A Description of the Functions of the
Man-Machine Topology Theorem Prover

Peter Bruell
May 1973

University of Texas, Austin, Texas

ATP-8

Sy

A Description of the Functions of the

Man-Machine Topology Theorem Prover.

ij@/ é)f pel 0,

L d’;\‘

S

O

0

Some Things to Notice

1.

The third argument, HL, of 10A was at one time used as an
hypothesis label in the same way that the third argument, TL,

of TMPLY is used as a theorem label. However, HL now serves

no purpose at all.

At various places calls to HOA and IMPLY are indicated
with fewer arguments than are actually necessary =-- only the
true ingredients of the calls are listed. See the LISP code for

the actual calls made in each case.

Many examples are written in ordinary mathematical notation (see for
example EL-REDUCE) rather than the painstakingly accurate prefix

notation actually required.

Free variables are used throughout the program. If the binding of
a variable in a function FOO cannot be determined by tracing back

the functions which call F00, look in INITIALIZE -- the variable

is there to be bound.

PART 1 -- The Main Functions

ACT N

I

e
il

(CAR B) B AN-variable in HOA

v
il

(CAR C) C A=variable in IMPLY

If N=2 and Y 1is on the EXPLODE 1list of X then HOA is
called using the instantiated definition of B to %ry to prove C. This

is the PEEK feature.

Example
B =0ctF
o
C = Cover F
X = Oc

Y = Cover

Cover is among the atoms on the EXPLODE 1list of Oc so HOA

is called using Cover Fo ~F Cg to try to prove Cover F. This

o
succeeds returning FO/F as a substitution.

If N = 4,5 HOA 1is called using the instantiated definition of

B to try to prove C.

ACTION i
B A-variable in HOA
C A-variable in IMPLY
If N=2 and B and C are each "strange" then (ACT N)
If N=4 and B is "strange" or C 1is not "strange" then (ACT N)
If N=5 and B 1is not "strange" then (ACT N)

Otherwise NIL

Note: ACTION 1is called from HOA and the A-variable N is bound to

EXPL.

ADD-DEF R

ADD-DEF 1is called from the IMPLY-STOP to provide the program with

the definition of a term for which it has no definition.

Example

Suppose we are trying to prove that every T3 space is also T2. We

could add this theorem to the theorem list by calling.
ADDTH ((27 (- (T3) (T2)))

This would make the theorem available to us as theorem number 27,
At the IMPLY-STOP we would face the problem of telling the program
what T3 and T2 spaces are, assuming that it does not already know.

This problem is solved by using the ADD-DEF feature:

(ADD-DEF (T2) (ALL P (ALL Q (= (~ (= P Q))
(SOME G {(SOME H (~ (OPEN G) (~ EL. P G)
(~ (OPEN H) (~ (EL Q H) (= (INTERSECT G H) (EMPTY))...)

There are two things to notice here. The first is that the definition
is entered in prefix notation. The second is that the definition contains
quantifiers. The function ADD-DEF- will make two definitions out of
the one we supply. It will do this by calling REMQ twice -- once with
Qdd parity and once with even parity. REMQ will in each case return
an equivalent quantifier free form of the definition. The odd parity
definition will be instantiated for the term if it appears in the
hypothesis and the even parity definition will be instantiated if it
appears in the conclusion. Notice that the odd parity definition of T2
will be stored under the indicator DEF2 on the property list of T2

and the even parity definition will be stored under the indicator DEF1.

ADDR-TH R

ADDR-TH is called from IMPLY-STOP to make a new entry in the

REDUCE table.

Example

Suppose we are trying to prove the theorem
A €C ~B ©C —-A UB c¢
o= 0 0~ o o] o= 0

This is easily proved by 1IMPLY once the conclusion is defined. But there

is a way to prove this theorem by simply rewriting the conclusion.

REDUCE had the rewrite rule P U Q CR="PCRA~QCER

the above

If

theorem would be trivially proved. This rewrite rule can be added to

the REDUCE table by using the ADD-REDUCE feature at the IMPLY -

STOP, viz.

(ADD-REDUCE PUQCR PCR ~QCR)

This instruction will cause the rewrite rule to be CONSed

the global variable LU-LIST. When REDUCE

clusion of the theorem, the function LOOK-UP will be called.

will match the conclusion with P U Q € R and return A0 CC ~B

The theorem then becomes

A CC ~B ©CC -A ©C ~B CC QED
o~ 0 o™ 0 c - 0 O

o —

"Note: The ‘actual entry made at the IMPLY-STOP is

(ADD-REDUCE (SUBSET (UNION P Q) R)

(~ (SUBSET P R) (SUBSET Q R)))

ADD-PATRS R

ADD-PAIRS 1is called from the IMPLY-STOP

of a theorem by using PAIRS. See PAIRS

g
o
H
s
o
o
I

ADD-H stands for "add hypothesis.”

for an example,

It is called by DPUT#%,

onto

0

is now called on the con-

LOOK-UP

cC
- 0

to simplify the proof

ADD-H

calls ADD-H* to make one substitution ¢ out of the substitutions in

S and the manual substitutions on the PUTLIST and returns Dg ~ H.

ADD-H%. P §

ADD-H* collects the list of substitutions on the PUTLIST = P and
puts them together with the substitutions in S. Its value is not simply
(APPEND P S) because the substitutions on the PUTLIST must be turned

around first.

Example
P= ((EU (~ (OPEN U) (SUBSET U (GS1)))). F))
S = ((H RS1))

Value...

((F E U (~ (OPEN U) (SUBSET U (GS1)))) (H RS1))

ADDTH TH

ADDTH adds TH to the THLIST. It also adds the reference number
(CAR TH) to the list of reference theorem numbers THN. See example in

ADD-DEF .

ANDATOM L

ANDATOM removes all the ~'s from a formula in prefix form. Note

that ~ 1is always assumed to be a binary connective in this program.

ANDIFY L

ANDIFY . links together the list of formulas in L by ~'s.

AND-ON A B

AND-ON returns (~ A B) if neither A nor B is NIL. If one

is NIL the value is the other.

ANDS H L

ANDS 1is called as part of the "back chaining" rule of HOA and
also called from FORCH2. ANDS is a miniature HOA and TIMPLY cowbined.

H is used to prove L wusing unification alone. H and 1L are

assumed to have no toplevel connectives except possibly a's. a=-splits

in L are reversed (if necessary) to avoid possible trapping problems.

B

Examples

Arguments of ANDS...

(EL X M); (SUBSET (R) (Q))

Value of ANDS...

NIL

Arguments of ANDS...

EL X M); EL () =)

Value of ANDS...

(X Pr) ™M2z))

Arguments of ANDS...
(~ €L @) @) (~ EL (®) (1)) (OPEN (V))));

(~ (EL X A) (OPEN A))

Value of ANDS...

(X P) (AV))

Note that in this last example the substitution (X Y) (A U)) is
a trap since there is no way to prove (OPEN (U)). ANDS reverses the

conjuncts in L and then produces the correct substitution.

APPEND-T X Y

The arguments of APPEND-T are substitutions. If either one is
*T% the other is returned. Otherwise the composition of the two sub-

stitutions is returned,

&
[£5]
o
(@]
>
e

This function is the same as the LISP function SASSOC except

that it uses EQUAL where SASSOC wuses EQ.

BACKUP

BACKUP asks how many levels the user wants to back up in the proof
of a theorem. It expects the user to type in an integer N and initiates

a sequence of N errors which cause LISP to fall back through N

errorsets. These errorsets have been entered via the function TRAP
which the user has implicitly called by typing B at the IMPLY-STOP.

See TRAP.

CRUNCHLIST L

This function eliminates duplications in the list L It also

removes all occurrences of the atom NIL on the toplevel of L.

CYCLE TH

CYCLE célls IMPLY to prove the quantifier free form of TH. 1If
TH 1is of the form A <> B CYCLE will first call IMPLY to prove
A —»B and then to prove B — A. Before the actual call to IMPLY is
made CYCLE will TREEP the theorem and wait (at a point called
CYCLE-STOP elsewhere in this report) for the user's permission to
continue. This permission is granted by typing anything except the word
RUN.

If the word RUN is typed the program will bring in the functions
from the file RUN and call the function RUN. RUN will ask (WHICH
HISTORY?) and will expect to read either an atom U assigned to a
HISTORY by SAVE-HISTORY or an integer N. 1If an integer N 1is read
RUN will set the atom HISTORY to the Nth history read off of the
local file HISTORY. If an atom U is read RUN will set the atom
HISTORY to the history which is the value of U. 1In either case the
RUN-LT will be set to *T% and IMPLY will be called.

See REMQ for a discussion of the free variable REMQTH.

DEFINEC A

This function is entered by typing DC at the IMPLY-STOP. Tts
effect is to define the conclusion, C, of the theorem. ‘Along with
several other functions which have A as their only A-variable,
DEFINEC calls OK to make sure the user approves of the action he has
just initiated. A will be bound to either NIL or *T* according
as the call is made by the user from the IMPLY-STOP or from RUNDOWN
while playing back the HISTORY of the proof of a theorem. If

A = *T* the program is in RUN mode and OK will not be called.

DEFINITION A

DEFINITION is entered from the IMPLY-STOP by typing D. A read
statement inside DEFINITION then expects an atom to be typed in.
DEFINITION will instantiate the definition of this atom throughout

the theorem and call IMPLY on the result.

o
&3]
brf
=z
o

XE

|

What this function does is best illustrated by example.

D = (SUBSET A (BS1))
X = SUBSET
P = %T%

Value...

(= (EL (Xs1) A) (EL (XS1) @BsL))

D = (SUBSET A (BS1))
X = SUBSET
P = NIL

Value. ..

(- (EL x A) (EL x @®BSLY))

The value in each case is the definition of D. The two values
differ only in their skolemization and this difference is regulated

by the parity P.

DEFN* D TH

fIro

DEFN* instantiates the definition of the atom D at each occurrence
of this atom in TH. The definition is instantiated with respect to

parity by calling DEFN.

DIFFER-2 WL TL

DIFFER-2 takes two theorem labels as arguments. It returns *T%
if the two labels differ only in their last number and the last number
of WL dis a 1 while the last number of TL is a 2. DIFFER-2 isg

called from IMPLY in the event that the free variable WATCH-LABELS

contains a list of theorem labels (see DPUT*¥),

DPUT A

This function is called by typing DPUT at the IMPLY-STOP. BYPASS

i
|
|

will be set to 0 and an automatic BACKUP point will be created by a
call to TRAP. TRAP will call TRAP* which will in turﬁ call TMPLY
through an ERRORSET. At this entrance to TIMPLY the setting of
BYPASS will be detected and a call will go out to DPUT. DPUT sets
BYPASS to 1, prints a colon and calls DEFINITION. DEFINITION will
expect to read an atom to be defined in the theorem. If all goes well,
DEFINITION will define this atom and call IMPLY with the instantiated
definition. Here again, the setting of BYPASS will be detected and a

call will go out to DPUT*.

DPUT* Bﬁ

DA stands for defined atom. DPUT* will TREEP the odd parity
definition of the atom and ask if a PUT is needed. If a PUT is
needed, DPUT* will print a colon and expect a PUT to be typed in by

the user. The format of this PUT 1is as follows:
(PUT var exp)

This will cause each occurrence of the variable wvar to be replaced
by the expression exp in the definition which has been printed out.
The variable BYPASS 1is set to 2 if a PUT is needed. This will be
detected at the next entrance to IMPLY which will be made from MAN-
SUBST and will cause DPUT** to be called. If mo PUT is needed,

control will be returned to the TIMPLY-STOP.

DPUT** D R

If the atom defined by DPUT contains an arrow in ité definition
and a PUT has been made in DPUT*, this function will call IMPLY to
prove the hypothesis of that arrow. If this succeeds, the message
(ESTABLISHED HYPOTHESIS) will be printed. The new hypotheses gained
by doing so will be added to the FCBOX and the theorem label will be
added to WATCH-LABELS. IMPLY will then be called to prove the same
subgoal it was working on when the DPUT was entered at IMPLY-STOP.
However, it will now have additional hypotheses to work with as a result
of the successful attempt to establish the hypothesis of the arrow. If
this hypothesis cannot be established, the message (COULD NOT ESTABLISH

HYPOTHESIS) will be printed and control will be returned to IMPLY=-STOP.

Example
It should be clear that DPUT, DPUT*, and DPUT** work as a team.

They should never be called explicitly. They should only be entered by
typing DPUT at the IMPLY-STOP. 1In the following dialogue an ‘'m"

at the margin stands for machine output and an "h" stands for human

input.
m IMPLY -STOP
h TP tree print
m (REG)

(OCLFR)

(CC &)

h

=

IMPLY ~-STOP
TL

a1

MPLY -STOP

DPUT

OCLFR

(0C F)

(COVER (G))

(REF (G) F)

@LF (G))

(IS PUT NEEDED?)

YES

(PUT F (TTT))

(MANUAL SUBSTITUTION)

(REG)

(0C (TTT))

(COVER (G))

theorem label

(REF (G) (TTT))

@LF (6))

(CC G)
0K?77?
h OK

m (TRY PROVING HYPOTHESIS)

(ESTABLISHED HYPOTHESIS)
MPLY~STOP
h TP

(REG)
(COVER (G))

REF (G) (TTT))

~

LF (G))

(CC &)

oleatonta
W

WATCH-LABELS

1l

CARD))

FCBOX = ((~ (COVER (G)) (~ (REF (G) (TTT)) (LF (G)))))

WATCH-LABELS is set so that the program will begin "watching
labels.”™ At each subsequent entrance to IMPLY, a check will be made
to see if the theorem label is (1 2). This is done by calling
DIFFER-2 on (CAR WATCH-LABELS) and TL. Before the proof of (1 2)
is begun, the hypotheses in (CAR FCBOX) will be added to H. WATCH-
LABELS and FCBOX will each be set to the CDR of what they were.
In this case, each will be set to NIL, but in general, this will not
be true. The point is, that WATCH-LABELS and FCBOX are stacks and
their purpose is to insure that each subgoal is proved with the proper

hypotheses.

EQL-EX A B

EQL-EX attempts to unify A and B. If 0 1is the most general
unifier of A and B, then o is the value of EQL-EX. If A and

B cannot be unified, the value of EQL-EX is NIL.

E
ot
o
-t
[#2]
[._]
=

|
|

FIXH reinstatiates definitions that were instantiated manually

in the hypothesis of a theorem at an earlier point from the IMPLY-STOP.

It also REPUTs for variables that received a value using PUT at
the IMPLY-STOP. FIXH knows which definitions to instantiate and
what PUTs to make by scanning the HISTORY of the proof. FIXH is
called from IMPLY before the second subjoal of an a-split is sent

as the new subgoal to be proved.

GETDEF A

GETDEF returns the odd parity definition of the atom A. It is

called from DPUT#*¥,

HELP

HELP 1is called from the IMPLY-STOP by typing either E or EV.
An EVALQUOTE or EVAL 1loop is entered depending on whether E or

EV is typed.

HISTORY

The value of HISTORY is always NIL. If the program is in run
mode, i.e. RUN-LT = *T*, NIL is returned immediately. Otherwise the
global variable HISTORY is first set to (CONS A HISTORY) and then
NIL is returned. HISTORY 1is called before almost every entrance to
IMPLY to record a reason for this entrance. The atom HISTORY is
building a linear history of the proof of a theorem. This history may
be played back at a later time to repeat steps in a proof without any

human intervention.

HOA

is the routine IMPLY calls to use the individual hypothewes

to prove the current subgoal. When HOA is called by IMPLY the free

variable

is set to an integer N. If HOA is called recursively

N times without proving the subgoal it returns NIL. HOA always

first checks to see if B and C can be unified and returns their

most general unifier if they can.

The following table indicates some of HOA's actions on the basis

of the form of B

Action Taken

If (HOA Hl C) yields ¢ then o
Otherwise (HOA H2 C)

If EXPL # 0 and (ANDS E C) vyields
g then (IMPLY H Do) H is a A-varisble
of IMPLY. Otherwise NIL. This is "back chaining.”

(HOA (D 2 E A E - D) C)

If D and E are the same expression
then NIL

If D occurs in € or in H - {D = E)
then (IMPLY [H -~ {D=E}]o Co) where

¢ 1is the substitution D/E. If this
fails, the substitution E/D is attempted.

If (HoA Hl C) vyields oy and (HOA Hz c)

yields Oys then Gy © Oye Otherwise NIL.

(IMPLY H-{~D} D . C)

Il EXPL = 1 when HOA 1is entered and none of the entries in
the preeceding table applies then HOA will call PATRS if the main
predicate of B matches that of C and there is an entry in the
PAIRS table concerning this predicate. This set of circumstances is
not as unlikely as it may seem. In practice it is a useful way of
invoking lemmas to aid in the proof of a theorem. See PAIRS for examples.
If EXPL = 1 and the remaining conditions cannot be satisfied, HOA
will return NIL.

If EXPL =0 and B and C cannot be matched, then HOA returns
NIL. TIf EXPL = 2,3,4, or 5 and the table does not apply, then HOA

calls (ACTION EXPL).

HOLD=

HOLD= is called from HOA when an equality substitution is made
in either direction. The global variable HOLD= will have value »T%
if the HOLD= option is used at the IMPLY-STOP. The purpose of this
option is to allow equality substitution to act as a DETAIL call to
IMPLY. Equality substitution inside of HOA always results in a
call to IMPLY and the fourth argument LT of IMPLY will receive
the value of a call to HOLD= as its new value. This value will be
either 3 (a DETAIL call) or the current value of LT, depending

on whether the HOLD= option has been used or not.,

HYP

JIwo

|

R is a list of numbers (nl,...nk) and HYP returns hypotheses

number nl,...,nk in a list.

3
g
3
e
=

|

L is the list of hypotheses in H with toplevel ~-signs removed.

=

is as in HYP. HYP* calls HYP** to select the individual hypotheses

HYP**

e
=

See HYP*,

IMPLY H C TL LT

ST =R 2R

A skeleton of IMPLY 1looks like this:

(DMPLY (A (B C TL LT)
(PROG (K X Y SAVE SAVEL SUBST).
(COND
[(EQN LT 6)...]
[RUN-LT...] 1
[BYPASS...])
(COND
[(EQ LT "B) (SETQ LT 3) (GO DOWN)]
* [(OR (ONEP LT) (LESSP 2 LT))...] 11

[T NIL])

DOWN
EVLOOP

(OPTIONS)

AND-SPLIT

(RETURN (COND

[] 11T

[]

[T (GO BELOW)]))

BELOW

(SETQ K 0)

ABOVE

(COND

L] A
L]

[T (GO ABOVE)]))0

The numbered CONDs serve the following purposes.

If IMPLY is entered with LT = 6 or RUN-LT # NIL or BYPASS #

NIL this COND controls further execution.

A. LT =6

If a theorem subgoal is of the form H — (A = BY IMPLY will
first recall itself on A —- B with LT = 6. The first clause of
COND I will then be satisfied. IMPLY will set EXPL = 0 and

return the value of (HOA A B).

B. RUN-LT # WIL
This will be the case if the program is in RUN mode. RUN
mode ié entered by typing RUN at the CYCLE-STOP. This clause
has three subclauses:
i) The program keeps track of unproductive calls to
HOA by making an entry of the form (8§ n) if the call to
HOA was made with EXPL = n. When playing back the history
of a proof this entry will be detected by the first subclause.
ii) RUNDOWN will return *T% when all steps of the HISTORY
have been completed. When this happens the HISTORY list,
which has been set to the CDR of what it was at each entrance
to RUNDOWN, will be reset to what it was before the first
entrance to IMPLY from RUN mode, i.e., will be reset to
the history of the proof up to the point of the current
entrance and control will be returned to the IMPLY-STOP.
iii) RUNDOWN will return NIL if the first item on the
HISTORY 1list is & one {(indicating an ~=-split) or ome of

the following:
DCBC PES SP ~=H ~=C 0 &(C

This subclause will transfer control to the label AND-SPLIT

in this case.

C. BYPASS # NIL
The third clause of COND I will be satisfied if the DPUT

option is used at the IMPLY-STOP. See DPUT.

I1. The fourth argument of IMPLY is a light. The light, here=~
after LT, 1is set to 1 when IMPLY is first called by CYCLE.
With this value the clause labeled * in COND IT will be satisfied.
The act of satisfying this clause will be called CATCHING.

CATCHING will cause a recursive call to IMPLY to be made with
the same values for H,C, and TL but with (SUB1 LT).

There are three other ways of CATCHING from the IMPLY-STOP.
Each of these arises from a recursive call to TIMPLY caused by

excercising a certain option.

OPTION LT VALUE
DETAIL 3
(DETAIL n) 5

(CNT n) 4

The above table lists the three relevant options and the
assoclated LT wvalues that the recursive calls from IMPLY-STOP

send.

II1.

Each time CATCHING occurs the PROG wvariable SAVE is
set to a copy of the HISTORY 1list. This is because the IMPLY
call that CATCHING causes may fail and we want to be able to
restore the HISTORY 1list to what it was before such a misattempt
was undertaken. This accounts for the three clauses directly
below the comment card | RESTORE HISTORY IF FAILED |

The subclause [(ZEROP HOAL)...] of * will be satisfied
if HOA cannot prove the current subgoal in n recursive calls,
where n 1is the value of HOAL. HOAL is normally set to 12,
(DETAIL =n) and (CNT n) will each set HOAL to n * HOAL
before HOA 1s called.

The clause [(EQ LT "B) (SETQ LT 3) (GO DOWN)] will be
satisfied if a backup point is established using either the
DPUT option or the B option. Both will call TRAP which will
call TRAP* where a call to IMPLY is made through an errorset
with the LT set to B. The clause will also be satisfied if
RUNDOWN returns *T% (see above) for in this case, IMPLY will

be called recursively with LT set to B.

This COND 1is the heart of IMPLY. The following table

explains some of the actions it performs.

Arguments of IMPLY Value of IMPLY

1. HA AB) (1O If
(IMPLY H A (1 1) -1) yields 9y
and

(MPLY H B (1 2) -1) yields o,

then 01 ® 02

Otherwise NIL

7.

H (UNIV) (1) 0

H C

H NIL

(1) o

(L o

H{AB) (L) O

H(A-B) (1) 0O

H@A<B) (1)O

H (A

B (1) ©

ki

If H=C then *T%
If there is a substitution

o that unifies H and ¢

then o.
{GO BELOW)
1f

(IMPLY ~ALH B (1) 0) vyields
o then o
Otherwise

(IMPLY ~B.H A (1) 0)

If (IMPLY AB (1 - C) 6)
returns a substitution o

then o

Otherwise A 1is forward
chained into H producing

a set (possibly empty) of new
hypotheses N and the value is

(IMPLY NAALH B (1) 0)
(MPLY H (A - B ~ B - A) (1) 0)

If A and B can be unified
by ¢ then o. Otherwise
(GO BELOW).

The numbers at the side of the entries in the table correspond
to the order of the clauses in COND III. Between the entries
numbered 1 and 2 there are two additional clauses. The first
of these calls REDUCE* on both H and C. The second argument
to REDUCE* is a parity indicator. Thus, C is REDUCEd with
even parity and H is REDUCEd with odd parity. The second clause
checks to see if REDUCEing has introduced an ~ as the main
connective of C. This is possible. For example, if C had been
(EL X (SIGMA G)) then (SETQ C (REDUCE* C T)) would have set C
to (~ (EL B G) (L X B)). 1If an ~ has been introduced control

is transferred back to the label AND-SPLIT.

This COND controls the calling of HOA. The PROG wvariable
K is first set to 0. A call is made to HOA with EXPL = K
for K= 0,1,2,4, or 5. If K = 3, the definition of C is
instantiated and REDUCEd. This REDUCEd defiﬁition is TREEPed
and becomes the new conclusion in a recursive call to IMPLY.

A call to HOA when EXPL = n will return NIL in case of
honest failure or lack of time. In the latter case, HOA will set
HOAL to O. IMPLY immediately returns NIL from COND IV, if
this happens. In the former case, a marker (S n) is added to
the HISTORY 1list. This marker will prevent the identical call

from being made if the history of the run is played back. This

is what is referred to under COND I as an unproductive call.

The PROG wvariable SKIP will be set inside of the function SKIP
(called from COND I) when the program is in RUN mode. It will
contain a list of numbers corresponding to calls to HOA that

should be skipped.

INITIALIZE

This function performs the initialization necessary to run PROVER.
It is called for its effect before the overlay is created. Its last

instruction is to self-destruct.

MAN-SUBST A

k)

MAN-SUBST is called from the IMPLY-STOP by doing a PUT, It
prints (MANUAL SUBSTITUTION), TREEPs the revised theorem and calls
OK. 1If the user approves, MAN-SUBST calls IMPLY on the new theorem.
If IMPLY succeeds returning a substitution o then the value of
MAN-SUBST 1is the composition of the PUT and ¢g. If IMPLY cannot
prove the new theorem, the value of MAN-SUBST will be NIL. The
A-variable A is either NIL or *T#* depending on whether MAN-SUBST
is called from the IMPLY-STOP or called while the program is in RUN
mode.

%

See DPUT* for the format of a2 PUT.

NEWTH

=

NEWTH is called from IMPLY-STOP when it is desired to reorder

the hypotheses and/or conslusion of a theorem. If the user types

.(m —n) at the IMPLY-STOP, the program will recall IMPLY (after
receiving an OK from the user) making hypothesis number m the first
hypothesis in H and making conclusion number n the first conclusion
in €. Typing (n—C) or (H - n) reorders only H or only C re-
spectively. NEWTH calls PICK to perform the reordeging of H and C.
In practice, this function is called when it is mnecessary to manually

avoid a trapping problem. See the REJECT option.

" OCCUR

14
fiwd

OCCUR checks for an occurrence of the expression X at any level
in the expression Y and returns *T* if one is found. Otherwise it

returns NIL.

OK is called every time the theorem is changed in any way by
human intervention from the IMPLY-STOP. It prints OK?7? and waits

for the user to answer.

Possible answers Action taken

oK The program continues
computing with the change

in effect.

OKS The program continues
computing with the

change in effect. However,

HOAL is first set to 0.
This will cause immediate
failure the first time

HOA 1is subsequently entered
and control will return to

IMPLY-STOP.

Anything else The change is rejected
and control returns to

IMPLY~-STOP.

OPTIONS

OPTIONS is called only from IMPLY. If LT =0 or 2 or LT < 0
OPTIONS transfers control to the label AND-SPLIT in IMPLY. Other-
wise, options prints IMPLY-STOP and waits for the user to type in
a command. Any command that is not recognized will cause IMPLY-STOP

to be printed again. The commands that will be recognized are the

following:
Command Result
C Continue with the proof.
A Assume that the current

subgoal is true, i.e.

return *T%,

F Fail the current subgoal,

i.e. return NIL
EDIT Call in the LISP?P editor.

B Create a backup point by
calling TRAP.

BACK

FREEZE

REJECT

DETAIL

SH

EXPL

DPUT

TP

TPC

TPH

EV

bC

HOLD=

Back-up in the proof by
calling BACKUP.

DEFSYS onto file FREEZE.
See explanation below.
See explanation below.

See [1] for an explanation

of this command.

Print the HISTORY 1list.
Save the HISTORY 1list.
Print the valﬁe of EXPL.
Print the theorem label, TL.
See DPUT.

Tree print (TREEP) the theorem.
TREEP the conclusion only.
TREEP the hypothesis only.
Enter an EVAL loop.

Enter an EVALQUOTE 1loop.

Move the hypothesis of an
arrow in C over to H. This
can be done to avoid automatic

forward chaining.
See DEFINITION.
See DEFINEC.

See TRYREDUCE

See HOLD=

FcC nlnz...nk)

(DETAIL n)

(CNT 1)

s a)

(PUT v e)

(USEH nl...nk)
(USE £)

(H —énl...nk)

(nl...nk =)

(nl...nk —9m1...m,)
(ADD-PAIRS a ¢ n)

(ADD-REDUCE e n)

(ADD-DEF a d)
(TP Vl"°vn)
(TPC v, ...V)

(TPH Vl...vn)

)

See FORWARDCH.

DETAIL with n-times
the usual timelimit,

i.e. mn % HOAL.

Try proving a subgoal
with n-times the usual
timelimit. Unlike DETAIL
and (DETAIL n) this
command is not intended

to split the subgoal --
failure will return to

the point of departure.

Print the internal skolen

representation of a.
See MAN-SUBST.
See USEH.

See TUSE.

See NEWTH.

See ADD-PAIRS.

See ADDR-TH.

See ADD-DEF.

See VPRINT.

See VPRINT#.

18

If PROVER has just proved a theorem subgoal by finding an appronriate
substitition ¢, it will print PROVED. Typing GO will cause ¢ to
be returned as a value to be used in further subgoals. HOAL will be

set to O which will cause the next entrance to HOA to fail immediately.

REJECT

The user should use this command if he reco w*ﬁes that PROVER has

trapped itself by making an incorrect substitution. %For example, when

trying to prove a theorem of the form
P(x) ~P(y) ~Qy) 2P& ~Q&)

PROVER will first prove P(x) by instantiating X for x. This
is a trap, for there is no way to then prove Q(xoj. Typing REJECT
after P(x) has been incorrectly proved, will cause the substitution
xO/x to be rejected by returning NIL. Note that REJECT and F

actually do the same thing.

O
it
O
=

>

o

OR-ON returns (v A B).

PAIRED A TL

PAIRED returns *T% if the predicate A has been ¥paired” on

already in the proof of the current subgoal. TL 1is the theorem label.

This function is called only from PAIRS.

Examples
PATRED (COVER (1 2 1 (P COVER) 1 1 2)) returns FT¥*,

PAIRED (REF (1 2 1 2)) returns NIL.

PAIRS L H C

B T

PAIRS 1is called from HOA when EXPL = 1, the main predicate of
B is the same as the main predicate of C, and there is an entry in
the PAIRS table concerning this predicate. Strictly speaking, there
is no PAIRS table. We speak of a predicate having an entry in the
PAIRS table if the predicate has something attached under the indicator
PAIRLIST on its property list. This entry may be a preset one or it
may be made manually from the IMPLY-STOP by using the ADD-PAIRS

option.

Examples

Suppose IMPLY 1is trying to prove the following subgoal of a

theorem:
F G ~ Cover F - Cover G
o — o s} o)

It is clear that the first hypothesis will not imply the conclusion.
The second hypothesis is alsoc usable to imply the conclusion as it
stands because FO and Go are both constants and hence cannot be

unified. Nevertheless, the feeling one has is that this second hypothesis

ought to be useful, for it has to do with a COVER. This is where
PAIRS comes in. PAIRS attempts to mediate between a hypothesis and a
conclusion that have the same predicate and provide sufficient conditions

to prove the conclusion using this hypothesis. The preset entry for

COVER in the ©PAIRS table is
(((COVER G) (COVER H) (REF G H)))
The form of this and all other entries is
((H C NC1) (4 C NC2)...(H C NCn))

PAIRS is a recursive routine which will make a call to IMPLY
for each member of this list. In our example, there is only one member

on the list:
((COVER G) (COVER H) (REF G H))
This is shorthand for the lemma
¥G¥H (Cover G ~ Ref G H — Cover H)

Notice that we are invoking this lemma by satisfying its conclusion
and one of its hypotheses. PAIRS will make the substitution FO/G,

GO/H and propose that IMPLY try to prove
F ¢ G —-Ref F G
o — © o o

which is easily proved once the definition of Ref is instantiated.

As another example suppose IMPLY 1is trying to prove

By S A ~CBLA —CblB_ '
Neither of the hypotheses as they stand can be used to imply the con-
clusion. But again, one has the feeling that the second hypothesis
should be useful. There is nothing in the PAIRS table concerning
CBL but the user may create an entry by using the ADD-PAIRS command
at the IMPLY-STOP. 1In this case, a useful entry to have in the PAIRS

table would be one to invoke the lemma
¥C¥D(D < C ~ Cbl C = Cbl D)
To this end, the user may type
(ADD-PAIRS (CBL C) (CBL D) (SUBSET D CH

at the IMPLY-STOP. This will cause HOA to call PAIRS whén EXPL = 1
and the goal is to show (bl A0 — Cbl Bo' PAIRS will then call IMPLY

to try to prove

PAIRS is called only from HOA. When PAIRS calls IMPLY it
appends a list of the form (P pred) to the theorem label, where

"pred" is the predicate that is being "paired" on. Thug, in the first

o,

KCbl F means the family F is countable.

example (P COVER) would appear in the theorem label in the call

PAIRS made to IMPLY and in the sccond example (P CBL) -would appear.
Before makiﬁg this call to IMPLY, PAIRS calls PAIRED to check if
the predicate it is about to use has already been "paired” on in the
proof of the current subgoal. If this is the case, PAIRS will not
allow double pairing, i.e. PAIRS will not "pair'" on the same predicate

again (see PAIRED).

PICK is called from NEWTH to do the actual reordering. The

value of PICK is the theorem reordered on the basis of R.

PICK*

”
e

PICK* 1is called from PICK. It rearranges L on the basis of

PROVER

PROVER is called by START only. Its only job is to ask the
user to type in the number of the theorem that he wants to prove.
PROVER will fetch this theorem from the theorem list and pass it along

to CYCLE.

PRYNT L

This function is not called explicitly anywhere in the program.

It becomes the definition of PRINT* whenever TREEP* is called.
PRYNT calls UNSKO which causes a unique (short) print name. to be

assigned to each skolem constant and skolem functiom.

ry
-
~
&
o
Jjo

PURG 1is called from HOA to purge the hypothesis B from the

list of hypotheses in G.

PUTT

>
o
o

PUTT CONSes A onto the PUTLIST and then substitutes A for

B in C.

=

REMQ A P ¥

REMQ removes quantifiers from the expression A and returns its
equivalent quantifier free (skolemized) form according to the parity P.
When the theorem is first put into skolem form by CYCLE, free variables
are interpreted to be universally quantified over the entire theorem
and thus always become skolem constants. At this time, the (LISP) free
variable REMQTH will be set to *T%. Thereafter it will be set to
NIL and "apparently" free variables will not be interpreted as "universally”

free. An example will clarify this last remark.

Example

The process of reducing a formula sometimes introduces quantified

variables whoose gquantifiers must be removed by REMQ before the

reduced expression is returned to IMPLY. TFor example, EL-REDUCE
will rewrite the formula t e oG as ?BB e G ~ t ¢ B) and.then call
REMQ to remove the existential quantifier.

The "apparently" free variables t and G will not be interpreted
as '"'universally" free variables when REMQTH = NIL. Thus the value of
this call to REMQ will be (BO e G ~te BO) or (B e G ~te B)

according as the parity P 1is odd (= NIL) or even (= *T*),

REMQ 1is a recursive function. 1In the course of recursion, skolem
wriables are stacked up in the A-variable V and skolem constants
and functions are staked up in the A-variable U. A skolem constant
(function) is recognized by the convention that ifts second letter must

be an S.

REMQV v s

REMQV is called only from SUBLISS*, V is a guantified varigble
and § 1is a substitution. REMQV returns the substitution S with the
dotted pair whose first member is V removed. There may not be such a

dotted pair and in this case, REMQV simply returns S§S.

REMOVEH A H

This function is called only from DPUT#*, It removes the hypothesis
whose predicate is A. Recall that if DPUT** is called (by using DPUT
option at the IMPLY-STOP and passing through the functions DPUT and

DPUT*) the hypothesis of an arrow hypothesis A — B 1is sent as a new

subgoal to IMPLY. When trying to establish A, the predicate P whose

definition is A — B is first removed from H.

REMOVEH* A L

REMOVEH* is the henchman of REMOVEH. The A-variable 1L is a

list of hypotheses with ~-signs removed.

SAVE-HISTORY

This function is called by typing SH at the IMPLY-STOP. The
HISTORY 1list will be printed on a local file called HISTORY. The
HISTORY will also be assigned as the value of a unique atom. If it is
designed to play the HISTORY back without leaving LISP, this unique
atom can be entered as a reply to the question (WHICH HISTORY?) which
will be printed by the program if RUN is typed at the CYCLE-STOP.

See CYCLE for more details.

SKO checks to see if the atom which is its argument is a skolem
constant or skolem function. This is accomplished by the explicit typing

convention explained in REMQ.

SKO-IN R

SKO-IN is called from MAN-SUBST. Its argument R will always be

of the form (PUT v exp). The value of SKO-IN is (PUT v (SKO-IN¥* exp)).

SKO-IN* S

SKO-IN* replaces each occurrence of a constant in § by its
internal skolem representation. What this in effect means is that all
PUTs (remember SKO-IN is called from MAN-SUBST) can be made in
terms of the short print names the program assigns to skolem expressioms,
A constant in S 1is recognized as a list of one glement whose CAR is
an atom which has something on its property list under the indicator

REPRESENTS.

START

START performs the initialization necessary before the proof of
a theorem is'begun. It calls PROVER through an errorset and prints
out MADE IT wupon an error free return. If an error occurs which is
not caught by an errorset at a lower level, START will print BOMBED

OUT.

STRANGE X

STRANGE is called only from ACTION. STRANGE returns *T% {f the
predicate of X has been declared strange. The predicates whose strangeness

has already been declared are found in a DEFLIST in INITIALIZE.

SUB2 A Z

SUB2 1is called on the atomic level by SUBLISS*. A 1is a sube
stitution (a list of dotted pairs). If the atom Z 1s the first member
of one of these dotted pairs then the value of SUBZ is the CDR of

this pair. See also SUBLISS.

SUBLISS A B

A is a substitution and B is a formula to which this substitution

is to be applied. A 1is of the form
((Vl' Sl) (Vz. 82}...(Vn. Sn))

where for 1= 1,...,n Vi is a variable and Si is a value to be sub-
stituted for Vi' By applying A to B is meant the process of re-
placing each occurrence of Vi in B by Si' If the substitution

A is empty (= *T%) then the value of SUBLISS is B. Otherwise

SUBLISS* 1is called.

SUBLISS* A B

SUBLISS* applies the nonempty substitution A to B. If B is
a quantified expression, a recursive call to SUBLISS* is made in which
the quantified variable is removed from the substitution list. This is
done to insure that a gquantified wvariable does not accidentaily receive

a value intended for an actual variable somewhere else in B.

Example

Arguments of SUBLISS*...

(® c) @ u)n

=g
it

o
i

(~ (SUBSET X G)

(EL (Z) (ED (~ (OPEN D) (SOME X (~ (EL X D) (~ (EL X G))))N))
Value of SUBLISS*...

(~ (SUBSET (C) (U))

(EL (Z) (ED (~ (OPEN D) (SOME X (~ (EL X D) (~ (EL X (U)))))))))

“Notice that, in accordance with the definition given in SUBLISS, A

actually is a list of dotted pairs.

A= (X - (@) G- WM

TRAP

e

TRAP 1is called when the user wants to establish a backup point
to which he can easily return should the need arise, while proving a
theorem subgoal. Typing a B at the IMPLY-STOP will cause TRAP to
be called with A = NIL. TRAP will then add the symbol B to the
HISTORY 1list, save the current value of HISTORY in the IMPLY PROG-
variable SAVE, and call TRAP*. If TRAP is called while in RUN
mode, A will have the value #*T% and TRAP will immediately call

TRAP¥,

TRAP¥*

TRAP* first prints out (BACKUP POINT) and then sets X to the
value of IMPLY called through aﬁ ERRORSET. The purpose of this call
is to "trap" any LISP error that is made in the scope of this ERROR-
SET. The utility of this call is that a LISP error can be made intention-
ally by typing BACK at the IMPLY-STOP. This will call the function
BACKUP which will ask (HOW MANY LEVELS??7?7) and expect to read an
integer mn. BACKUP will set the global variable GLOBALERROR to n
and initiate a sequence of n ERRORs each of which will be "trapped",
i.e. each of which will return NIL to an ERRORSET that has been entered
by typing B at the IMPLY-STOP. When all n ERRORs have been made,
TRAP* will set HISTORY to SAVE (which now has the value it received
when the first of the n B's was entered at the IMPLY-STOP), print
RESTORED, and call itself recursively. If no LISP error is made in
the scope of the ERRORSET, TRAP* vreturns (CAR X) as the value of

the ¢all to IMPLY.

TREEP L N

TREEP tree prints the formula 1 using the integer N as an

indentation regulator. See [1] for an example of a formula which has

been TREEPed,

TREEP* L N

TREEP* first puts the EXPR for PRYNT under the indicator EXPR

of the atom PRINT® then calls TREEP L N, and finally removes the
EXPR property from PRINT*. The purpose of this is to have PRINT*
mean PRYNT when TREEP is called from TREEP*. Recall that PRYNT

will print formulas with short print names for skolem expressions.

TRYREDUCE é

Typing an R at the IMPLY-STOP will call TRYREDUCE with A = NIL.
TRYREDUCE will then expect to read either an H or a C. If a C is
read, TRYREDUCE will call REDUCE* on C, TREEP the result and
wait for an OK. 1If the OK 1is given, IMPLY 1is called on the REDUCEd
version of C. The procedure is entirely analogous if an H is read.

A = *T% if TRYREDUCE 1is called while the program is in RUN mode.

UNPUT TH

UNPUT replaces each occurrence of an expression that is the value
a variable has received through a PUT by that variable. The free

variable PUTL is set in VPRINT, the only function that calls UNPUT.

UNSKO L

UNSKO is called only from PRYNT. 1L will always be a formula
having no toplevel connectives when this call is made. UNSKO will
return L with short print names for skolem expressions. The short

print name for a skolem expression is kept under the indicator SKO

of the corresponding skolem atom. The first time a new skolem expression
is printed by PRYNT, UNSKO calls UNSKO* to assign this short print

name.

UNSKO* A

A dis the explosion of a skolem atom, i.e. one whose second letter
is §. If (CAR A) has not been USED already in assigning print
names for skolem expressions, UNSKO* will do three things

1) Put (LIST (CAR A)) under the indicator
SKO of (CAAR L) -- L 1is the QA-variable
of UNSKO

2) Put (CAR L) under the indicator REPRESENTS
of (CAR A)

3) CONS ((CAR A) . 0) to the global
variable USED

If (CAR A) has been USED, NN will have as its value a digit
to be used in creating a new unique print name for a skolem atom whose
first letter has previously been used in the assigning of short print

names.

Example
TREEP* ((~ (EL (XS1) G) (EL (XS2) H)) 1)

will cause

EL &) 6

(EL (X1) H)

to be printed. Here PRYNT will call UNSKO twice,

once on each conjunct. (X881} will be assigned the

print name (X) and (X¥$2) will be assigned the print
name (X1). The following calls should now have the

indicated wvalues

GET(XS1 SKO) = (X)
GET (X REPRESENTS) = (XS1)
GET (XS2 SKO) = (X1)
GET (X1 REPRESENTS) = (XS2)

EVAL(USED) = ((X - 1))

USE

>

USE 1is called from the IMPLY-STOP by typing in (USE f) where
f 1is the number of a reference theorem prestored in the program or a
fact that will be useful in the proof of a theorem subgoal. In the
latter case, USE assigns a reference number to f and prints it along

with a message.

USED

g

USED searches the list of dotted pairs bound to the global variable
USED for a pair whose first member is the atom A. If no such pair
is found the value of USED is NIL. If such a pair P = (A - n) isg
found, TEMP1l (used freely in UNSKO*) 1is set to P. n is a LISP
number. The LISP digit corresponding to (ADDl n) will be the value

of USED. The free variable NUMBERS is set in INITIALIZE and has as

its wvalue

((1 $$818) (2 $$928)...(8 $888%))

" Notice that each element of this list is a sublist whose first
member is a LISP number and whose second member is the corresponding

LISP digit.

USEH is called from the IMPLY-STOP by typing (USEH n nz...nk)
where (nl...nk) is a list of numbers of hypotheses the user wants to
retain in the proof of a theorem subgoal. USEH recalls TMPLY on the

s ame subgoal, retaining only hypotheses nl,nz,...nk.

VPRINT R

VPRINT is called from the IMPLY-STOP by using any one of the

following options:

1) (TP V...V)
i) (TPC V ...V)
ii1) (TPH V ...V)

In each case, (Vl..‘Vn) is a list of variables which have received

their values through a PUT. The commands cause the display of

1) the whole theorem
ii) the conclusion only

iii) the hypothesis only

to be made in terms of these variables instead of the values they have
received., VPRINT calls VPRINT* to find the values the variables
have received (stored on the PUTLIST) and then TREEPs the result of

UNPUTting these variables.

VPRINT* V L

VPRINT* 1is called by VPRINT for reasons already explained.
VPRINT* is called implicitly from the IMPLY-STOP if the user types
in (v) where v is a variable. If v has received a value through
a PUT, this value will be printed out. Otherwise, NIL will be

printed out.

PART I1 -- REDUCE

DOT-REDUCE X

This function performs A-conversion. If X is of the form

(. \t ®PRD QD)) v)

then the value of DOT-REDUCE is Q(y). Otherwise the value of DOT-

REDUCE is X.

EL-REDUCE X

EL-REDUCE will be called by REDUCE* whenever its (REDUCE*'s)
first argument is of the form (EL o B) where o and § are arbitrary
formulas. The second argument of REDUCE*, P, is a parity indiéator.
It is used as a free variable in EL-REDUCE. The following table lists

actions taken by EL-REDUCE.

Argument of EL-REDUCE Value of EL-REDUCE
1) (EL (ZERO) a) (ZERO)
2) C(EL (UNIV) a) (ZERO)
3) (EL o a) (ZERO)
4) (EL o (XXX)) (UNIV) if P = #T*
5) (EL « (CLOSED)) (CLSD «)
6) (EL o (TTT)) (OPEN o)
7) EL o (~ AB)) (~ EL o« &) (EL a B))

8) (EL o {(~ A B)) {v (L o A) (EL o B))

Argument of EL~-REDUCE Value of EL-REDUCE

9) (EL o ~A) (~ EL o A))
10)’ (EL o (SB A)) (SUBSET o A)
1) (EL o (SNG A)) (= o A)

12) (EL o E X P(X))) P (a)
13) EL (o,B) (EE (X,Y) Q(X,Y))) Q(a, B)
14) (EL o RX)) (EL-REDUCE

EL o« (E Y SENN
if RX) = (E Y S(¥))

15 EL (o, B8) P(X,Y)) (EL-REDUCE
EL (o, 8) EE (X,Y) QE,Y))))
if P(X,Y) = (EE (X,Y) Q(X,Y))

If none of the entries in the table applies, the value of EL-
REDUCE 1is its argument.

Entries (14) and (15) in the table are extremely useful. They
eliminate the need for adding separate entries for terms whose definitions

can be phrased in terms of sets.

Examgles

Assume P = *T*

oG = {x| 2B(B € G ~ x € B)}

(EL-REDUCE t e 0G) generates a recursive call to EL-REDUCE

by line (14):

(EL-REDUCE t ¢ {x| *B(B € G ~ x ¢ B)})

By line (12) this reduces to (Be G~ te B). Note that

a call has been made to REMQ here to eliminate the existential

e

quantifier with respect to the parity P = #Ts,
AXB = {(xy)] (xe An~yeB))

(EL-REDUCE (p,q) ¢ (A X B)) generates a recursive call to

EL-REDUCE by line (15).
(EL-REDUCE (p,q) € {(x,y)| (x € A ~y e B)})

By line (13) this reduces to (pe A~qe B).

EQ-REDUCE X

Argument of EQ-REDUCE Value of EQ-REDUCE
= o a) (UNIV)
=oao (. Fx)) (= a (DOT-REDUCE (. F x)))
= (¢ Fx) o (= o (DOT-REDUCE (. F x)))

If none of the entries in the table applies, the value of EQ-REDUCE

is its argument.

LOOK-UP X L

LOOK-UP is called by REDUCE* only. L is a list of reduction
rules that have been defined by using the ADD-REDUCE option at the

IMPLY-STOP. LOOK-UP attempts to match the formula X to a rule on L.

If this can be done, X 1is reduced according to this rule; sece ADDR-TH

for an example.

NOT-REDUCE X

Argument of NOT-REDUCE Value of NOT-REDUCE
(~ (ZERO)) (UN1IV)
(~ (~ o B)) (v ~a ~B)
~ (v aB)) (n~a ~B)
(~~a) o
(~ (UNIV)) (ZERO)
(~ o)) (na~B)
(~ (e a B)) (W aB) (v~a ~p))

If none of the entries in the table applies, the value of NOT-REDUCE
is its argument.
REDUCE TH

REDUCE calls REDUCE* with even parity.

REDUCE* TH P

REDUCE* first calls LOOK-UP to check if TH can be reduced
according to a rule on the look-up list (LU-LIST). These rules are
the ones added by using the ADD-REDUCE option at the IMPLY-STOP. If

none of these rules can be used to reduce TH, REDUCE* searches its

own table of rules.

Arguments of REDUCE* Value of REDUCE*

(CBL o) P (CBL (REDUCE* q P))

(DOMAIN (A x (PR D Q(x)))) P D

(CLSD (CLSR a@)) P (UNIV)

(OPEN (INTERIOR a)) P (UNIV)

(REF a a) P (ONIV)

(REF o (BAR a)) P (UNIV)

(~ a B) P (~ (REDUCE* « P) (REDUCE* B P))

(> a R) P (= (REDUCE* o (NOT P)) (REDUCE* § P))
(EL a B) P Set THR = (EL-REDUCE (EL o B))

If THR = (EL o B) then THR
Otherwise (REDUCE* THR P)

(SUBSET o 3) P Set THR = (SUBSET-REDUCE (SUBSET o B))
If THR = (SUBSET o« B) then THR
Otherwise (REDUCE* THR P)

(~) P Set THR = (NOT-REDUCE (~ a))
If THR = (~ @) then
(~ (REDUCE* o (NOT P)))
Otherwise (REDUCE* THR P)

If none of the entries in the table applies, the value of REDUCE*

is its argument TH.

SUBSET-REDUCE X

Argument of SUBSET-REDUCE Value of SUBSET-REDUCE
(SUBSET (BAR o) (CLOSED)) (UNTV)

(SUBSET o (CLSR a)) (UNTV)

(SUBSET a a) (UNTV)

(SUBSET (ZERO) a) (UNTV)

(SUBSET o (UNIV)) (UNIV)

(SUBSET (v o B) v) (~ (SUBSET o y) (SUBSET B v))
(SUBSET (SNG a) B) (v EL a B) (~ (EL o (UNIV)))

If none of the entries in the table applies, the value of SUBSET-

REDUCE is its argument.

PART III -- Special Functions

GENSYM GENSYMARG

The FEXPR for GENSYM can be found in INITIALIZE. CENSYM
clears the LISP character buffer and then calls GENSYMH to create

a short GENSYM atom using the characters in GENSYMARG as a prefix.

Example

The following calls to GENSYM return the indicated values.

Note that the arguments of GENSYM are never quoted.

1) (GENSYM A) = Al

2) (GENSYM A) = A2

3) (GENSYM) = 63
4) (GENSYM U S) = US4

5) (GENSYM GE M) = GES

If GENSYM is called with no argument (3), the letter G will
be used as a prefix, If GENSYM is called with more than two arguments
(5) only the first two will be used in the prefix of the GENSYM atom.

The arguments of GENSYM (if any) should never be numeric.

GENSYMH, SHORTEN, SHORTEN*

These functions should never be called explicitly. They should only

be called by calling GENSYM.

EXPLODE A

EXPLODE - returns a list of the characters in the literal atom

which 1is its argument,

oleatonts
WY

The last five functions are not part of the main overlay. They

reside on local file RUN at run time.

Jekk

KILLRUN L

RUN calls KILLRUN to get rid of the functiomns KILLRUN, READN,

RUN, and RUNDOWN after the history has been played back.

READN

READN reads the Nth history off of the local file HISTORY.

See CYCLE.

RUN is called by CYCLE by typing the word RUN at the CYCLE-

STOP. See CYCLE.

RUNDOWN HIST

RUNDOWN is called by IMPLY when the program is in RUN mode.
RUNDOWN plays back the history of a proof by duplicating the calls

made to IMPLY in the course of that proof.‘ Each entry to RUNDOWN will

cause the global variable HISTORY to be set to the CDR of what

i

it was. When HISTORY = NIL RUNDOWN prints {(WE HAVE ARRIVED) and

calls T™MPLY with 1T

B.

SKIP HIST

SKIP 1is called by 1IMPLY when the next item on the HISTORY 1list
is of the form (5 n). SKIP will add n to the IMPLY PROG wariable
SKIP and call itself recursively until the nexﬁ item on the HISTORY
list is no longer of the form (S5 n). At this point, SKIP will

transfer control to the label BELOW inside of IMPLY.

References

1. W.W. Bledsoe and Peter Bruell, A Man-Machine Theorem Prbving System,
IJCAL - 73 (to appear).

