13. Level subgoal reordering

As was shown before, the hierarchical deduction procedure produces resolvents (H-resolvents) by
resolving upon the first literals of the goal clouses. Different selection of the first literal of a goal clause
usually results in different resolvents and so different search trees. Thus the search process of the prover
can be partially controlled by suitable selection of the first literal of each goal clause.

Recall that in the definition of H-resolvent {(HO-resolvent) and in the procedure HI-DEDUC (Ho-
DEDUC), we did not claim any particular order for the literals inherited from the rule clause except that
these literals must be all on the left side of the resolvent. Recall also that we have proved that the
procedure H1-DEDUC {HO-DEDUC]) is complete. This means that reordering the literals of an H-resolvent
inherited from the rule clause will not cause incompleteness to the procedure.

According to the above considerations, and since the literals of a resolvent inherited from rule clauses
must have a largest index in the resolvent, we will let our reordering subroutine select a literal among only
those literals of the goal clause which have the largest index in the clause to be the first literal. So our
reordering strategy is called level subgoal reordering. It works as following:

For a goal clause G to be reordered, the reordering routine first collects all literals of the clause which
have the largest index in the clause. If there is only one of them, (it must be the left-most literal of G),
then the the order of the goal G will not be changed. Otherwise each literal L being considered is assigned
a value, E(L), according to the information stored in the TWINSYMS field of the node being constructed
and the mass of each non-variable symbol occurring in L, by the following formula:

E(L) = £ W(kn) * MASS(k),
kEL ~

where W(k,n) is a weight which is 1.0 if k occurs in the TWINSYMS field of the node n, otherwise is 0.4.

As was mentioned before, the fewer the occurrences of a twin symbol, {so the bigger its mass), the more
important is the match of it for success in n proof. By the above formula, a subgoal containing a bigger
mass symbol will obtain a higher priority for being selected as the first subgoal.

This formula uses 3 heavier weight, 1.0, for the mass of an unmaftched occurrence of a twin symbol.
Because, according to our twin match requirement, the first mateh of each occurrence of a twin symbol is
3 necessary condition to obtain a proof.

By this formula, a literal having a complex structure is preferable to be selected as the first subgoal,
because it ustually contains more non-variable symbols. This literal, if it is used as the first literal of the
goal clause, usually results in a smaller branching factor

The final decision of which literal is to be first, is made by the formula by balancing the above
considerations.

Our experiments have shown that the level subgosl reordering strategy makes an important addition to
the efficiency of our theorem prover. Besides it makes the prover concentrate omn the important things
and leads to a smaller branching factor, it is also beneficial for the evaluation routine (to be discussed
next} to select the next promising goal. As will be shown next, the evaluation of a resolvent is based
mainly on the feature of matches of twin symbols with which the resolvent is obtained. By resolving the
goal clause upon its important subgoal, we can usually obiain a great difference between the matches of
twin symbols of the different resolvents to be evaluated.

14. Evaluation of the resolvent

There are mainly two tasks of the evaluation subroutine. One is to reject some resolvents, another is to
assign a priority to each accepted resolvent.

A resolvent will be rejected by the evaluation routine in the following cases:

1. Local depth limit. The number of framed literals of it is greater than a predefined local depth
limit.

o]

. Unit subsumed. It is subsumed by 2 unit clause inputted or produced in the deduction.

3. Nest depth limit. For each function symbol, there is a nest depth limit assigned at the
beginning of the deduction by the procedure itself or by the user. The nest depth of a function
symbol in a literal is counted as the number of times that the function symbol occurs in the
substructure of itsell {for example, f{x} is counted as 1, f{f{x})} is counted as 2}. The nest depth
limit for each functional symbol can be predefined by the user, otherwise the default value will
be used by procedure automatically. The default nest depth limit of uninterpreted function
symbols is 1 (nesting by itsell is forbidden), the default nest depth limit of the interpreted
function symbols, such as the inverse function "i" for group theory and arithmetic operators, is
infinite. A resolvent will be rejected if the nest depth of a function symbol contained in it is
greater than the nest depth limit of the function symbol.

The value of a clause C, denoted by VALUE(C), is a real number. Each input clause will be assigned by
the main program a negative value. The value of a resolvent produced during deduction is given by the
evaluation routine.

A large positive value of a resolvent corresponds to 2 higher priority that it will be used as a goal clause;
large negative value of a resolvent corresponds to a lower priority. The value of a resolvent is also related
to the probability that it is or is not redundant. The lower the value of a resolvent, the higher the
possibility that it i1s redundant. If the value of a resolvent is lower than the predefined threshold, then it
will be discarded.

Let H be the resolvent of a goal clause G against a rule clause R upon the first literal Lg of G. Then
VALUE({H]) is the weighted sum of a series of evaluation functions, which looks like the following:

VALUE(H) = W, * PARENT-EVAL(G R}
+ W, * DEPTH-EVAL(Hg H)
+ W, * NEWTWIN-EVAL(TS_,n,G)
+ W, * MATCH-EVAL(TS _n)
+ W, * SKIN-COST(TS)
+ W, * SKOUT-COST(TSy)
+ W, * NEST-EVAL(H)
+ W * UNIFY-EVAL(H)

where
Wi a positive real number as a weight parameter, i = 1,...,8;
Hg: the subclause of H consisting of literals inherited {rom the goal clause G;

Hp: the subclause of H consisting of literals inherited from the rule clause R;

[Se]
-

TS, the set of occurrences of non-variables symbols of I inherited from the rule clause R;
TS the set of occurrences of non-variable symbols which were matched in obtaining H;
TSq: the set of occurrences of non-variable symbols of H which were carried into H, by the

variables in G during the resolution;

TSg: the set of occurrences of non-variable symbols of H which were carried into Hy by the
variables in R during the resolution.

In the following, we give an explanation for each of the above evaluation functions:

1. PARENT-EVAL. By this function, a resolvent inherits a portion of the values from its goal parent
and rule parent.

2. DEPTH-EVAL. This function returns 2 value which depends on the general features of the process of
the hierarchical deduction:

A successful deduction usually appears as follows: Staring from the first literal of the goal clause, the
procedure proceeds with one or more steps of expansions, followed by one or more steps of reductions to
obtain a reduction of the original goal clause, then this process repeats again. So, at the first one or more
steps (The steps are counted by the the number of framed literals) of a deduction, the function, DEPTH-
EVAL, will contribute a bigger value to a longer resolvent {expansion) than to a shorter resolvent
{reduction}.

For the correct path, the numbers of twin symbols in TWINSYMS fields of nodes should decrease as the
length of the deduction increases. When most of the twin symbols have been matched once in a deduction
path, then the proof should be about finished, so a resolvent comsisting of many literals seems to be
unpromising, and such a resolvent should be assigned a lower value.

Combining these considerations, the unction is defined as follows:

If Hy, is empty (H is a reduction}, then
DEPTH-EVAL(Hy, H,)

= MINIMUM{0, W, * (FL,# - W, * SIZE)}
“He# * {1+ W, * [NTS(1) - NTS(n)] / SIZE},

If Hy is not empty (H is 2 expansion}, then

DEPTH-EVAL(Hg H)
— MAXIMUM{0, W_* Ho# * (W, * SIZE - FL#))}
- (He# + Hg#) * {1+ W, * [NTS(1) - NTS(n)] / SIZE},

where

Wy a parameter; the same with WS,WQ,WP;
Hp#: the number of literals of Hy;

He#: the number of hiterals of H;

FL,#: the number of {ramed literals of H;

28

NVADS The pumber of literals in the set §;

NTS{n): the number of non-variable symbols in the TWINSYMS field of node n being produced
in the deduction;

NTS(1}): the number of non-variable symbols in the TWINSYMS field of the first node.

3. NEWTWIN-EVAL. This function obtains a value by evalnating the non-variable symbols carried into
resolvents from the rule clause R.

NEWTWIN-EVAL{TS_,G,n} = Z f{k,n,G) * MASS(k]
keTsS,
where f{k,n,G) is a weight function. If an unmatched occurrence of a symbol k in TS does not occur in
the goal clause G, then f{k,n,G) is a lager positive number; if this symbol occurs in G, then f{k,n,G) is a
smaller positive positive. For the matched occurrence k in TS_, f(k,n,G) is a small negative number.

4. MATCHED-EVAL. This function will contribute a positive value according to the masses of all
matched non-variable symbols.

MATCHED-EVAL{TS ,n) = L m(k,n} * MASS(k}.
keTS, =
For each symbol k in TS_, mik,n) is a larger positive number if k is a twin symbol and k is in the
TWINSYMS field of node n, otherwise if is a smaller positive number.

5. SKIN-COST. Because there is usually a possibility that the variables in the rest of goal clause have
obtained wrong substitutions in the resulting resolvent, and a literal of a goal clause will usually be harder
to unify when its variables are substituted by some terms containing non-variable symbols, we therefore
assign a cost to the resolvent, for each such non-variable symbol substitution.

SKIN-COST(TSg,n) = L glk,n},
keTS,
where g{k,n} is a negative number: it is more negative if k is not in the TWINSYMS field of node n.

6. SKOUT-COST. This function obtains a {negative} value from the non-variable symbols which were
carried into Hy by the variables in R in the resolution according to the same consideration as the above.
But this kind of wrong substitution is usually less harmful than that in the above case: an unprovable
subgoal in the left side of a goal clause is easier to detect than an unprovable subgoal in the right side of
the goal clause. So for the same arguments, the value obtained by this function will be less negative than
the value obtained by SKIN-COST.

SKOUT-COST(TSg,n) = L r{k,n).
keTSy ;
7. NEST-EVAL{H). It evaluates the terms of H according to a global variable ALLTERMS, which is the

set consisting of all terms in the original set S. The value is obtained by means of two supplementary
evaluation functions:

TERM-MATCH{TM1,TM2). It obtains a value by evaluating the unification of two terms. Each match
of a twin symbol in the unification contributes a positive number according to the mass of the symbol.
The substitution of a variable by a non-variable term contributes a negative value to the evaluation.

TERM-EVAL{TM) = MANXIMUM {TERM-MATCI{TM TMi}}.
TMi € ALLTERMS
The final value of NEST-EVAL(H) is:
NEST-EVAL{H) = MINIMUM {TERM-EVAL(TM}}
T™M €H
& UNIFY-EVAL{H}. This function evaluates literals of H. We have 3 global variable UNITS which
consists of all unit clauses in the set S and a global variable LITERALS consisting of all literals of the non
unit rule clauses in the set 5. The evaluation process is similar to the NEST-EVAL described above. It
uses two supplementary functions:

LITERAL-MATCH(L1,L2}. It returns a value by evaluating the matches of non-variable symbols in L1
and L2 and the substitution for this unification.

LITERAL-EVAL{L) = MAXIMUM {LITERAL-MATCH(L Li}}
Li € UNITS U LITERALS
UNIFY-EVAL(H) = MINIMUM {LITERAL-EVAL(L}}
LeH
But the minimum operator in the last function, UNIFY-EVAL, may be replaced by a maximum operator
if, for each literal L in H, LITERAL-EVAL(L}, is greater than a predefined threshold.

It should be noticed that the evaluation functions NEST-EVAL and UNIFY-EVAL are most expensive to
compute than the other evaluation functions. In order to decrease the expense, some indexing methods can
be used. We can also use hash technique to record the results of NEST-EVAL and UNIFY-EVAL for the
new terms and new literals produced in the deduction. Then these results can be used for directly
retrieving values for terms or literals whose values (NEST-EVAL or UNIFY-EVAL) are already recorded.

Obviously, to balance so many functions and parameters is very difficult. As a first step, we require
only that the evaluation routine can roughly do well: for some explicit case, it can make a correct value
assignment; for some sophisticated case, it may make a mistake; in general, it should not assign a lowest
value to a useful resolvent, or a highest value to a redundant one.

15. H2-DEDUC and implementation results

We now present an implemented hierarchical deduction procedure, HZ-DEDUC, which i1s H1-DEDUC
augmented by Pcorrect reduction®, *learning algorithm®, "locking®, "level subgoal reordering® and
“regolvent evaluation®™ described in the last several sections. Procedure H2-DEDUC uses best first search
strategy.

In H2-DEDUC, the GOALS field is deleted from each node. Instead a global variable, goailist, is used to
store the resolvents, {goal clauses) produced by the procedure.

Before a proof is started, the goallist contains only the initial goal clauses obtained from input data. The
procedure proceeds by taking the first clause in the goallist to resolve next. The newly produced and
accepted resolvents will be inserted into the goallist on their priority in descending order by comparison
with all other clauses in the goallist.

FEach node of H2-DEDUC consists of four fields, POINTER, RULES, FAILED and TWINSYMS. In the
following definition of HZ-DEDUC, only three fields of a node, consisting of a triple, {POINTER RULES
FAILED), are presented. The TWINSYMS field of 2 node is assigned or modified similarly to that

30

described in section 12. Note, instead of copying the rule clauses and the failed goals into the descendant
node, a more efficient storage and allocation method is used in the following definition of the procedure
H2-DEDUC.

PROCEDURE H2-DEDUC(goallist)

Step 1 If goallist is empby then exit with "FAIL®
G := FIRST(goallist)
goallist := REST(goallist)
I1f G = NIL then exit with *BOX®
I := the index of the Iirst literal of G

Step 2 If I = O then go step 3
If G is subsumed by a clause in the FAILED field of the node I
then return HZ-DEDUC(goallist)
I := POINTER-GET (D)
Go step 2

Step 3 nextnode := GETNODEQ
G = REORDER(G)
1. := FIRST(G) —
I := the index of L
If G is obtained by reduction then
Store G in the FAILED field of node I
GS = NIL

il

Step 4 If I = O then go Step &
RULES-GET (1) 1#
GS U {H: H is an H-resolvent of G against C in level nextnode,
C € RS,
the literal of C resolved upon is not locked}
If there is a correct reduction H obtained then
push H into goallist
return H2-DEDUC(goallist)
I := POINTER-GET(I)
GO Step 4

T

S
S

[W]

Step B Insert all clauses in GS into goallist by their priority in descending order.
I := index of L
nextnode <= (I GS NIL)
Return H2-DEDUC(goallist)

The priority of a goal clause {resolvent} in H2-DEDUC is the sum of two values, one is called the "clause
value® obtained by the evaluation procedure similar to that of Hi-DEDUC {with some slight changes of
the parameters). Another is called the "path value™ of the clause which is obtained by the following
formulas:

i. The path value of input clause =
2. The path value of H = E + the path value of G + W_ * MATCHED-EVAL(TS ,n)

’

where

17Di!’ferent from Hi-DEDUC, only the goal clauses obtained by reduction may be recorded into the FAILED field of some
related node in H2-DEDUC.

igln H2-DEDUC, the definition of the tail index of a clause is modified, so that, the index of a rule clause which is less
than the node name I and which is not 0 {the lock) is a tail index of the clause. This modification can lead to more efficient
implementation of the constraint on common tails without losing completeness.

31

H: the H-resolvent of a goal clause G;

[N an negative number as the cost of producing a resolvent by H2-DEDUC;
W weight, a positive number;

TS the set of matched pon-variable symbols in obtaining H;

n: the current node.

Recall that the MATCHED-EVAL{TS ,n) is a function used by the evaluation routine which will return

a non-negative value depending on the masses of the matched symbols in obtaining the resolvent H and
the content of the TWINSYMS field of the current node n.

Adding this value to compensate for the path expense is based on t?}; twin match requirement: the twin
match is an important criterion for the potential of a deduction path. By adjusting the parameter W, we
can make the searching process of the procedure more likes breadth first {for example, let W be near to
0) or more likes depth first (for example, let w_ be a larger positive number).

H2-DEDUC is a complete procedure for the first order logic {certainly, with H-factors included).

This procedure was used to prove automatically a number of theorems. Some implementation results
are presented in TABLE L The prover was run on the Research 2060, University of Texas at Austin; it
was programmed in UCILSP with a part of the code compiled. In the examples presented below, all literals
with the index O are locked.

Example E.1. A logical theorem (Example in [5] and {10]).

IxAyvz (([Fxy) = FE)ec@a] A FaypeF(zz) = 6zz))D) = (G(xy)@G(ZZ)))

GrGy)) TFakGy)) [TFEp

JFOk(ey)) "6k Gy) TR

,G e Gk (xyd) JF Gk Gy)) RO

Fop) FGpkGyd)

JFGy ek Gk Gy

GGk Gy) Gy

ek Gk (y)) GG goal

This is an example to which the full locking according to a setting M = {G(xy},F(xy}} causes failure,
though the setting seems to be reliable (In fact, for this setting M, the unsatisfiable set of ground clauses
obtained from the above set contains more than one ground clauses false in M). But, this theorem is
easier to prove by hierarchical deduction without locking.

Example E.2. The same as Example 10.2 in section 10.

Besides the locking described in section 10, the evaluation of resolvents is also important to obtain the
efficient proof.

Example E.3 If xox = e for all x in group G, where o is a binary operator and e is the identity in G,
then G is commutative (A typical example in literature [6,10,14]).

POyt ()

P (xex)

1?(8)0{)

PEie)

P (x)xe)

P Gx(ed)

iP(abc}

o PGyw "P(yzv) "Pluzw) P(xvw)

o PGyw) Plyzv) ,"Plzvi) Pluzw) _
P (bac) goal

For Horn set, the power of the hierarchical deduction can not be increased by the constraints on
common tails, neither by the use of the partial set of support. This theorem 15 proved mainly by the
heuristics on twin symbols. The interesting point is that the procedure *found® a proof where the inverse
axiom was useful. Though it is well known, for proving this theorem, both the closure axiom and the
inverse axiom can be excluded.

Example E.4. The same as Example 10.1 {A simplified version of AM8). H2-DEDUC proved also this
theorem, without the using of locking, in the similar efficiency as the proof shown in TABLE 1, because
the evaluation function can make the correct selection of the goal clause for almost each midstep.

Example E.5 Theorem AMS.
[a<1i<h
A Ve{a<t<l = FQ)<F{))
A ¥x(a<z<b A Volae<x = FO<FW] = x<1)]
A Vudgl (a<w<b = aLg<b A F(@ <FG))
AVx([a<u<d A a<x<b A FROSFW] = g<x)]
= Jula<u<d A vVi(a<t<b = F) <F{)]

The set of clauses obtained from the above formula and the inequality axiomns consists of the following
clauses {The predicate P stands for <, the same for the example E.6 to give next):

R1: PG

R2: Pxy) Pyo

R3: P(xz2) ,"P&xy) ,Plyz)

R4: [PUEMIGE) Py P

R6: ,P(al)

_R6: P(1D)

R7: PEMWE) ,Plaw "PEL

R8: ,P(x1) ,P(ax) ,7P(xb) ,P(aq(x))

Rg: ,P(x1) ,Plax) ,PGb) ;" PE®I(QE))

R10: ,P(x1) ,"P(ax) ,"P{xb) ,P{qC)x)

Ril: P(ah(x)) "Plax) ,PGxb)

R12: P(h(0b) “Plax) ,"P(xb)

R13: ,PEMMEITE) Plax) ,"P{xb)

Ri4: P((Dy) ,"Plax) ;"P&b) "Play) ,"P(yb) "PE L)
R15: "P(ax) ,"P(xb) ,P(ak(x)

R16: ,"Plax) ,"P(xb) ,P(k(x)b)

R17: "PE®I&E)) [“Plax) ,"P(xD) goal

This theorem is more difficult to prove automatically than AMS8’. For example, in the first round of the
deduction, there are four resolvents produced. Though only the resolvent obtained by resolving the goal

33

R17 against R3 can lead to a proof, the prover *thinks® the resolvent C1 of R17 against R4,
C1 == ,~Pxk(x}} ,~-P(k(x)x) ,~Plax} ,~P{xb),

is more promising, because the literal ~P(xk{x)} can match with a literal of R15, and the literal
~P(k{x)x} can match with a literal of R16 (This mistake seems to be-natural even for human resolution
prover}. In fact, there were many pitfalls along the correct path, especially if the negative literals of 3,
R+ and the negative literals ~P(ax), ~P{xb} that occur in many input clauses were not locked. So, the
use of the partial set of support strategy {with setting {P(xy}}} is essential for H2-DEDUC to efficiently
prove this theorem.

Example E.B. Theorem IMV.

{ a<b

A Fa) <0

A O<F(b)

A Vx(a<x<b = Jy[x<y = FE K0 A Vz({y<z<x A F()<0) = FE)I<0ID)
A Vx(a<x<b = Jy[(y<x = O0<F&) A Vz[(x<y<z A 0KF (@) = 0<F®ID
A VE{E<b A FO<0) = x<1]

AVEIVY I(y<OAF (1) <0 = y<x] = 1<x]
= Ju(F{w <0 A 0<F(u))

)

The set of clauses obtained from the above formula and the inequality axioms used conmsists of the
following clauses:
(P x0)
P &x2) TPxy))P (y2)
P&y PR

JPxq(yx)) P xy) interpolation axiom
LPQQGmx Py interpolation axiom
P(ab)

P ER)0)

(P01 (a))

{PEEO) PG (x)) 7Plax) P (xb)

{PUEGO) Py TPEGO) Pyr(x)) Plax) , P(xb)
JPOI0) (PG 7P(ax) ,"P(xb)

POIM@) Py (POIGE)) PG ,Plax) , Pxb)

P& PR TPEEO)

P PO

PUEEEH PO

o Plg(0x PO

{PEM®O) TP goal

H2-DEDUC proved this theorem also by using the full locking according to a setting {P(xy}}. Bat,
because the free literals of the clauses obtained from interpolation axioms were not locked under this
setting, the proof was obtained a little slower. By this example, we show that, in some case, a locking by
guessing a model of the hypothesis of the theorem to be proved can result in an efficient proof.

TABLE L, Some results of the procedure H2-DEDUC

Example E.1 £.2 E.3 E.4 E.b E.6
Local depth limit 7 8 4 8 s 8
Nest depth limit!? (k.4) (m.2) .2 - - -
Unit subsumed 11 16 0 15 1 21)
Local subsumed 48 8 1 10 76 50 ‘
Tail unmergeable 43 o 0 2 27 i3
Correct reduction 5 1 0 o] 19 8
Learning algorithm 5 o 1 0 o g
Accepted clauses 64 48 210 37 205 144
Useful clauses 23 17 19 14 27 38
CPU seconds 3.7 8.1 44 .7 10.1 60.8 32.4

18. Summary

We would not expect that there is a general deduction method powerful in proving all theorems. In fact,
for a different axiom system, it is essential that a different representation and different technique in
deduction be used. Our intention in studying the hierarchical deduction 1s mainly to provide some ideas
about the basic deduction schema, techniques useful in restricting searching space, and heuristics
depending on the syntactic features of the theorems, which may be useful in designing some of powerful
theorem provers that use also domain dependent knowledge.

I. Appendix. Proofs of the Theorem 1 and Theorem 2
We will first prove theorems for a modified version of the procedure HO-DEDUC. It is called H-DEDUC
which is different from HO-DEDUC only in the following:

1. The framed literals described in section 4 are included {recorded) in the HO-resolvents produced -
by HO-DEDUC.

2. The name of the next produced node will be the index I of the first literal of the goal clause
increased by an integer which is the value of a function RANDOMY(). We suppose that the
function RANDOM, when it is called, asks us to obtain a value which may be any positive
integer according to our wishes.

Following is the definition of H-DEDUC.
PROCEDURE H-DEDUC({node)

Step 1. If node = O then exit with "FAIL®

lgThe nest depth limit is 1 for each of the function symbols not indicated in the siots

)
<

GS := GS(node)®
If GS = NIL then return H-DEDUC(POINTER-GET (node))

Step 2. G := FIRST(GS)
If G = NIL then exit with *box*
I := the index of L

GOALS-MAKE (node, REST(GS))
S - = GS(IURS(D)

Step 3 mnextnode := I + RANDOMQ
NEWGS := {H: H is a HO-resolvent of G against C in level nextnode, CES}
NEWRS := § - 8712 - 577L]

Step 4 nextnods <= (I G NEWRS NEWGS)
Return H-DEDUC (nextnode)

Notice the following:

. Though the framed literal is recorded in the HO-resolvent, but the local subsumption test is not
used in H-DEDUC.

3]

. The terminclogy *common tail mergeable® mtroduced in section 5 will be used in the following
proofs, though it is not a restriction for the HO-resolvent.

(o)

. The literals in an HO-resolvent {H-resolvent) inherited from the rule clauses can be in any order
but all of them must be on the left side of the resclvent.

4. We do not claim any particular order to the resolvents obtained from a goal clause (contained
in NEWGS) by H-DEDUC.

We will proceed in our proofs by the following steps:

Step 1: Investigate properties of the nodes produced by H-DEDUC.

Step 2: Define a measure function for the procedure H-DEDUC.

Step 3: Prove the finite termination property of H-DEDUC.

Step 4: Prove that H-DEDUC is a decision procedure for propositional logic.
Step 5: Prove HO-DEDUC is a decision procedure for propositional logic.

Step 6: Prove that Hi-DEDUC is a complete procedure for the first order logic.

Definition: FLS(n). Let C be the parent®® of a node n. If C is not NIL, then FLS(n) is the set of framed
literals of C increased by the first literal of C. If C is NIL (it is the case for the first node), then FLS(n) is
NIiL.

Definition: A clause C is called a legal clause against a node n iff no literal in € shares the same atom
with a framed literal in FLS{n).

“OLet n be a node. We define RS(n) = RULES-GET(n), GS(n) = GOALS-GET(n), $§(n) = GS(n)URS(n)
Recall $°L = {C: C&S A LeC)

N ,
2“Recai} that the parent of a node is a goal clause from which the node is produced.

36

Definition: TG(n). Let C be the parent of node n. If C is not NIL, then TG(n) is REST(C). If C is NIL,
then TG{n) is NIL.

Definition: Suffix clause. If n 15 a node and G is & clause in GS{n}. Then the subclause obtained from G
by deleting each literal of G, which is indexed by n, is called the suffiz clause of G against node n.

Definition: Regular node. A node n is called a regular node iff it satisfies the following requirements:
1. The pointer®® of the node, is an integer less than n;
2. The largest index of the literals in 5S{n} is not greater than n;
3. Every clause in SS{n} is a properly indexed clause;

4. The suffix clause of each clause in GS(n) is identical (including the order and indices of their
literals) to TG{n).

5. All clauses in $S(n} are common tail mergeable;
. Every clause in SS{n} is a simple ground clause®%;

. The set of framed literals of each clause in GS(n) is equal to the set FLS(n);

[C RS B

. All clauses in S5{n) are legal clauses against node n;

Theorem L1. If n is a regular node and the first goal clause in GS{n} is G,
G= L1 L2. Lh,T1l., Tm,
where h2>>1, m>0, then the next node produced by calling H-DEDUC({n) must be a regular node.

Proof: By the definition of H-DEDUC, the next node produced by H-DEDUC(n) is n+j, j > 0. The first
three requirements for node n+j being a regular node are obviously satisfied by the node n+j. We only
prove that node n+} satisfies the last five requirements.

Because each clause in GS(n+j) is an HO-resolvent of G against some clause C in RS(n)UREST(GS(n))
upon the literal Ll in level n+j, the resolvent must be in one of the following two forms:

Fi: nﬂ.Pl...nﬂ-Pr Gl Lh T, Tm;

F2: L2.. Lh Tl Tm,

I

where P1..Pr (r>1), are the literals inherited from a rule clause C and retained by merging right.

Obviously, clause F2 is the suffix clause of ench clause in GS(n+j). Because G is the parent of node n+j,
so REST(G) =2° TG(n+j). Then F2 = TG{n+j}. So, node n-+j satisfies the fourth requirement,.

Obviously, all clauses in GS(n+j) are common tail mergeable. Note the clauses in RS(n+j) are some
clauses in 55(n), but the common tail of a clause in GS(n+j) against any clause C in SS(n) must be the
same as that of G against the clause C, because n is not a tail index of any clause in SS(n). So the clauses

23Tl1e content of the PGINTER field of the node.

“4Recail that the simple ground clause is a ground clause such that it is not a tautology and it contains no repetition of a
literal.

%
"SH C1 and C2 are two clauses, then Ci == C2 means that C1 is identical to C2 {including the order and indices of their
literals).

37

in GS{n+j) must be common tail mergeable with all clauses in RS{n+j). Further more, the clauses in
RS(n+j) must be common tail mergeable because RS{n+j) is a subset of SS(n). Therefore all clauses in
SS{n-+j} are common tail mergeable. Thus the fifth requirement is satisfied by node n+j.

Because of the use of the restricted merging,®® , and since there is originally no repetition of literals in
the suffix clause of a clause G’ in GS{n+j}, there must be no repetition of literals in the whole clause G,
Also note tautology is rejected {rom the HO-resolvent. So all clauses must be simple ground clauses. Thus,
rode n-+j satisfies the sixth requirement.

According to the definition of the framed literals in section 4, the set of framed literals of each clause in
GS{n+j) must be the set of {ramed literais of the goal clause G increased by the first literal of G, which,
by definition, is FLS{n+j). So, the seventh requirement is justified.

Let C be any clause in RS{n+j). Because, by definition of H-DEDUC, C must be a clause in SS{n} -
SS{n) L1 - SS{n} ~L1, C must not contain L1 or ~L1. But, by hypothesis, C is a legal clause against
node n, so no literal of C shares an atom with a literal in FLS{n). Note that FLS(n+j}) contains only one
more literal L1 than FLS{n), but we have shown that C does not contain literal L1 or ~L1, so no literal of
C shares an atom with a literal in FLS(n+j}. Then C is a legal clause against node n+j.

Because each clause G’ in GS{n+j) is an HO-resolvent of two simple ground clauses upon the literal L1
and ~L1, no literal L1 or ~1L1 is included in the clause G'. But all literals of GG’ were inherited from the
clauses in SS{n) which did not share an atom with FLS{n). Then all literals of G’ must not share an atom
with any literal in FLS(n+]}. So all clauses in GS{n+j) must be legal clauses against node n-+j.

Q.ED.

Definition: Let C be a clause, and n be 2 node. Then the active part of C against node n, ACT(C,n}, is
defined by following equation:
ACT(Cn) = C - TG(n).

where the operator ®-% means that ACT(C,n} is the subclause obtained from C by deleting every literal of

C which is identical to a literal in TG{n) {not count indices). ACT{C,n) has the same set of framed literals
as that of C.

Definition: Let S be a set of clauses, and n be a node. Then ACTS(S,n) is a set of clauses such that:
ACTS(S,n} = {ACT(Cn}): C&Sj.

Lemma I.1. If n is a regular node, G is the first goal clause in node n, 1 is the index of the first literal
of G, and n+j is the next node produced by H-DEDUC{n), then, according to Theorem 1.1, the following
are obviously true:

1. TG{n) is identical to a part of REST{G};

]

. TG(n+j} = REST(G};
3. TG(n) is identical to a part of TG(n+j});
4. ACT(C,n+j) = C - TG(n+j) = (C - TG(n)) - TG(n+j) = ACT(C,n) - TG(n+j). '

Definition: Let n be a regular node, then SIZE(nj is the total number of (non framed) literals in the set
ACTS(SS(n),n).

28Recall that in restricted merging, only the literal inherited from the rule clause will be merged if this literal is identical

to a literal inherited from the goal clause. See section 3.

Theorem L2. Let n be a regular node, SIZE{n} = K. Suppose G is the first goal clause of the node n, L

is the first literal of G and the index of L is n. Let n+j be the next node produced by H-DEDUC{n). Then
if K > 0, then SIZE{n+]} < K.

Proof: By the definition of H-DEDUC, the set 5 of rule clauses used for resolving with the goal elause G
is
S = REST{GS{n})URS(n).
We divide S into three subsets: 'L, 5"~L and S- S"L - §"~1L.

Because there is no repetition of literals in a clause, then, for each clause C in S"~1L, there is at most
one HO-resolvent of G against C. Suppose there is an HO-resolvent H of G against C. Obviously,
ACT(H n+j) contains only literals inherited from C. Because any literal of C identical to a literal in
REST(G) will be merged in H, and by Lemma L1, TG{n) is identical to a part of REST{G). So all literals
in ACT{H,n+j) must be among the literals in C - TG{n} which is ACT{C,n). Note ~L must be a literal in
ACT(C,n) but is not included in ACT(H,n+j). Therefore the number of literals in ACT(H,n+j) must be
less than that in ACT{C n). Because all clauses in S™~L will not be included in node n-+j, and each clause
H in GS{n+j} corresponds to one and only one clause C, we conclude that the number of literals in
ACTS{GS(n+j),n+j) is less than that in the set ACTS(S ~L, n}.

Obviously, each clause in RS{n+j) corresponds to one and only one clause in the set, S'= S - S"L -
§°~L. According to Lemma L1, ACT(C,n+j} = ACT{C,n) - TG(n+j}. Then the number of literals in
ACTS(S",n+j) must be less than or equal to that in the set ACTS(S n).

Any clause in 5"L and in 8" ~L will not be included in the node n+j.
Thus, we conclude that SIZE(n+j) < K.

QED.

Theorem 1.3. Starting from a regular node n, the procedure H-DEDUC(n) either obtains a current goal
which is identical to TG(n) or backtracks to the pointer of node n in finitely many steps, and, during the
process, all nodes produced by the procedure are regular nodes whose names are greater than n.

Proof: If GS{n) is empty, then, at the next step, the procedure H-DEDUC backtracks to the pointer of

node n, so the theorem is trivially true. Now suppose GS(n} is not empty. We prove the theorem by
induction on the size of the node n.

Case 1. SIZE (n) = 0. Then for any clause G in GS(n}, ACT(G,n} is NIL {empty). Note ACT(G,n) = G
- TG{n), and because G does not contain a repetition of a literal, then G = TG{n}). Because we suppose
GS({n) is not empty, the current goal of H-DEDUC must be identical to TG(n). So the theorem is true.

Case 2. Suppose the theorem is true for the case SIZE{n} < K and K > 0. We prove the theorem for

the case SIZE(n) = K. If the first clause G in GS(n) is identical to TG(n), then we have obtained a proof.
Now we suppose that G is not identical to TG(r).

According to the definition of a regular node, the suffix clause of G must be identical to TG(n). Without
losing generality, we suppose TG{n) is the following clause:

TG{n) = ,,T1 ,T2..;, T _, where m>0.

Then G must have the following form:

39

G= L1 L2. Lb,Ti T2, Tm, where h>1.

According to Theorem L1, the second node produced by H-DEDUC is a regular node with the name n+j,
where j is a positive integer. For the node n+j, TG{n+j) = REST(G), ie,,
TG{n+j) = L2. Lk, Tl.. Tm.

Now the procedure returns to a call H-DEDUC(n-+j). It has been proved by Theorem 1.2 that SIZE(n+j)
< K. By the induction hypothesis, the theorem should be true for node n+j. This mecans that each node
produced by H-DEDUC{n+j} during the process described by the theorem must be a regular node with 2
name greater than n+j. According to the conclusion of this theorem, there are only two cases:

Case 2.1. The procedure backtracks to the pointer of node n-+} in finitely many steps. Because the
pointer of node n+j is n, the procedure will call H-DEDUC {n) again. Note that the goal clause G has been
deleted from the node n and ACT{G,n) contains at least one literal L1, so this time, SIZE(n} < K. By the
induction hypothesis, the theorem is true.

Case 2.2 A current goal G’ of H-DEDUC identical to TG{n+j} is obtained, ie.,
‘ G = L2. Lh Tl Tm.
Again, there are two cases:

Case 2.2.1 h == 1. Then TG{n+j}) = TG{n). This is the case that we want to prove,

Case 2.2.2 h > 1. By the definition, the procedure will retrieve rule clauses from node n according to the
index n of the first literal of G’. But this round of deduction and the {ollowing must be the same as the
call of H-DEDUC(n), where the node 1 has been modified such that only the goal clause G is replaced by
the current goal clause G'. To distinguish, we denote this modified node n by node n’ {note that
numerically, n = n’}.

We justify that node n’ is also a regular node. Obvious, (O is common tail mergeable with all other
clauses in SS{n’}. So we only need to prove that G’ is a legal clause against node n’. To do this, we need
only to prove that the set of framed literals of G’ is the same as that of G. Note the set of framed literals
of an HO-resolvent is the set of framed literals of its goal clause increased by the first literals of this
clause. By the induction hypotheses, we have proved that all nodes before the current goal G’ is obtained
have pames greater than n+]. Note that the name of a node produced by H-DEDUC is the index of the
first literal of the goal clause, from which the node is produced, increased by some positive integer, which
is assigned by the random function RANDOM. So each newly increased framed literal of the goal G’ must
have an index greater than or equal to n. Recall that we have a stipulation in the definition of the framed
literals {see section 4}, that any framed literal of a current goal clause whose index is greater than or equal
to the index of the first literal of this clause is deleted. So when G’ becomes the current goal clause, only
the framed literals that are same as G are retained. The other requirements for a regular node are
obvicusly satisfied by the node n’.

Because (i’ is identical to REST(G), and since all other conditions of node n’ are similar to that of node
n, then for node n’, SIZE{n"} < K. By hypothesis, the theorem is true.

All the cases have been proved.

QED.

Notice that the primary node defined in the section 3, node 1, is a special regular node, such that TG(1)
= NIL and the pointer of it is §. Then, we have the {ollowing corollary:

40

5y

Corollury L.1. Let node 1 be a primary node. Then H-DEDUC{1} must exit with *box® {when a current
goal is NIL) or with *FAIL" {when current node is 0} in finitely many steps.

Lemma 1.2 to Lemma 1.8, to be proved next, are all under the following hypotheses: n is a regular node,
G is the [irst goal of node n, L is the first literal of G, the index of L is n, and n+j is the next node
produced by H-DEDUC(n}).

Lemma 1.2. ACTS{{S1US2}, n) = ACTS(S1,n)UACTS({S2,n)
Proof: Trivial
Lemma I.3. ACTS{(S - S'L},n} = ACTS(S,n) - ACTS{S L,n)

Proof: Because G is a simple ground clause, and by Lemma L1, TG{n} is a part of REST(G}, so TG(n)
must not contain literal L. So any clause in ACTS{S L,n) contains 3 literal L.

Suppose C is a clause in ACTS((S - S"L},n). Then there must be a clause C, CE(S - S"L), such that C -
TG(n) = C’. Because there is no clause in S - 8L containing literal L, C’ must not contain the literal
L. But we have shown that any clause in ACTS{(S"L,n} contains the literal L, then C’ must not be a
member of ACTS{S"L,n). So C’ is a member of ACTS(S,n) - ACTS(S L,n}.

Suppose C’ is a clause in ACTS{S,n) - ACTS{S L n}. Then there must be a clause C, C€S, such that C -
TG{n) = C'. But C can not contain L. Otherwise, suppose C €5°L. Then C'€ACTS(S L,n), and then C’
would not be in ACTS(S,n} - ACTS(S"L,n). So we conclude CE(S - S"L). Therefore C'€ACTS((S-S"L),n).

QED.

Lemma L.4. ACTS{(S - S"~L},nj == ACTS(S,n) - ACTS(S"~L,n}

Proof: Same as the proof for Lemma 1.3.

Lemma 1.5. If M is a model of the set ACTS(S,n+j}, then M must be a mode! of the set ACTS(S,n).

Proof: Let C be any clause in S. According to Lemma [.1, each literal contained in the clause
ACT{C,n+j) must be a literal in the clause ACT(C,n}. So a model M of the set ACTS(S,n+j) must be a
model of ACTS(S,n).

QED.
Lemma L8. ACTS(S,n+j) = ACTS(ACTS(S,n},n+j)

Proof: Let C’ be any clause in ACTS{S,n+j}. Then there must be 3 clause C, CES, such that ¢ =
ACT(C,n+j). But
C' = ACT(C,n+j)
= ACT(Cu) - TG{n+j) /* Lemma 1.1 */
= ACT(ACT{C n)n+j}. / * definition */
so C'EACTS(ACTS(S,n),n+]).

Let C7 be a clause in ACTS{ACTS(S,n},n+j}. Then there is a clause C*, C*€ACTS(S,n), such that C’ =
ACT(C® n+j), i.e. C' = C* - TG{n+j). Because C*€ACTS(S,n}, there must be a clause C, CE€S, such that
C* = C - TG(n). So C' = (C - TG{n}} - TG{n+j}. According to Lemma L1, C' = C - TG(n+j) =
ACT(C,n+j). So C’EACTS(S,n+i).

41

QLED.

Lemma L7. Let C be a clause in SS5{n} ~L. If C does not contain 3 literal complementary to 2 literal
in REST(G), then there must be one and only one HO-resolvent HR{C,G,L,u} of G against C upon L in
level n+j, and one and only ome HO-resolvent HR{ACT(Cn)ACT{G,n},L,n} of ACT(G,n) against
ACT(C,n) upon L in level n+j, such that ACT{HR(C,G L,n),n) = HR{ACT(C,n),ACT(G n},L,n).

Proof: Because G and L are all simple ground clauses, and, according to the hypothesis, C will not
contain a literal complementary to a literal in REST({G), then there must be one and osnly one HO-
resolvent of G against C, HR{C,G L,n}. We have shown in the proof of Lemma 12 that TG{n) does not
contain literal L or ~1, so ACT{G,n} contains literal L and ACT{C,n} contains literal ~L. Then there is
one and only one HO-resolvent of ACT(G,n) against ACT{C,n}, HR{ACT{C,n},ACT(G,n},L,n).

Let H = HR(C,G,Ln), H' = HR(ACT(C,n),ACT(G n)L,n). We prove H' = ACT(Hn), ie. H = H -
TGn).

Case 1: Let P be a literal of H'. According to the index of P, there are only two cases:

Case 1.1: The index of P in H is n. Then P must be 3 literal inherited from ACUTIG n). Because
ACT{G,u} = G - TG(G), TG{n} must not contain literal P. Then G contains a literal QP, so H must
contain a literal [P. So H - TG({r) must contain a literal P.

Case 1.2: The index of P in ' is n+j. Then P must be z literal inherited from ACT{C,n) and there must
be no literal the same as P in ACT(G,n). Because ACT{C,n) = C - TG(n}), TG(r) does not contain literal
P. Then P will not be merged by any literals in REST{G) because all literals in REST{G} must be
identical to a literal in REST{ACT{G,n}} or a literal in TG(n). So H must contain a literal ntjf- We have
shown that TG(n) does not contain P, so H - TG{n) (ACT{H,n) contain a literal atif -

Case 2: Let P be a literal of H - TG{n). According to the index of P, there are only two cases:

Case 2.1: P has an index n. Then there must be a literal P with an index n in G. So there 1s a literal
with an index n in ACT(G,n}. Then H’ contains a literal P.

Case 2.2: P has an index n+j. Then TG{n} must not contain a literal P. Because the literal P of H must
be inherited from C, and ACT(Cn) = C - TG{n), ACT{C,n} must contain a literal P. Note REST(G}
must not contain a literal P, because otherwise the P of H inherited from C will be merged in H. Then
REST(ACT(G,n}) does not contain a literal P. So the H-resolvent of ACT{G,n} against ACT(C,n} must
contain a literal n+jP'

Thus we have proved that ACT{H,n) and H’ have the same set of literals {including indices). We suppose
that the literals in ACT(H,n) and in H’ are ordered similarly {we can do so, because that we did not claim
any particular order for the literals inherited from the rule clause in the definition of HO-resolvent).

QED.

Lemms L8 Let S be a set of clauses obtained from SS{n} by deleting any clause containing a literal
complementary to a literal in REST{G). Then

ACTS(HRS(S,G.L.n),n) = HRS(ACTS(S,n),ACT(G,n),L.n),
where HRS(S,G,L,n) = {HR{C,G L,s): C&S}.

Proof: Trivial according to Lemma 1.7.

Theorem L.4. If n is a regular node, G is the first goal clause of node n, L is the first literal of G, the
index of L is n and n-+j is the first node produced by H-DEDUC(n), and if ACTS{SS{n},n) is unsatisfiable,
then ACTS({SS{n+j),n+j) is unsatisfiable.

Proof: Suppose the hypothesis of the theorem is true, but ACTSISS{(a+]j),n+j) is satisTiable. Let M be a
model of the set ACTS(SS{n+j),n+j). We are to obtain contradiction by constructing a model for the set
ACTS(S{n),n}.

Because no clause in the set ACTS(SS{n+j},n+j) contains the literal L or ~L or a literal in TG{n+j}, we
can suppose that M does not contain ~L and any literal identical to a literal in TG(n+j).

First we notice that
ACTS(S5(n+]),n+}}
= ACTS{{GS{n+]JURS{n+j)),n+j} /* definition */
= ACTS{{GS{n+])n+j)JUACTS(RS(n+j}),n+j}. V /* Lemma 1.2 ¥/

Then M must be a model of the set ACTS{RS(n+j),n+j}). According to Lemma 1.5, M must be a model
of the set ACTS(RS{n+j},n).

Because
ACTS(RS(n+),n)
= ACTS{{SS{n) - SS{n)"L - SS{n)" ~Lj},n} /¥ definition */
= ACTS(SS{(n),n} - ACTS{SS(n)"L,n} - ACTS(SS{n} ~L,n}, /* Lemma 1.3 */

M must be a model of the set:
ACTS(SS(n},n) - ACTS(SS(n) L,n) - ACTS({SS{n)"~L,n}.

We divide the set SS{(n) ~L into two sets: Let the clauses in SS{n)"~1., which contain no literal
complementary to a literal in REST{G), form a set SI, and the rest clauses of SS{n)"~L form a set S2.
Note that any resolvent of G against a clause in S2 upon the literal L. must be rejected from the HO-
resolvent of G in the deduction, because it is a tautology. Then any clause in GS{n+j) must be an HO-
resolvent of G against a rule clause which is a member of the set S1. But, for the set S1, we have the
following: ‘

ACTS{GS(n+j),n+])

— ACTS({HRS(S1,G,L,n),n+j)

= ACTS{ACTS(HRS(SL,G,L,n},n},n+j) /* Lemma 1.6 */
== ACTS{HRS(ACTS(S1,n), ACT{Gn}, L, n}, n+j) /* Lemma 1.8 */

Because M is a model of the set ACTS{GS(n+j},n+j)}, then, according to the above equation, M is a
model of the set:
ACTS(HRS(ACTS(S1,n), ACT(G,n}, L, n}, n+j}.
Then for any clause H in the set HRS{ACTS(S1,n),ACT(G,n),L,n}, ACT(H,n+j) must be true in M.

We have shown in the proof of Lemma 1.7 and Lemma 1.8 that, for each clause C in S1, there must be
one and only one HO-resolvent H of ACT{G,n) against ACT(C,n}, and all literals of H with the index n+j
must be inherited from the literals of ACT{C n). But ACT(H,n+j) can only contain the literals whose
index is n-+j. So each literal in ACT(H,n+j} must be contained in ACT(Cn). We have proved that
ACT{H,n+j} is true in M, so ACT(C,n} is also true in M. Therefore M must be a model of the set
ACTS{51 n}.

Let M’ be the set consisting of all members of M and the literal L as well as all literals which are

complementary to some literal in REST(G). Note that REST(G) = TGu+j). Recall that M does not
contain ~L or any literal identical to some literal in TG{n+j}). So M’ s consistent.

Because, for each clause C in S2, ACT(C,n) must contain at least one literal complementary to a literal
in REST(G), then M’ must be a model of ACTS(52n).

Because each clause in ACT(SS(n) L,n} must contain a literal L, then M’ must be a model of the set
ACTS(SS(n) L,n).

Thus M’ is a model of the whole set ACTS(SS(n},n}. Contradiction.
Q.ED.

Theorem L5. If n is a regular node and ACTS(SS(n)n) is unsatisfiable, then if H-DEDUC(n}
backtracks to the pointer of the node n before a current goal G’, G' = TGf{n), is obtained, then
ACTS(RS(n),n} must be unsatisliable.

Proof: Suppose the hypothesis of the theorem is true, we prove ACTS{RS({n},n} is unsatisfiable.
If GS(n) is empty, then ACTS(SS(n),n} = ACTS(RS(n},n). So ACTS(RS(n},n} is unsatisfiable.

Now suppose GS(n} is not empty. We do the proof by induction on the size of node n. Let TG{n) be the
clause, TG(n) = ;,T1..; Tm, m>0, and let G be the first goal clause in GS(n).

If SIZE(n) = 0, we have shown in the proof of Theorem 1.3, that G must be identical to TG{n). This
means that the hypothesis of the theorem is false, so the theorem is true.

Induction hypothesis: Suppose the theorem is true for the case SIZE(n} < K, K > 0. Now we prove the
theorem for the case that SIZE{n) = K.

If G is identical to TG({n), then the theorem is true because the hypothesis of the theorem is false. Now
we suppose that G is not identical to TG(n). According to the definition of regular node, G must be in the
following form:

G = L1 L2. Lh Ti.; Tm,
where h > 0.

Then the next node produced by H-DEDUC(n) is node n+j. According to Theorem L1, node n+j is a
regular node. At next step, the procedure calls H-DEDUC(n+j}. According to Theorem 1.3, in a finitely
many steps, H-DEDUC(n+j) must attain one of the following states:

State 1. A current goal G’ = TG{n+j) is obtained. Because TG{n+j} = REST(G), there are only two
cases:

Case 1. TG{n+j) = gLl Tm. This means that the current goal of the procedure is identical to
TG{n). So the theorem is true hecause the hypotlhesis of the theorem is false.

Case 2. G' = L2.. Lh ,TL.; Tm, h > 1. Then the procedure will retrieve node n to obtain the rule
clauses according to the index n of the first literal of G', and the next node produced should be n+j’, j >
0. So, the following deduction of the procedure is the same as the call H-DEDUC(n'), where the node n’ is
the node n modified by just replacing the goal G with the goal G'. As was verified in the proof of
Theorem 1.3, node n’ is a regular node. Obviously ACTS(SS(n'},n’} is unsatisfiable. Note SIZE(n’) <
K. According to the induction hypothesis, the theorem is true.

State 2. The procedure has backtracked o the pointer n of node n4j. By the definition of H-DEDUC,
H-DEDUC(n} is called again in the pext step. But this time the node n is modified: the original goal

clause G has been deleted from GS(n). To distinguish, we denote this modified node n by n'{numerically n
= 1'}. Now we prove that ACTS(SS(n"),n"} is unsatisfiable.

Suppose ACTS(SS(n’},n’} is satisfiable. Then it has a model M. Because ACTS(SS(n)n) =
ACTS(SS(n’),n"JU{ACT(G n’)}, and since ACTS({S(n},n} is unsatisfiable and ACT(G,n’) contains all of the
literals L.2,...,Lh, then M must not contain any of LZ,... Lh.

Because each clause C in RS{n+j} must be a clause in 5S(n’}, then according to the following equations:
ACT(C,n+j)
= C - TG{n+i)
= C- L2. LhTi.. Tm
= C-T1..; Tm- L2.. Lk
= ACT(C,n’) - L2.. Lh, |
and noticing that M does not contain amy of L2,..,Lh, ACT(C,n+j) must be true in M. So RS(n+j) is
satisfiable.

But, according to Theorem 1.4, SS{n+j} must be unsatisfiable, and, according to Theorem 1.2, SIZE(n+j)
< K. Then, by the induction hypothesis, RS{n+j} should be unsatisfiable. Contradiction.

Finally, we conclude that ACTS(SS{n'},n’} is unsatisfiable. Obvious, node n’ is a regular node and
SIZE(r’) < K. By the induction hypothesis, the theorem is true for H-DEDUC({n’). So the theorem is true
for H-DEDUC(n).

QED.

Corollary 1.2. Procedure H-DEDUC is a decision procedure for propositional logic. Stated precisely, if
S is a set of simple ground clauses and n is a primary node where RS(n) is empty and GS(n) = S, then
H-DEDUC(n} must exit in a finitely many steps; if it exit with "box*, then S is unsatisfiable, if it exits
with *FAILY, then S is satisfiable.

Proof: This follows from Corollary 1.1 and Theorem 1.5. Since all new clauses produced in the procedure
are obtained by resolution and resolution itself is sound, the corollary must be true.

QED.

Now we can prove Theorem 1 of section 3. The theorem is stated precisely as following:

Theorem 1. If 5 is a set of simple ground clauses, node 1 is a primary node where RULES-GET(1} =
NIl and GOALS-GET(1) = S, then HO-DEDUC(1) will exit in finitely many steps. If S is unsatisfiable,

then the procedure will exit with "box®, otherwise it will exit with "FAIL".

Proof: Note we allow RANDOM() to return any positive integer that we want. If we suppose that
RANDOM({)} always returns 1, then we obtain the procedure HO-DEDUC.

QED.

Next, we lift the completeness theorem of H-DEDUC to be the completeness theorem of H1I-DEDUC,.
First, we introduce two lemmas.

Lemma L9. If node 1 is a primary node mputted to H-DEDUC, then we can use H-resolvents instead of

S
o]

FO-resolvents in H-DEDUC and preserve the validity of all lemmas and theorems proved above for H-
DEDUC.

Proof: Because there are more constraints applied to the Heresolvent than to the HO-resolvent, then the
lemma is proved if we can justify that each HO-resolvent produced by H-DEDUC is a legal H-resolvent.
This can be done by verifying the properties of regular nodes.

Because all nodes produced by H-DEDUC{1) are regular nodes, all HO-resolvemts produced by H-
DEDUC(1} are legal clauses. But, any HO-resolvent will be accepted by the local subsumption test if the
resolvent is a legal clause. So the local subsumption test, if it is uwsed in H-DEDUC, will not discard any
Ho-resolvent produced by H-DEDUC(1}).

Note also that all clauses stored in a regular node are common tail mergeable. So, the restriction on
common tail mergeable, if it is used in H-DEDUC, must not discard any Hi-resolvent.

Furthermore, because non of the clauses in the regular nodes is a tautology, then for any goal clause
used in H-DEDUC(1), the first literal must not be complementary to any other literal of the clause.
Because the goal clause must be common tail mergeable with its rule clause, the first literal can not be
complementary to a literal of the rule clause whose index is among the common tail indices of these two
clause. This means that the constraint on common tail indices of the H-resolvent, if it is used in H-
DEDUC, will not discard any HO-resolvent.

QED.

Due to Lemma 19, we can use H-resolvents in H-DEDUC in the place of the HO-resolvents in the
following discussion.

Corollary 1.3 The level subgoal reordering (see definition in the section 13}, if used in reordering the

literals of the goal clause encountered®” in H-DEDUC, will not cause incompleteness for the procedure
H-DEDUC.

Proof: Because we did not claim any particular order of the literals of an H-resclvent inherited from the
rule clauses during the resolution except that they are all on the left side of the resolvent, then we can
suppose the resulting order of these literals of the goal clause obtained by level subgoal reordering was
arranged before, at the time that this goal clause was obtained in the previous deduction, or at the time
that this goal clause was inputted if it is an input goal clause.

QED.

Corollary 1.4 For each recursive call of H-DEDUC(n} where n is a node, the clauses in GS(n} can be
reordered without causing incompleteness to H-DEDUC.

Proof: Because we did not claim any particular order of the H-resolvents obtained in a recursive call of
the procedure, then, for any call of H-DEDUC(n) where n is a node produced before, we can suppose the
resaiﬁng order of clauses in GS(n), if they are reordered, was arranged before, at the time that these
clauses {H-resolvents} were produced or at the time that these clauses (if they were input clauses in the
first node} were inputted.

QED.

9
*TPor each recursive call of H-DEDUC(n) or Hi-DEDUC{n) where 1 is a node, the irst goal clause in GS{n) will be the goal
clause encountered {in next step)

Definition: [O-instance. Clause € is called an JO-instance of a clause C if ¢’ and C are both p;opeﬂy
indexed clauses and there 1s a substitution 4, such that C' is identical to C& up to the order and indices of
their literals and FL, is equal to 'L ¢ where FL, and FL, are the sets of framed literals of C’ and C
respectively.

Definitlon: A set 51 of clauses is said subsumed by a sel S2 of clauses iff each clause in S1 is an
10-instance of a clause in 52.

Definition: Node subsumption. Let n’ be a node produced by the procedure H-DEDUC, n be a node
produced by the procedure HI-DEDUC. Then node #n’ is said to be subsumed by the node n iff

1. npumerically, 0’ = n;
2. S5{n"} is subsumed by RS{n};
3. GS{v'} is subsumed by GS{n};

Definition: A goal clause of a hierarchical deduction is called a wrong goal clause iff the procedure will
backirack in finitely many steps to the pointer of such 3 node whose parent is this goal clause (or say, the
node is produced from this goal clause). Otherwise the goal clause is calied a correct goal.

Lemma I.10 For the procedure H-DEDUC, a wrong goal clause can be deleted without affecting the
final result of the procedure.

Proof: Trivial.

Lemma L11. Let S be a set of simple ground clauses, and p be a primary node where RS(1} = NIL and
GS(1) = S. If we set a local depth limit, that is greater than the total number of the different atoms in S,
for the deduction of H-DEDUC, then this local depth limit will not cause incompleteness.

Proof: Recall the local depth limit is defined to be the maximum number of framed literals of a legal
H-resolvent (previously HO-resolvent). Suppose the number of different atoms in S is N. Because each
ciause C produced in H-DEDUC is a legal and simple ground clause, there must be no two literals in C or
in the framed literals of C which share the same atom. So the procedure H-DEDUC(1) can not produce
{accept) an H-resolvent which has more than N framed literals. So the local depth limit with a value
greater than N will not affect the procedure H-DEDUC(1).

Q.ED.

Lemma L.12. Let S be a set of clauses, node 1 be the first node where RS{1) = S and GS{1}) = S. Let n
be any node produced by HI-DEDUC(1}. Then for any finite local depth limit, HI-DEDUC(n) must
backtrack to the pointer of n if *box" is not produced in {initely many steps.

Proof: Suppose the hypothesis of the lemma is true, we first prove the following proposition.

Under any finite local depth limit, if there is an infinite deduction path, A== Gy, Gy, Gyensy
from any clause G, where G, is a resolvent produced by HI-DEDUC{!) or an input goal
clause, such that Gi+1 is a legal H-resolvent of G, produced by HI-DEDUC, then there must be
a clause G’ in the A such that G’ is a2 reduction of Gy

We prove the proposition by induction on the difference of the local depth limit IN from the number of
framed literals of the starting clause G, N - FLo#. k

Suppose

o
o
I
o
[
o
)
o
€
)w’
tﬂM
£
]
o
3
B

ql .,.qmi’
where p > q1>..2qm, h > 0, m>0.

1. N - FL # = 0. In this case, only the reduction of G, can be 3 legal H-resolvent of (. Then the
"o

immediate descendant G, of G in A must be a reduction of G- So the proposition is true.

2. Suppose the proposition is true for N - FL, # < K, K > 0. Now we prove the proposition for the
4]
case N - FlLg # = K.
o

IfGisa reduction of G, then we have proved the proposition. Now suppose G, is an expansion of Gy,
Suppose
G, = PL. Ps ?LZQ...?LM) ql’i‘w,,.qm’i‘mc’i‘.
where r > p > q12>..2>qm, s>1, and ¢ is the substitution for obtaining G, from Gy,

Note the framed literal of G, i1s FL ﬁu{pL1§}, so N - FL, # < K. Then by the induction hypothesis,
4] 1 :

starting from G, there is a clause G, in A which is a reduction of G.
1If s = 1, then G, must also be a reduction of Gy Thus we have proved the proposition.

Suppose s > 1, then Gk must have the same number of {ramed literals as that of Gl, because the index
r of the first literal of G, is the same as that of G1 {This point was verified in the proof of Theorem L3).
Now, starting from G in A, we can repeat the above justification to find a reduction of Gy in 4. But,
there are only a finite number of literals of G, whose index is r, so the above justification can repeat at
most finitely many times until a reduction G’ of G, in 4, which is also a reduction of Gy, is obtained.

G o= pLZX...pLh)\ QITL\...qumX

where \ is a composition of the substitutions used in obtained G’ from G.
Thus we have proved the proposition.

According to the proposition just proved, we can repeatedly find a reduction G’ of G in A4, then find a
reduction of G* of G’ in 4, and so on. But, there are only a finite number of literals in the goal clause

Gy, so there must be 2 clause in &, which is “box®, and {rom which, there can not be any legal H-
resolvent producible by H1-DEDUC. This Contradicts the hypothesis that 4 has an mfinite length.

Thus, the proposition can be true only in the case, such that the hypothesis is [alse, i.e., under any finite
local depth limit, HI-DEDUC can not produce an infinite sequence of descendants of a goal clause.

Noticing Turther that from each goal clause, HI-DEDUC can produce only 2 finite number of resolvents,
so we finally conclude that from any node n produced in HI-DEDUC(1}, there is only a finite searching
space. If *box® is not produced in finitely many steps, then procedure must backtrack to the pointer of
the node n.

QED.

Lifting Lemma. Let C and G be two properly indexed clauses with no variable in common. Let C’ and
G’ be two simple ground clauses, which are the 10-instances of clause C and G respectively. Then if there
is an H-resolvent H' of G’ against T’ in level n, where n is any integer greater than every index of G’ and
(’, then there must be an H-resolvent H of G against C in the level n, such that H’ is an [O-instance of H
or an IO-instance of an H-factor of H.

48

We will not present the formal proof for this lemma, because the proof is essentially the same as the
typical proof of the lifting lemma for the ordered resolvents of the ordered clauses, and augmented by the
justification concerning the seis of framed literals of the resolvents. The reader may refer to [11].

Now we prove Theorem 2 of section 7, i.e., HI-DEDUC is 2 complete procedure for first order logic. This
theorem is stated precisely as following:

Theorem 2. If S is a unsatisfiable set of clauses (cach clause has empty set of framed literals), Sg is the
sct consisting of all clauses of 5 and all factors of the clauses of S, and if node 1 is the first node where
RS{1) = 5;, GS(1} == S, then there is a local depth limit N, such that HI-DEDUC(1) exits with *box® in
finitely many of sieps.

Proof: According to Herbrand's theorem [6], we can obtain a minimally unsatisfizble set S’ of clauses
such that each member of 57 i3 a ground [O-instance of a clause in 5; Because S; includes all factors of the
clauses in 5, we can suppose, without losing generality, that each clause in S’ is a simple ground clause.
We suppose that the local depth limit used in HI-DEDUC is larger than the number of different atoms in
S,

First we construct a primary node 1’ such that RS{1’) = NIL and GS(1’) = S’. Then we initialize both
calls of the procedures, H-DEDUC(1'} and HI-DEDUC(1}. We will use n’ to denote a node produced by
H-DEDUC (rumerically n’ = n}.

We first prove the following proposition:

If each wrong goal encountered in the deduction of H-DEDUC(1'} is deleted, then we can
obtain a deduction path of H-DEDUC(1’} and a deduction path of HI-DEDUC(1) such that:

1. For each recursive call of H-DEDUC(m’}, there is a recursive call of HI-DEDUC(m),
such that node m’ is subsumed by node m;

2. For each node n’ produced by H-DEDUC(1'} before H-DEDUC(m’) is called, there is a
node n produced by HI-DEDUC(1) before HI-DEDUC{m) is called, such that SS{n’) is
subsumed by RS{n).

We prove the proposition by induction on the number of times of recursive calls of H-DEDUC.

1. H-DEDUC 1s called only 1 time, ie. H-DEDUC{1’). Because, by condition, node 1’ is subsumed by
node 1, and since no other node is produced before, then the above proposition is trivially true.

2. We suppose that the proposition is true until the K’'th call of H-DEDUC where K > . Now H-
DEDUC{n") and HI-DEDUC{n} are currently called respectively.

We show that the proposition is true for the K+1'th call of H-DEDUC. If as was supposed each wrong
goal clause is deleted, then each node produced by H-DEDUC, until now, is obtained from a correct goal.
Since, according to lemma L10, deleting the wrong goals from H-DEDUC will not cause incompleteness to
H-DEDUC, there must be at least one correct goal clause inm GS{n'). Note that, by the induction

hypothesis, node n’ is subsumed by the node n. To prove the proposition, we need only to consider the
following cases:

Case 1. There is a clause G’ in G5{n’}) which is an IO-instance of the first goal clause G in GS(n), and G’
is a correct goal.

According to Corollary 1.4, without losing completeness, we can change the order of the clauses in GS{n’)

P

49

to make G’ be the first in GS{n’}. So, without losing generality, we can suppose G’ is the first goal clause
G’ in GS{n'}.

Let HI-DEDUC(n) go ahead for cne step, until the next call HI-DEDUC({m), where m is the node name
assigned by function GETNODE(){see definition of HI-DEDUC). Let Gl = REORDER(G). Now we
reorder G’ to be G1’, so that G1' is an IO-instance of G1. Note that, according to Corollary 1.3, the level
subgoal reordering for the goal clause G1' will not cause incompleteness to H-DEDUC. Then let H-
DEDUC(n') go though this round of deduction, during which let RANDOM() = m’- I’, where I' is the
index of the first literal of G1. Then H-DEDUC(n’} is going to call H-DEDUC{m’}.

Because node n' is a regular node, I'<{n’. By the definition of GETNODE, m = n+1 {m’ = n'+1'}). So
m’ - I’ must be a positive integer. This conforms to the definition of the function RANDOM.

We need to prove that node m’ is subsumed by node m. Because G1’ is an 10-instance of G1, the indices
of the first literals of G1’ and G1 must be identical numerically. Suppose they are I’ and 1 respectively. By
the induction hypothesis, the set SS(I'} must be subsumed by the set RS(I) (Recall that the rule set used in
H-DEDUC is SS{I'} = GS{I'JURS({I’} and the rule set used in HI-DEDUC is R5{I}}.

Then for any clause C' in SS{I'}, there must be 2 clause C in RS{I}, such that C" is an {O-instance of C.

Suppose there is an H-resolvent H’ of G1’ against C’. Then, because H-factors are included in Hl-
DEDUC, and according to the lifting lemma, there must be an H-resolvent H of G1 against C such that H’
is an IO-instance of H or ' is an [O-instance of an H-Tactor of 1.

Therefore GS{m’} must be subsumed by GS{m]}.
Because RS(m’) is a subset of SS{I'} and RS{m} = GS{m}USS(I}, SS{m’} must be subsumed by RS(mn).
Thus we can conclude that node m’ is subsumed by node m.

Because only the node n' and the node n are modified in the above step and since SS(n} is not affected
by the modification of node n, and G’ is deleted from SS{n’}, SS(n’} must still be subsumed by RS(n}.

Thus, the proposition is true for case 1.

Case 2. There is no correct goal clause in GS({n’}) that is an IO-instance of the first goal clause of the
node n. Let H-DEDUC(n’} pause, and let HI-DEDUC(n)} go ahead. According to Lemma 1.12, by means of
the local depth limit, the procedure will backtrack to the node n again il the "box*® is not produced in
finitely many steps.

If “box® is obtained by HI1-DEDUC during the above process, then we have proved the proposition.
Otherwise we can suppose that HI-DEDUC(n) has backiracked to node n. Note the original first goal
clause has been deleted from the GOALS field of node n. But node n’ must still be subsumed by this
modified node n. Now we can repeat the discussion from case 1.

Case 3. The first goal clause G’ in node 1’ is an 10-instance of the first goal clause in node n, but it is a
wrong goal. According to Lemma L10, we can simply delete G’ from the GOALS field of node n’ without
losing completeness. Obviously, the node n’ with G deleted is subsumed by the node n. Now we can
repeat the discussion from case 1.

All the cases have been proved.

In fact, we may not know whether a goal clause in the node n’ discussed above is a correct goal or 2
wrong goal before *hox® is finally obtained by H-DEDUC{1'). But, we can construct the above proofs in
following way:

1. Record the whole history of the deductions in constructing the proofls of E'§~DEDUC(1’) and
HI-DEDUC{1).

[

. Each goal clause encountered in H-DEDUC is first treated as a correct goal in the execution of
the above proof process.

3. If a backtracking happens in the deduction of H-DEDUC, or if a node produced {or modified
later} by 1I-DEDUC is not subsumed by the corresponding node produced (or meodified later)
by H1-DEDUC, then ihe parent of the node, which has the emply GOALS field, must be a
wrong goal. Remember this wrong goal. Then according to the recorded history, redo the proof
process of H-DEDUC(1’} and H1-DEDUC({1} until this wrong goal is encountered. But, this
time, we delete the wrong goal, and then continue the construction of the proofs.

Recause H-DEDUC is a decision procedure for propositional logic, there can be only a finite number of
possibilities of whether or not the goal clauses encountered in H-DEDUC are wrong. Also, nofe that,
according to Lemma [.11, the local depth limit used in HI1-DEDUC is large enough for deducing ®*box®* by
H-DEDUC{1’). Then, after a fipite number of repetitions ol the above process, we must obtain a
straightforward proof of H-DEDUC(I'} and, accordingly, a deduction of *box" by HI-DEDUC(1) is
obtained.

Q. E.D.

<

Acknowledgments

This project was dome under the principle guidance of my supervisor, Professor W. W. Bledsoe. He
contributed substantially to this paper by his mathematical thinking, valuable suggestion, phrasing and
correction of the manuscripts. I am deeply indebted to Prof. W.W. Bledsoe, also for his inspiration and
encouragement.

1 would like to thank Prof. RB. Anderson and D.L. Simon, who read this manuscript and made 3
number of corrections. Thanks S. Q. Chou and L. M. Hines for helpful talks and for help in my use of
SCRIBE.

52

References

1. Anderson, R., and Bledsce, W. W. A linear format for resolution with merging and a new technique
for establishing completeness. J. ACM 17 (July 1970}, 525-534.

2. Bledsoe, W. W. Non-resolution theorera proving. Artificial Intelligence 9 {1977}, 1-35.

3. Bledsoe, W. W. and Hines, L. M. Variable elimination and chaining in a resclution-based prover for
inequalities. Technique report, ATP-56A, University of Texas at Austin. 5th Conference on Automated
Deduction.

4. Boyer, R. 5., and Moore, J S. A computational logic. Academic Press, 1979.
5. Boyer, R. 5. Locking: a restriction of resolution. Ph.D. Thesis. University of Texas at Austin.
8. Chang, C., and Lee, R. C. Symboi logic and mechanical theorem proving. Academic Press, 1973.

7. Kowalski, R., and Kuehner D. Linear resolution with selection function. Artificial Intelligence 2
{1971}, 227-260.

8. Loveland, D. W. Mechanical theorem-proving by model elimination. J. ACM 15, {April 1968),
236-251.

9. Loveland, D. W. A simplified format for the model-elimination theorem-proving procedure. J. ACM
16, (July 1969), 349-363

10. Fleising, S., Loveland D., Smiley III A K., and Yarmush D. L. An implementation of the model
elimination proof procedure. J. ACM 21, {January 1974}, 124-139.

11. Loveland, D. W. Automated theorem proving; a logical basis. North Holland, 1978.

12. McCharen, J. D., Overbeek, R. A. and Wos, L. A. Problems and experiments for and with
automated theorem-proving programs. IEEE trans. on compt. C-25, NO.8, {August 1976).

13. Nilsson, N. J. Principles of artificial intelligence. Tioga, Palc Alto, Calif., 1880.

14. Overbeek, R. A. A new class of automatic theorem proving algorithms. J. ACM 21 {1974) 191-200.

15. Tyson, W. M. A priority-ordered agenda theorem prover, Ph.D. dissertation, University of Texas at
Austin {1981).

16. Wos, L. T., Carson, D. F. and Robison, G. A. Efficiency and completeness of the set of support
strategy in theorem-proving. J. ACM 12, (1965}, 687-697.

¥ i

