C, ; is a merged literal of C;.

Consider the same set of clauses mentioned above.

s(a) v ~T(a)
“R(x) v “s(x}
~g(a) v R(®)
gix) v R(x)
T{x)

S{(a) v ~T(a)

Figure 8: A M.SL. Resolution Example

No merge clauses occur in this example. The deduction is longer than the Sl-input deduction on the
same example. No claim is made here about the efficiency of Sl-input resolution versus merge resolution.
However, where many of the input clauses contain common literals merging may not restrict the search.

Subsuming an Input Clause

Sk-input resolution can be further augmented. When a subsumption of an input clause (not just an
instance) by an Sl-clause is recognized, the Sl-clause should take the input clause’s place in the input set.
In the example given above, the resolvent ~Q(a) subsumes not only an instance of the input clause
~Q{a) v R(x) but subsumes the clause itself.

Appendix

(81-Resolution. {InputSet)
[(» (PreviousClauses)
(SOME InputSet ' (» (TopClause)
(SI-Refute TopClause NIL NIL))))
InputSetl).

{SI-Refute (CenterClause SI-Set SI-Boolean)
(OR (SOME SI-Set “{x (SideClause)
(Resolve&Refute SideClause NIL)))
(SOME InputSet *(\ (SideClause)
(ResolvefRefute SideClause NIL))))).

(ResolvegRefute (SideClause InputClause-Boolean)
(SOME CenterClause ‘(i (Liti1)
(SOME SideClause °"()\ (Lit2)
(COND [(AND (OR (NEQ °'NOT (CAR Lit1))
(EQ 'NOT (CAR Lit2))
(NULL
(SETQ Sig
(Unify (CADR Liti)
Lit2))))
(OR (EQ °NOT (CAR Lit1))
(NEQ °"NOT (CAR Lit2))
(NULL
(SETQ sig
(Unify Lit1
(CADR Lit2))))))
(* Litl and Lit2 do not have opposite
signs or do not unify.)

NIL]
[(NULL
(SETQ R
(Crunch
(SubstsSig Sig
(APPEND
(REMOVE Liti
CenterClause)
(REMOVE Lit2
SideClause))))))
(; R reduces to Box.)
T

[(Tautology R) NIL]
[(NULL (RemSubsumed PreviousClauses
(LIST R)))
(* R has been derived already.)
NIL]
[(AND (NOT InputClause-Boolean)
(NULL (SETQ Sig
{SubsumInst R
CenterClause))))
(* The side clause is not an inmput
clause; yet, R fails to subsume an
instance of its other parent.
Thus s-linear restriction fails.)
NIL]
{T (push PreviocusClauses R)
(MAPC InputSet *() (Cl)
(AND (Subsume R Cl1)
(DSUBST R C1 InputSet))))
(* R replaces the 1n§nt clauses
that 1t subsumes.

(SI-Refute R
(COND [SI-Boolean
(CONS CenterClause
SI-Set)]
{T 81-Set])
(SOME InputSet °"(n (C1)

(SubsumInst R C NIL))))]
ININ.

SubsumlInst, SubstSig, and Unify are as described earlier. (Subsume R C) returns T only if R subsumes

C. (Tautology R) returns T only if R is a tautology. (RemSubsumed L1 L2) returns those clauses in L2
that are not subsumed by the clauses in L1. (Crunch R) reduces R.

[4]

10

References

Anderson, R., and Bledsoe, W. W,
A linear format for resolution with merging and a new techinque for establishing completeness.
J. ACM 17:525-534, July, 1970.

Andrews, P.
Resolution with merging.
J. ACM 15:367-381, October, 1968.

Loveland, D. W,
A linear format for resolution.

In M. Laudet (editor), Symposium on Automatic Demostration. Springer-Verlag, New York,
1970.

Reiter, B.
Two results on ordering for resolution with merging and linear format.
J. ACM 18:630-646, October, 1971.

