Some Ideas on Automatic Theorem Proving

W. W. Bledsoe
May 14, 1973

University of Texas, Austin, Texas

ATP-9



Some Ideas on Automatic Theorem Proving
W. W. Bledsoe

May 14, 1973

The following are some tasks that might be accomplished
in cbnjunction with our automatic theorem proving effort here.
Many of these are Just ideas and suggestions that need develop-
ment and testing.

The program referred to here is the man-machine theorem
proving program developed at the University of Texas and reported
on in "A Man Machine Theorem Proving System", W. W. Bledsoe and
Peter Bruell, IJCAI-T73, Stanford,California, August 20, 1973.

TASKS

.

Theorem Retrieval \
REDUCE revision

'Experience with the program

L]

PAIRS generalization

Treat PUT £ like a definition of f
Unknown Predicate signal
Substitute equivalence

Overlay

O o0 ~3 W W n 2l

Parallel Search over-director

f
o

Untrapping

-t
[

Models



l.

2.

Theorem Retrieval.

a. This would anticipate the storage of a large list of

theorems(like all the theoremé that have ever been published,
or all theorems on topology and set theory.) '

b. A rapid retrieval mechanism would determine whether a
given subgoal is a substitution instance of any theorem on
the 1list.

¢c. Speed 1s most important. We want an essentially parallel
search mechanism which quickly points to the correct ﬁheorem,
or quickly shows there is none there. This is no trivial
pfoblem, but has a practical solution, I beliéve. The manner
iIn whiceh the theoremé are stored may be of importance here.
d. Display. There should be easy access, a means for the
operator to qulckly call to the scope a given theorem, dis-
played in an easily readable form (like "Tree-print").

e. The operator might want to call for'all the theorems

(in his lisﬁ) related to certain concepts (predicates) and
have them displayed in order'on the scope, but under his
control so he can "zero-in" on certain ones.

f. The Prover program itself might bring in such a list that
1s related to the theorem (subgoal) being proved. This could
be trlggered by a user command "REFERENCE" or triggered by
its failure to obtain a proof (I prefer the first).
REDUCE Révision.

a. A complete revision of REDUCE seems in order to make it

more complete, fast, and visual. Mike Ballantyne has some

ideas on this.



b. Speed. No solution to this wil1 be welcomed by me if

1t is not very fast. REDUCE is a routine that 1s called in
every cycle of the program so 1t must use very little time.

c. Complete. A systematic effort should Be made to include
all atomic formulas that should be reduced to something else.
This complete list need not be present in our current program
but could be prepared for future larger machines.

Mainly though, we need a philosophy on what formulas

are to be reduced. Then a program can probably generate
most of the entries by
(1) examining the theorem list
(ii) considering certain combinations of predicates
and proving the desired theorems, which make up
a REDUCE table entry.
For example, the combination e { } is always reduced,

e.g. xe {t:P(t)) =P&)

Why? Because an elemental set operation "e" is applied to

a "higher" (?) set operation? Similarly en. Is there a
general principle here that can be applied? How about cn ?
d. Visual. We need an interactive command for showing the
reduce table (SHOW REDUCE) which results in an easy to read
display of all or part (triggered by certain predicates) of
the table being displayed on the scope under control of the
user. (In general, on all such visual displays, we want to

be able to STOPvthe display [by depressing the space bar?] and

then continue it.)



e. Add and Delete. Easily add and déléte entries. Like

our present ADD-REDUCE.
f. Try it out on a number of theorems (proofs).

3. Expefience with the Prover.

Thils involves working with the Prover on a large number of
examples, to determine its strengths (?) and weaknesses, to develop
new, needed, interactive commands. |

This 1s a good job for a pure mathematician, especially if
he can occaslonally be accompanied by a programmer-mathematician.

k., PAIRS Generalization.

a. What 1s the real concept behind the PAIRS procedure?
Why 1s it (or is 1t?) more efficient than retaining in the
hypothesis and additional formula?
For exampie, the use of PAIRS on the goal
(1) (Cover GO-% Cover FO)
to suggest the subgoal
(Ref GO FO) (GO is a refinement of Fb)
1s equivalent to having the fqrmula
(2) (Cover GARef G F - Cover F)
as an additional hypothesis in (1) and backchaining.

The saVing seems to be caused by the fact that (2) is

not involved unless two parts of it are partially matched.
Notice this parallelism in backchaining: instead of matching
all of one part of (2) we match some of two parts of it.

Can this concept be extended to more_levels of paral-

lelism?



(4.) b. Non-allke PAIRS.

We need not have the same predicate on both sides of
the implication 1in order to ﬁrigger the PAIRS procedure..
For example, if we have the goal

(AOS BO - XO € BO)

"PATIRS" could suggest trying

(XO € AO)
o%)using the example of la,

A(Ref GOFO‘+Cover FO)
could suggest as a subgoal,

(Cover GO).

What are the restrictions? Should we process all
theorems 1n this fashidn and get a large PAIR table? (If
so, then a better way to do it would be to reference the
theorem in the theorem=list rather than make duplicate
entries in PAIRS table.)

"I doubt that non—alikevPAIRS should take preference
over alike PAIRS.

c. Quick Check. In processing a PAIR subgoal, especially

a non-alike case, 1t islprobably wise to use a shallow seafch
rather than a deep one. We already prevent PAIRS from re-
calllng PAIRS on the same predicate. Carrying this further,
I would suggest not getting too deep on a PAIRS search. The
theorem lable could be used to control the depth.

For example, maybe we should allow only ground-IMPLY

to be called by PAIRS, or allow no back-chaining, etc. (see 9)



5. Treat PUT like DEFINITION.

a. When we now use PUT it usually causes a simple formula
like
(function f)
to be replaced by a messy looking one like
(function (A xe A (Choice (-eevvn.. IBDD)
which is hard to read. Why not treat PUT f (...) like an
ordinary definition, whereby f is replaced in the theorem
by (f) and the value (...) is stored as the definition of
(f) (in the same way that the definition of (reg) is stored).
Then the program can (na@urally) retain (f) in its
displays, PEEK at the definition of (f) when needed, etc.
DEPUT would still try proving hypothesis as before
but a neater display would result.
b. This needs to be tried on some examples before it is
permanently installed.

6. Unknown Predicate Signal.

When the PROVER returns the message
FATLED.. or FAILED TIMELIMIT..:
it could be required to print, as well, any predicate letter in
the conclusion which ‘
(1) does not appear in the hypothesls (or definition of
terms there)
(11) has no definition
(or both).
This would help the user see what definitlions need to be

added and/or hypotheses required.



Fape 7

7. Substitute gguivalénce.
In addition to replacing equals 1t would probably be

useful to replace equivalence also. For example, try replacing

the goal -
(@ e B) A H->P()
by
H->P().)
8. Overlay.

As space becomes scarce and our program gets longer, we need
to consider ways of overlaying parts of the program. For example,
we could overlay everytime the user interacts, or everytime we
did some not-often-performed operation.

Whatever i1s decided upon must be tested on several examples
to see if it can be tolerated by the user.

9. Parallel Search over-director.

Concepts like PAIRS, non-alike PATIRS, aﬁd the EXLODE levels
of HOA are attempts to obtain a parallel search capability. It
seems desirable to have an "over-director" program which constantly
revliews the whole situation and'directs various parts of the pro-
gram to act, thus continuing certain lines of attack untlil a cer-
tain depth is reached before switching to another line. The
theorem label could possibly be a useful tool for this direction.

If the program is halted on a certain part of the préof, that
part can be saved (with its theorem label) to possibly be pursued
later. If TL1, TL2, ..., TLN, are the theorem labels from all
such partially completed tasks, then the over-director can calcu-
late the desired line of attack és a function of the TLi. This is

like tree search heuristics found in the literature.



A bullt-in bias could be used to make the program "want"
to continue with its present line of attack a little longer than
normal, thereby giving stability to the proof, and more ease of
following by the human user. The user should be allowed to ‘
easlly override the over-director.

10. Untrapping.

Bill Bennett can explaln this. This is a procedure, not
unlike the concepts of TYPES found in our limits paper, whereby
the computer when given a goal

Ix (P(x)A Q(x))

proposes a substitution for x to satisfy P(x)

and proposes a substitution for x to satisfy Q(x)
and then reconclles the two solutions, always leaving X as a
va;iable to be further restricted later, if needed. This prevents
the "trapping" ﬁhat often occurs when a substitution is given
whlch satisfies P(x) but which goes not satiéfy Q(x), and this
fact is not discovered until a large amount of computing has
been expended.

This is the very heart of automatic theorem proving in my
estimation, and remains untouched in the literature.

It remains a challenge to design a "proposer”" and "recon-
cller" to carry out these functions. For example, on the subgoal

(1) JG(G<Open A UG ESBY)

the program might propose the substitution

(2) Open/G as a solution to G cOpen,

and
(3) Subsets B /G as a solution to U G <3,

In each case the program has chosen the "largest" value for G

which will satisfy the given subgoal. The program will then try



: £t <
- e

to combine the two solutions (2) and (3) to get a solution to (1).

In this case an easy solution to (1) is gotten by intersecting

the two solutions (2) and (3) to get

(Open N Subsets BO)/G.
For this particular kind of example the "Proposer" could send
the subgoal
(W) Ac Ay
to a subroutine SOLVEES which would find the largest set for A
satisfying (4). SOLVES could be further augmented to handle
5) £(A)S A,
for certain predetermined f's (such asU ). The "reconciler"
hefe would simply intersect the two answers, as was done in the
above example. |

Much work has yet to be done to determine the feasibility
of such a propose-reconclle untrapping technilque.

11. Models.

Bill Henneman can explain this. He has worked out a program
which provides a lattice (or a net) of relationship between sets
and their closures, interiors, etc., for all sets mentioned in
the proof of a theorem. This, in theory, provides an easy look-up
of facts about these sets. I believe Bob Andersqn has another
or similar approach, and others of you are involved with poth.
(NOTE: This i1s now haridled as a speclal case of Ballantyne's

and Bennett's paper "Some Graphic Methods in Topology Proofs".)



