A Survey of Automated Deduction

Woody Bledsoe
University of Texas
Computer Sciences Department
Taylor Hall 2.124
(512) 471-9568

ai.bledsoe@r20.utexas.edu

Richard Hodges
January 29, 1988

Abstract

This is an enlarged version of a survey talk given by Woody Bledsoe
at the AAAI National Conference, Seattle, Washington, July 16, 1987

and will appear in a collection of survey talks published by Morgan
Kaufmann, Los Altos, CA.

Contents

1 INTRODUCTION

1.1 Facets of Automated Deductiono
1.2 Proof Representation & Manipulation
2 REFERENCES 8
3 BRIEF HISTORY OF AUTOMATED DEDUCTION 9
31 ResoMUtion . « v v v v v v e e 10
3.2 Completeness o o oo 12
3.3 Higher Order Logic o v v v v vt 15
3.3.1 Propositions as Types« oo oo 16
34 Other Logics . . . v v v v v v oo 18
3.5 Bquality . .« o o oo 19
3.5.1 Term Rewriting Systems« oo 20

4 LOGIC PROGRAMMING AND CLAUSE-COMPILING 22

4.1 Clause Compiling in PROLOG 24
4.2 Clause-Compiling for First Order Logic 26

5 OVERVIEW OF PROOF DISCOVERY 28
Bl TACHICS « v v v v e e e e e e e e e e e 30
5.1.1 Large Inference Steps« oo 30

5.1.2 Semantic Methods 33

5.1.3 Special Purpose Provers 34

5.2 SEIAtEZY + o v o v v e e e e e 34
521 Analogy . . oo e e e 34

5.9.2 Abstraction v oo h e e 37

5923 Other “People” Methods 37

6 CONTEMPORY PROVERS, CENTERS, PEOPLE 38
6.1 Argonne Laboratory Theorem Provers, L. Wos, E. Lusk, R.

Overbeek, et al. [Wo84, Wo87] 38

6.2 KLAUS Automated Deduction System (originally called CG5):
Mark Stickel (SRI) [St85, St86, St86a] 39

6.3 Kaiserslautern: N. Eisenger, H. J. Ohlbach, J. Siekmann,

Universitat Kaiserslautern« . . oo 40
6.4 Munich: W. Bibel!, S. Bayer,etal. 41
6.5 University of North Carolina: David Plaisted 41
6.5.1 Greenbaum 42
6.6 Edinburgh: A.J. Milner, M. J. Gordan, etal.. 42
6.7 Boyer-Moore Prover: University of Texas [BMT9]. 42
6.8 The Wu-Chou Geometry Provers 43
6.9 Bledsoe, et al (University of Texas & MCC) 44

6.9.1 Wang’s SHD (Semantically-guided Hierarchical Prover)
[WaT85, WaT87]o 44
6.9.2 Proof Checking Number Theory: Don Simon 45
6.9.3 Building-In Multistep Axiom Rules: Hines [Hi86, Hi87] 45
6.9.4 GAZING, Dave Plummer [Plu87} 45
7 CONCLUDING REMARKS 46

now at Univ. British Columbia

1 INTRODUCTION

What is Automated Deduction?

It includes many things. A part of it involves proving theorems by com-
puter, theorems like the Pythagorean theorem from Plane Geometry (Fig-
ure 1) or the theorem: If an equilateral triangle is inscribed in a circle, and
lines are drawn from its corners to a point on the circumference, then the

length of the longest such line is equal to the sum of the lengths of the
others. (Figure 1.)

Figure 1 near here.

Or theorems from algebra such as:

A group for which 2? = ¢ for each of its elements z, is commu-
tative.
A ring for which z® = z is commutative.

Or theorems from analysis such as the mazimum value theorem and the

intermediate value theorems, depicted in Figure 2:

!Figure 2 near here.l

A Continuous Function f defined on a closed interval [a, b],

attains its Maximum (and Minimum) on that interval.

Andif f(a) < 0 and f(b) > 0, then f(z) = 0 for some z in [a, b].

Also puzzles such as the truthtellers and liars one, can be solved by

theorem proving. See [LO85].

On a certain island the inhabitants are partitioned into those

who always tell the truth and those who always lie. Ilanded on

4

| ainbi

:waloay | uealobeyifd

AH1INOTD WOHL SINIHOTHL FTdINVXS

2 2Inbi-

*SUOI}oUN} SNONURUOD 10}
‘WeJ08Y | SNjeA SleipaulIsiu| pue Wwelodyl sneA WNWIXe

SISATVNY NOH4 ST1dINVXS

the island and met three inhabitants A, B, and C. I asked A,
‘Are you a truthteller or a liar?” He mumbled something which
I couldn’t make out. I asked B what A had said. B replied, ‘A
said he was a liar’. C then volunteered, ‘Don’t believe B, he’s
lying!.

What can you tell about A, B, and C?

The halting problem theorem (figure 3) shows how complicated these the-

orems can get, and others more so.

[Figure 3 near here.l

1.1 Facets of Automated Deduction

What is Automated Deduction? It is a number of things. But in all cases
one is making deductions by computer. It is often called Automated Theo-
rem Proving (ATP), or Automatic Reasoning (AR). We will use these terms
interchangeably.

Let me list some of the facets and applications of Automated Deduction.

See Figure 4.

Figure 4 near here.

We consider proof discovery to be the major component of ATP, because
every application of ATP uses some amount of automatic proof discovery.
We will tend to concentrate on it in this talk, since we are personally
interested in it, and will discuss the others only briefly, if at all. There
are a number of review papers and references for each of these areas. One
might add to this list: all non-numeric programming, since some form of
inferencing is involved in all of it. '

Automatic proof checking is a very important part of AR (see, for exam-
ple, [BM82, Con85, Hun85, We77]) but will be discussed only briefly here.
The reader is referred to [MS84] for a report on using ATP in CAL

5

¢ a.nbi

[(ZAxQ (Zy)— Ad) (Av) 8 x 0] (A)— (9)

o
)

‘[(lano 8 AnH) «— (AL H)<«—
(kA 2= g Ad)] B [AnCH = «— [An®H— — (AA%H 3 Ad)])(AY) 8 ndl(n3)«—
[([(AO 8 ANEH) — (AAEH—3 Ad)] 8 [(BAO 8 Ar% H)«— (AA % 2 Ad]) (Av) 8 AdI(A3) ()

[([(aAO 8 AAEH) «— (AASH — 8 Ad)] B
[(BAQ 9 An2H) «— (KA2H B Ad]) (AY) B AdI(AT) «— [([(GMO 8 AmEH) «—
(KA H = Ad)] 8 [(BMO B AMAMZH) — (KASH 8 Ad]) (Ae) 18 md](M3) (€)

(([(amO '8 ZAM BH) «— (ZAH — B Ad)] B
[(BMO 3 ZAMEH) — (ZKCH 8 Ad]) (2v) (Av) < [(zAma(zy) «— Ad)(Ay) B md]) (My) (@)

[(zAmq(2y) «— Ad)(Ay) B mdl(m3)«— [(2Axa(zv) <« Ad)(Av) B xO](3) (1)

(Japjoying)
T19VATOSNN SI W31904d DNILIVH

v 9.nbi4

uonejndiueyy @ uoneasalday J00id
(ewAsoe|\ Se yons) uonendiue olelqebly
Buioua.eju] swolsAg-Hadx3
Buiuwelfold dnewolny @ UONedlUdA welbold
saseq ele anonpa(
sobenbue] bulwwelbold g buiwwelboid 01607
(suiyoew-Uel) SISNOId BAlldeIY|
uononisu| papiy-Jaindwo) bupnjou : Buoay) Jooid
AoA02sI(q J00.d

d1V 40 SNOILVOI'lddV

We will also not discuss interactive provers, but consider this to be one
of the most important areas of ATP. See [BBr73, BM79,].

We will discuss logic programming shortly. Many efforts are underway
to combine logic and functional programming languages such as PROLOG
and LISP, and to join this with rapid type inheritance, to make it easier to
write Al applications, and attain greater speed. See, for example, [AN85].

In the near future we expect to see an increased research effort on de-
ductive data bases, especially for very large collections of facts and rules,
written in logic, and requiring a great deal of inferencing to answer a query.
See [GMT8] for a review and also [HN84] for an example of éompiling DB
queries, to speed up retrieval.

Such a DB might contain the facts about a corporation and its oper-
ating “rules”. Similarly for a political situation, such as the Middle East
(will country X cut off the oil or go to war), and for military situations.
We believe that a structured knowledge base of general (common-sense)
knowledge, such as [LeS6)], will play a big role in these efforts.

Program verification (e.g., [Good85, BM79]) and automatic program-
ming [MW85] continue to be significant application areas for ATP. Alge-
braic manipulation [Buch83], as represented by MACSYMA [MAC] and
other systems, has grown to be a sizable part of AR.

Of most interest to the Al community is automatic inference associated
with Expert Systems and related “intelligent” programs. In this conference
alone there were 46 papers (out of 150) related to automatic reasoning. We
expect that trend to continue, especially as Al programs are being based
more on traditional logic and extensions of it. Here we could include non-
monotonic reasoning (e.g., circumscription) [McC80] Truth Maintenance
[Do79, delK84], common-sense reasoning [McC, Le86], qualitative reasoning,
(see, for example, [delX84, Fo84, Ku86)), meta Reasoning [GGS83, GN81).

1.2 Proof Representation & Manipulation

Another branch of automated deduction studies methods of representing
and transforming proofs. Human mathematicians seem to be able to un-
derstand a proof as a whole, wheras automated deduction systems tend to
have a very narrow view, centered around a single clause or a small group
of clauses at any one time.

One reason for wanting to be able to manipulate proofs is to facilitate
higher-level strategies for proof discovery. The method of proof by anal-
ogy is an area which needs the ability to transform proofs, to extract the
abstract content of a proof, and to annotate proofs with additional infor-
mation such as the "motivation” for a given step. (See Section 5.2.1).

The internal representations used in automated deduction are often not
very easy for people to understand. Many theorem provers use clausal reso-
lution. But putting a theorem into clauses often introduces redundancy and
obscures the logical structure of the theorem and its proof. Observing that
it is often much easier to understand a proof in natural deduction format,
Peter Andrews and Dale Miller have developed algorithms for transform-
ing resolution proofs into an intermediate form called an "expansion tree”
and then into a natural deduction proof [An81]. Amy Felty, a student of
Miller, has recently developed a system to translate proofs into natural En-
glish. These systems use “higher order logic” (see section 3.3) and have
automatically proven Cantor’s theorem and a version of Russell’s paradox.

A group of Systems [GMW82, Ne80, Card86, CoH85, Cons86, deB80]
have been developed for representing and checking mathematical proofs
using a higher order logic based on the Curry-Howard isomorphism between
propositions and lambda-types (see section 3.4) These systems have also
been used for verifying software and hardware [G087]. Proofs often can
be written in a form much closer to that used by a human mathematician

than by employing first-order predicate calculus and resolution. So far,

little work has been done on proof-discovery in these systems.

McAllester (MIT) has developed a theorem prover with set theory ?built-
in” and with a novel concept for proof guidance: the user specifies a ”focus
object” and the prover tries to forward chain from est ablished facts to prove
everything it can about the selected object. The prover can then search
using patterns to see if anything useful has been proved. This seems po-
tentially useful as a representation for motivation in proofs. His ONTIC
has been used to proof-check the Stone Representation Theorem as well as
others [McAS8T].

Weyrauch [We77, We82] has developed a system called FOL in which
the syntax and reasoning rules of a deductive system can be formalized
in First Order Logic. In paricular, FOL can formalize its own logic. It
can conduct reasoning about proofs and about its own rules of inference.
New rules can be verified using the deductive capabilities of FOL and can
be added declaratively to the set of meta-theorems representing facts FOL

knows about itself.

2 REFERENCES

There have been a number of excellent review papers of ATP during the last
few years. Perhaps the review by Loveland [lo84] or [Bhe85] (in the first
issue of the Journal of Automated Reasoning, 1985) would be the best for
the beginner. In that same issue of JAR is an extended review of AR. Those
interested in the prehistory and early history of ATP should see Martin
Davis’ [Da83]. Also see [WH83]. Bill Pase, of LP. Sharp Associates, has
recently revised his 70 page bibliography of Automated Deduction, which
is very useful for those serious about this subject. [Pa87]

There are a number of books and collections of important papers which
are introductory to the subject. For example, [CL73, Lo78, Bi82-87, Wo84,
GNS87, Ko79, Bu83, An86, IEEE-C25, Wo87, BMT79, Sw83, BL84]. Also

there are chapters on ATP in various books on Al such as [Nil80, Rich83],
and various Journals and Conference Proceedings (JAR, AAR Newsletter,
CADE Reports, Al Journal, MI Series, AAAI, IJCAIL IEEE Transactions
PAMI and SSC, etc.).

Other books of related interest include Konolige [Kon80] on representing
the capabilities of intelligent agents with imperfect reason; and Smullyan’s
books of logic puzzles, especially [Smu83], a good source of challenge prob-

lems for ATP systems.

3 BRIEF HISTORY OF AUTOMATED DE-
DUCTION

Modern ATP was born in the middle 1950’s with the “Logic Machine”
of Newell, Simon, and Shaw [NSS56]. Gelernter’s “Geometry Machine”
[Ge59] followed in the late 50s, as well as other interesting work by Hao
Wang [WaHG0], Davis and Putnam [DP60] and many others (see [Da83)).
But it was the advent of J. A. Robinson’s RESOLUTION paper [RoG5] in
1965 that forever changed this field.

Also note that Maslov’s inverse method [MasG8] stems from the mid
60’s. (Vladimir Lifschitz has recently completed an excellent paper [Li87]
simplifying the presentation of this powerful method.)

Other proof procedures, such as the so called “Natural Deduction”
Provers [Wah60, B175, Lo78, B177, P182], Model Elimination, Connection
and Mating Methods [An81, Bi82], Interconnectivity graphs [Ko75, Si76),
Semantic Tableaux [Opl, Smu68], and the earlier “inverse Methods” of
Maslow [Mas 68, have much in common with Resolution and also suffer
many of its shortcomings. -

Still, we believe that the introduction of resolution represents the single

most important event in ATP so far. What is it?

3.1 Resolution

The basic idea of Resolution is simple and is very easy to learn. See, for
example, the presentation in [CL73]. It is based upon the modes ponens
rule, or more generally the chain rule. Referring to Figure 5, if the chain
rule is converted to clausal form (by replacing an expression * — y by
(=z V y) then the rule is effected by cancelling the ¢ and - ¢ in the upper
clauses. Shown at the bottom of Figure 5, is the Resolvent Rule for first
order logic, where unification is required; here the variable z is bound to

the term a.

Figure 5 near here.

Figure 6 shows a resolution proof of a simple theorem. Note that the
hypotheses are converted to clausal form and the conclusion is negated.

Then clauses are resolved until a contraction, O, is reached.

Figure 6 near here.

For Propositional Logic (where no variables are to be bound) Resolution

is quite simple:

RESOLUTION RULE

1. Negate Theorem
2. Put in “Clausal Form™’ (i.e., Conjunctive Normal Form, CNF)

3. Resolve until a contradiction, O, is obtained

Now let us look at Resolution for First Order Logic (FOL). Figure 7
shows some expressions in FOL and a theorem. One is dealing here with
quantifiers and variables. In order to prove this by resolution we must
convert it to clausal form. (Figure 8) First each hypothesis is skolemized

by removing the quantifiers.

10

¢ 2.nbl4

1 A (e)d—
1A (@)b A ()d-

1 A de 1<—d | b
I A= B Ad- 1+<b ‘b—d b—d ‘d
37N INIAI0S3H 37Nd NIVHO SN3INOd S3AON
ao

37Nd INJIATOS3Y

9 ainbi4

(\ (\
b b
[b=t b—{ b
d < d < | d |
b A d-—, b A d— b A d— | Aoy
. X0q,, b— ¢
> ' d 2
2t b 'y bad— |

(sesne)) ‘NOILLOIQVHLINOD @SN
b—[d® (b<d)] :walosyl

JOold uonnjosay JTdINVX3

{Figure 7 and 8 near here.

In the first hypothesis, the expression is true for all z and y, so we
discard the quantifiers, and remember that we can replace x and y by any
term we please in the proof. We also convert the implication as before.
Similarly in the next hypothesis, except that we require a skolem function.
For each p, there exist a z such that Mother(z, p). It is clear that z depends
on p, so we show that dependence by replacing z my the expression m(p).
The conclusion is negated (since resolution uses Contradiction). The z
remains a variable that also might be replaced with a term. Figure 9 shows
the corresponding clauses and the derivation of O by resolution. There,
z, y, p, and z are variables, and John and m are constants. The proof
goes as before except that some of the variables are bound in the process.
These bindings are called a substitution. The process of determining the
substitution is called unification. Two formulas are UNIFIED (made one)

in the process.

[Figure 9 near here.]

For example, the pair
P(g(z),x)
P(y,=0)

are unified by the substitution [z « 20, y « g(20)] (where z and y are
variables and ¢ and z0 are function symbols)
But the pair

P(g(z),z)
P(y,h(y))

has no unifier. Why?
The first step in trying to unify

P(g(z),=)

11

/ ainbi-

(z) oewod Z E «—

(uyor) uosied

9 [(d2) loyioN Z E <«— (d) uosiod] dA
9 [(X) ofewed <«—(AX) JouoiN]l A A XA
NIFHO3HL

— — — — — — Vo— — — — o —— | S—— W — —

(d) uosied ‘(x) efewsd “(x) MO

01901 Y3ddO 1SHid

g 2inbi

(z) sjewa —
(z) oeWRd JE <«—

T (wor) uosied
(uyor) uosied

—— — —— — — —" W — — WV S —— —— — no—

uoissaidxa ,wa|oys,, & S! (d)w :BI0N

(d ‘(d)w) Joyioy A (d) uosied —
[(d'2) JoyioN Z £ «— (d) uosiad] dA

(x) oewo4 A (A X) JBYION —
2 [(X) oewsd «— (A'X) JoutoN] AA XA
S3ASNVTO

6 o4nbi-

(Uyop)w — z 9y L
(uyop)w — X

‘uyor — A ‘g ((uyor)w) eewed "9

uwor —d ‘2‘c (uyor ‘(uyorjw) YN 'S

(2) oewed— 'y

(uyor) uosied ‘e

(d ‘(d)w) JoypoN A (d) uosled— ¢

(x) ojewioq A (A °X) JOUYION —

4004d

P(y, h(y))

yields

P(g(z), =z)

P(g(I)» h(g(l‘)))

But we cannot finish, because z occurs in h(g(z)). If we tried to continue by
substituting [z « h (g(z))] we would get into an infinite loop. We prevent
this kind of error by what is called the “occurs check” in the unification
algorithm. If we don’t use such occurs check, we could prove non-theorems,

such as

Vz 3y P(y,z) — 3y Vz P(y,z)

We will see more on the occurs check problem when we discuss logic
programmang.

Resolution is complete for first order logic; i.e., any theorem expressed
in FOL can be proved by resolution. This is an important result since FOL
includes much of mathematics (indeed, can include all of mathematics).

However, resolution is not a decision procedure for FOL, there is no
guarantee that it will detect non-theorems in finite time; in fact FOL has
no decision procedure. Higher Order Logic, which we will discuss shortly,

has no complete proof procedure, let alone a decision procedure.

3.2 Completeness

Completeness is a desirable property of a proof procedure such as resolu-
tion; we want to know what it can and cannot do before we employ it.
But completeness alone is not enough. We also need speed as well. But
Resolution — as well as other proof procedure for FOL - tend to be slow

when attempting the discovery of proofs of hard theorems.

12

We are faced with the classic combinatorial ezplosion problem when we
automatically search a proof tree, such as the one depicted in Figure 10.
The prover searches down along the branches looking for the goal nodes,

depicted by the asterisks. Finding such a goal finishes the proof.

[Figure 10 near here.

Actually, in standard resolution, the search space is not really a tree,
since branches often rejoin other branches. Linear formats for organizing
resolution search (such as SL-resolution, model elimination, pioblem reduc-
tion) make the search more tree-like. In any case, the “tree” metaphor in
the following discussion is useful for intuition.

The number of branches in the tree increases at least exponentially
with depth. When the solution nodes lie even moderately deep, brute-force
search methods quickly exhaust available resources.

Professional mathematicians have an uncanny way of excluding much
of the “brush” of the tree by heading directly toward one of these solution
nodes. But the computer - though a million times faster - tends to hope-
lessly thrash around through all the branches (using depth first or breadth
first search methods). The challenge of this age for this field is to shorten

the search time. Attempts to do so can be classified into two categories.

1. Methods that speed up the inherent reasoning process by

(a) Using faster hardware, or by

(b) Clever programming tricks, such as clause compiling

2. Those that prune the search tree.

The effect of the first category is to push down a few layers in the
search tree. See Figure 10A. The swath indicates how a faster prover might

push farther down in the tree. This may or may not help, depending, of

13

0} @nbi4

3341 HOHV3S 4004d

course, on the positions of the goal nodes in the tree. For many applications
in Al and related fields, it does help. A speed up of one or two orders
of magnitude, that seems to be attainable by the new clause-compiling
techniques coming from the PROLOG community has made possible the
proofs of many theorems previously unattainable by automatic methods.
This is good news for many workers in Al who are beginning to use logic
more extensively for representing rules for expert systems and for entries in

logic data bases, etc.

Figure 10A near here.J

This extended use of logic is placing a greater load on the “inference
engine” of these systems, and these new compiling technigues will help
greatly with that load. But it is through the second category, the pruning
strategies, that we can expect satisfactory solutions for the long run. speed
alone cannot replace the judicial use of knowledge. (See our recent paper,
Some Thoughts on Proof Discovery [BI86], for a further articulation of this
argument.) There were many early attempts to prune the search tree. Most
of these are syntactic in nature, applying equally well from one subfield to

another. Some refinements of Resolution to speed up proof discovery are:

e Set-of-Support Resolution

Hyper-resolution

SL-resolution (=Model Elimination)

e Connection Method, Matings

Interconnectivity Graphs

Locking
¢ Dozens more.

14

val H 8Inbi-

Y, Y G, Y,
Uy, e, ", ‘...s«....e. U,
“, M, ..$. “, ...se..f. “u, ", e.$ ", e.s s..e
Yy, G, “, M U,y
e, ey e, My, Yy ', %, Yy
iy, i, Y, %, Yy, Y, Y, Y, T,y
, M, Y, %, se..,...s U, Y, 0, 0,
Y, Yy, 'y Y, ey, e,
, b, Y, e, n, by, G,
U O, e, i, ", 5, S, T,
“hy, b, M, g, 0, %, "y, M, %,
i, U, o, i, ",

y,

Y,
by a0, Ty T ...f
G, ..e.‘.... W, M My M, ...f....
“, Oy, o, ", 0,
", %, ", ",“.3
2

:...‘........e............. 3
1, e, ", "

4,
M, e, Yy, Y,

s

Yy, M,
o, o,
y, Y, M,
‘, M,

b,
G
%,
'
%,

",
",
ty,
',
",

", Y, o, ", ",
“a, J by S, e, Ty,
i, e 0, 0,0, 0,0, N

3341 HOHV3S 4004d

One such method, an important one, is the set of support strategy
[We70], whereby the program works back from the desired goal, and avoids
generating unmotivated lemmas that may or may not contribute to the
final solution.

Another important one is called hyperresolution [RoG5A] wherein a num-
ber of resolution steps are combined into one larger step, with the program
keeping only the final resolvent and discarding the intermediate resolvents
("fragments”). (See Section 5 below). This method has been especially
powerful in the hands of the Argonne Group headed by Larry Wos. Many
other pruning strategies have been tried, but these will not be reviewed
here [KoT1, Lo68, An84, Bi82, Ko75, Si76, . . .].

It should be noted the ground proofs (proofs in which no binding of
variables takes place) are hardly ever difficult. It is only when we allow
the binding of variables (i.e., the replacement of variables by other terms),
through the wunification process, that we encounter the combinatorial ez-
plosions that so hamper our provers. There have been developed ground
provers which are enormously fast, and it is questionable whether further
progress in this area is necessary.

We will return to the problem of speeding-up proof discovery shortly,

but we first briefly discuss other logics and equality.

3.3 Higher Order Logic

In first order logic we do not quantify function symbols, predicate symbols,

or symbols representing higher order objects. For example, the formula
Va [Vz P(z) — P(a)) (1)

is from the first order logic because only the a and x are quantified. But
the formula

Va 3Q[vz P(z) — Q(a)] (2)

15

is not, because the predicate symbol Q has been quantified. 2

Actually (2) is an easy theorem for people or machines: we simply re-
place “Q” by “P”, and “x” by “a”, but it is part of Higher Order Logic
(HOL), which is not even complete, let alone decidable. Inherently, HOL
is harder than FOL. However, the methods of Unification and Resolution
have been extended HOL [Hu73, An84] with a certain amount of success.
For example, Andrew’s Prover, based on the Huet Unification Algorithm

has proved

Cantor’s Theorem: If N is the set of integers, and SN is the

set of subsets of N, then there is no one-to-one function from
N to SN.

More difficult theorems, such as

Intermediate Value Theorem: If f is a continuous function
on a non-empty closed interval [a,b], f(a) < 0, and f(b) > 0,
then f(z) = O for some z in [a,b]. (Using the Least Bound
Axiom.)

have been proved by special purpose provers such as the one described in
[BI79], but that Prover has limited generality. General Purpose Provers
tend to be SLOW, especially for HOL.

3.3.1 Propositions as Types

An interesting approach to HOL has been developed from the so-called
Curry-Howard isomorphism. This is an elegant relationship between the
typed lambda-calculus and intuitionistic logic. It has been championed,

primarily by Martin-Lof [Ma84], as a basis for abstract computer science.

2The predicate symbol P is also universally quantifies (implicitly) in (1) and (2), it is
only when “existential’ type quantifiers are used, where the quantified predicate symbol
is to be replaced (bound) in the proof process, that we enter true higher order logic.

16

Basically, the idea is that if a proposition is viewed as a type and the
proof of a proposition is viewed as an object having that type, lambda con-
version is formally the same as modus ponens. If A and B are propositions

(types) and f is a term of type B, the expression

(A(z:4)f)

is a function mapping the type A into the type B. The type of this function
is symbolized as A — B, which can be thought of as expressing the impli-
cation A — B, with the meaning that given a proof p of A. we can get a
proof (A\(z) f) (p) for B. To prove A — B means to demonstrate an object
of type A — B, i.e., an effective procedure for obtaining a proof of B from
a proof of A.

This calculus is a sufficient starting point to do mathematics. It is
possible to construct definitions of all the usual logical connectives (and,
or, not), quantifiers, and equality (using Leibniz’ definition of substitutivity
of equals). See [CoH83] for an example of how this is done in one system.

The resulting logic is intuitionistic; all objects purported to exist must
be constructed, and there is no law of excluded middle. However, if desired,
logical connectives and quantifiers obeying the usual non-intuitionistic rules
can be constructed from the intuitionistic ones.

A branch of category theory, the theory of Topoi [Top79] leads naturally
to the same intuitionistic logic and is a convenient abstract setting for
foundational questions in this kind of logic.

Potential advantages of Curry-Howard systems for ATP include: higher
order quantifiers are naturally available; we can get a lot of security in the
logic from the strong typing; and there is a natural mapping between proofs
and programs for constructing objects. So far the only provers using such

representations are proof checkers, having very limited search capabilities.

17

3.4 Other Logics

Many sorted logic brings the idea of typed variables and terms into first-
order logic. Walther [Wa83] (see section 6.9) has developed a complete
many sorted extension of resolution. Mathematical problems can often
be expressed more compactly in many-sorted logic than in standard FOL.
There is a significant gain in efficiency of search for proofs, since the types
attached to the terms place restrictions on permissible unifications.

An example which has been widely used as an ATP benchmark is “Schu-
bert’s Steamroller”. (See below.) Fig. 11 shows how many sorted logic can
improve the proof length and input sizes for this problem, and also includes
data on further improvements which are possible using Cohn’s LLAMA
logic [Coh87].

Figure 11 near here.

Schubert’s Steamroller Problem

Wolves, foxes, birds, caterpillars, and snails are animals, and
there are some of each of them. Also there are some grains, and
grains are plants. Every animal either likes to eat all plants or
all animals much smaller than itself that like to eat some plants.
Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which in turn are much smaller than
wolves. Wolves do not like to eat foxes or grains, while birds
like to eat caterpillars but not snails. Caterpillars and snails
like to eat some plants. Therefore there is an animal that likes

to eat a grain eating animal.

For reasoning about the common-sense world, for planning actions, and
for communicating with agents (including people), it is necessary to express

and reason about ideas like possiblity, belief, knowledge, successiveness

18

(R

joouid jo yibua

G ol e¢
yA ¢l ¢0l S9oualojul m_n_mwon JO "ON
e Al 12 Ajjeniul sasnejd Jo "ON
VINVT1 2160] S.8leM 104
SOILSILVYLS

NT1904Hd 3 TI0HNVILS

(in time), etc. Modal logics and temporal logics have been developed for
this purpose. Proof procedures based on connection methods [Wal86] and
semantic tableaux [Smu68) have been developed. See [Tur84] for a review.

Others, particularly Kowalski [[Ko79], have argued that modal and tem-
poral logics are unnecessary and that the corresponding reasoning can
be formulated and carried out entirely in FOL. The Situation Calculus
[McC63, McC69] formulates actions and there effects on states in FOL.
Green [Gr69] developed a large working system based on resolution for
performing such reasoning.

For recent work in applications of these methods, see [Ko86, KoS86a,
Ko86b, Ap82, Moo85]. An excellent textbook covering this area is [GN8T].

3.5 Equality

An early problem, a persistent one, is that involving equality, the “substi-

tution of equals”. For example, the theorem
(a=b A P(a)) — P(b)

is rather easy, one simply substitutes a for b, or vice versa (assuming of
course that “=" has its traditional meaning). But in more complex exam-

ples, like the following theorems,
A group for which z? = e, is commutative, (Hard)
A ring for which z® = z, is commutative, (Very Hard)

the proof discovery process is difficult for a computer program, because

there are so many ways in which one term can be replaced by another.
The problem arises because, if a = b is hypothesized, then we can re-

place either a by b, or b by a. This branching factor of 2, when invoked

many times, leads to a serious combinatorial explosion. Paramodulation

19

[Wo70] and E-Resolution [Mo69], provided complete solutions to the equal-
ity problem, but brought very little to prevent the inherent explosion. Some
ATP researchers have greatly tamed the problem by the use of rewrite rules.
Called demodulators by Wos [WoG7] and reductions by Bledsoe [B171], these
procedures rewrite a formula using a set of reducers or rewrite rules. For

example, if we have the rewrite rules
z +0— 2z

te(ANB) - teAd & teB

we would rewrite the formula
f(t) e (A(z) N B(z +0))

as

f(t) € Az) & f(t) € B().
The great advantage here is that the substitution on one-way only. We
replace “z + 0” by “z”, but do not replace “z” by “z + 07, as might be
possible by paramodulation and E-resolution. Thus a branching factor of
2 is replaced by 1! However, the disadvantage is that such procedures are

incomplete, some theorems cannot be proved by rewriting alone.

3.5.1 Term Rewriting Systems

An exciting advancement in this area was an attempt to enlarge these sets
of rewrite rules to complete sets, the so called complete sets of reductions. A
signal paper in this subarea was [KB70] by Knuth and Bendix that provided
a set of ten rewrite rules which constitute a complete set of reductions for
(non-commutative) group theory. See figure 12. These can be used, by.

rewriting alone, to prove a variety of theorems in group theory.

20

Figure 12 near here.J

Knuth and Bendix also offered a procedure for completing an incomplete
set, where that is possible.

This is part of a rapidly growing subfield of ATP called Term Rewriting
Systems, which includes work on narrowing [S174] and wunification algo-
rithms with built-in theories [Fay79].

The first studies concerning the use of complete sets of reductions in res-
olution was conducted by Dallas Lankford [La75]. It brought together the
notion of complete sets of reductions with that of “narrowing” introduced
by Slagle [S174].

The connection between CSOR’s and the study of unification algorithms
became closer when independently, Peterson and Stickel [Pe81] and Lank-
ford and Ballantyne [LB77] used the commutative associative unification al-
gorithm [St81] to extend the Knuth-Bendix completion algorithm to handle
commutative associative functions. Conversly, Fay [Fay79] used the narrow-
ing algorithm to generate unification algorithms for theories which could be
represented by CSORs. Fay’s work was extended by Hullot [Hul80]. The
study of unification algorithms is now being actively pursued by several
research groups, at SRI [Sm87] and Kirchner [Kir86] in particular. See also
[CREASST].

A good survey of the field up to 1980 is found in [HO80]. A more up-
to-date survey on completion can be found in [Der§7A}, and an equally
recent survey on the termination of systems of reductions can be found in
[Der87b).

21

2} ainbi4

A—f+x)+(x) 0L

A ((K+(x)+X 69

(x-) + (A=) — (A+x)- 8aM
X (X-)- 99X
Z+A+x—z+A+X) GO
0 —X+(x-) vaM

0« (X-)+x €aM

X —X+0 2o

' X <—0+X |GM
dnoug) e 104

SNOILONA3Y 40 L3S 3131dINOD

4 LOGICPROGRAMMING AND CLAUSE-
COMPILING

Another giant subarea of ATP is represented by the PROLOG community,
or more correctly Logic Programming. During the early 1970’s Kowalski,
Colmereauer, Roussel and others [Ko74, Rou75], discovered that one could
use a theorem proving system as a programming language. This 1s in the
spirit of earlier work by Green [Gr69], where an answer-clause was used
to return the list of bindings of variables, resulting from the proof of a

theorem. For example, if one asserts the facts

Father(Frank,Mary)
Mother(Mary,Ted)
Grandfather(z,z) « father(z,y) & Mother(y, z),

and proves the theorem
3z Grandfather(z, Ted),
he can obtain the binding
z +« Frank,

which gives an answer to the question, “Who is Ted’s Grandfather?”.
PROLOG is widely used as a programming language, especially in Al,
and there are a number of implementations of it. The “standard” version

employs ordinary resolution, but

1. allows only horn clauses®

2. does not do the “occurs check” during unification.

3A clause is horn if it has at most one positive literal. e.g., = P(z) V Q(z) V - R(z,y)

22

By restricting use to horn clauses, the implementation can employ a
depth-first search, which greatly simplifies the storage allocation problem,
and enables high performance via clause-compiling (which we will discuss
shortly).

There is no apparent difficulty with ignoring the occurs check when
PROLOG is used as programming language. But it is unsound as a Theo-

rem Prover, because it would allow the unification of formulas such as

P(g(z),z) and P(y, h(y)),

thereby (as we saw earlier), “proving” non-theorems such as

Vz 3y P(y,z) — 3y Vz P(y,7)

It is also incomplete for FOL, because it employs a depth first search,
and is restricted to horn clauses.? So why are we interested in PROLOG
as a reasoning mechanism, since it is unsound and incomplete? The reason
is that during the last few years David Warren (for DEC10 PROLOG)
and others have used some compiling techniques (clause-compiling, or rule-
compiling) to greatly speed up the process — by orders of magnitude.

Shortly we will (very) briefly describe how clause-compiling is done for
PROLOG, and how that is extended to speed up proofs in full first order
logic.

Our interest is in Automatic Deduction more than Programming, so
we will not report on the enormous literature on Logic-Programming and
PROLOG. Those with further interest should consult review papers such
as those found in [CT82].

40f course PROLOG, like any other programming language, can be used to implement
a sound and complete theorem prover. What is more, Plaisted’s SPRF [P187] (see Section
6.11) gains much of the speed of PROLOG for ATP.

23

4.1 Clause Compiling in PROLOG

Clause compiling is like ordinary compiling (of say LISP), in that it involves:
structure sharing, clever use of the stack, open coding of unification, and
much more. See papers by Warren [War87] and Stickel [St80].

A key to clause-compiling is to have an unchanging set of (original)
clauses which will not be enlarged during the proof. So that these can be
compiled once and for all at the beginning, in a way that makes their use
extremely fast. Additionally, there will be one goal literal which continually
changes (during the proof search). These original clauses are compiled
by anticipating how unification might be accomplished with each of their
literals, and constructing a computer program to carry out that unification
and other tasks.

This program can be written in some computer language such as C,
LISP, or an Abstract Machine Language such as Warren’s [War87], and
then compiled (ordinary compiling) into machine code. See [War87, St86)
for details.

Suppose we have the following input clauses (and others)
1. (Pz1)«(Qz2z2)(S2)

2. (P (fz)y) « (Ry2)

3. ..

The clause compiler will compile each of the predicates P, Q, S, R, ...,
by constructing a LISP® Function for each of them, and other supporting
functions (not shown here).

Shown here is the function, FUN-P, which has been constructed for the

predicate P.

Sor a C program, etc. We have used LISP here to simplify the presentation.

24

(DE FUN-P (uv CONTINUATION) (GOAL)
(PROG (z)
(COND ((UNBOUND-VARIABLE v) (ASSIGN V 1))
((NOT (= V 1)) (GO OUT)))

(... Allocate, etc . . .)
(... Alter CONTINUATION to include the further goal(S z))
(Q u z CONTINUATION)

OUT
(COND ((=(FCN-SYM u) 'f) (SETQ Z (ARG1 u)))
(T (go OUT2)))
(R v z CONTINUATION).
oUT2)

Much has been left out, but the main idea is that when a goal literal of
the form (P u v) is encountered, to determine whether clause 1. will apply
to it (i.e., whether (P x 1) will unify with (P u v)), we can ignore u since
x is a variable and hence can be bound to any term; we need only check
whether v is 1 or is a variable, and then accomplish the further goal (Q u
z).

The continuation parameter refers to any additional goals that were
carried over from a previous call; we must add to it the subgoal (S z)
before proceeding to the goal (Q u z). If (Q u z continuation’) succeeds,
i.e., the goal (Q u z) is accomplished plus the goals of continuation’, then
the proof is finished; if not, then it attempts to apply clause 2. to the goal
literal (P u v). This is done at the point OUT in the program.

Similar LISP functions are constructed by the clause-compiler for the
other predicates Q, R, S, and any others that appear in the original clause
set. All of these LISP functions are then compiled (traditional compiling)
to C code or machine code. Of course, as mentioned earlier, the clause-

25

compiler could avoid LISP altogether. But LISP offers a convenient tool
for the clause-compiler and a convenience to us for explaining how this part

of clause-compiling works.

4.2 Clause-Compiling for First Order Logic

The phenomenal speeds gotten by clause-compiling in PROLOG were not
lost on the rest of the ATP community — they wanted this performance too,
but could not use the results from PROLOG unless three major difficulties

with it were overcome:
1. the horn clause restriction

2. the depth-first search problem

3. the occurs-check problem

Work on these problems, to bring clause-compiling (and its inherent
speeds) to all of first order logic, represents some of the most exciting work
in ATP right now. Some systems which extend the PROLOG compiling

techniques as follows:
e Stickel’s “Prolog Technology Prover” [St86]
o Plaisted’s “Simplified Problem Reduction Format” [P187]
e Loveland’s “Near Prolog” [Lo87]
e Overbeek and Lusk’s New Argonne Prover”
¢ Munich Group’s “PROTHEQ” [BAYS86]

There are probably a number of others. How do these systems overcome

the restriction, 1-3? Let us consider them in order.

26

The horn clause restriction (1) was used in PROLOG to allow a lin-
ear search mechanism: once a proof-search is started it can proceed to
success or failure without having to backtrack, as is necessary when using
ordinary-clauses resolution. This linear format greatly simplifies the search
mechanism; one only needs a “stack” and no auxiliary clause storage; only
the original clauses are retained, and they can be compiled before the proof
search starts.

The way that Stickel [St8G] avoids the horn clause restriction for full
resolution is to employ a variation of resolution called model-elimination
(which is essentially SL-resolution)®, which uses chains instead of clauses.

These chains act like clauses, with extra data in them which code the
history of how they were constructed in the proof process. This allows a
linear format similar to that used in PROLOG, but requires the addition
of many contrapositives’ of input clauses.

Plaisted avoids the horn-clause restriction by using a form of “Case-
Splitting”, which does not require contrapositives[P187].

Loveland uses “multiple-head horn clauses” e.g. P, @ « R, with no
contrapositives needed. His technique is similar to Model Elimination but -
it greatly reduces the amount of extra “history information” recorded with
clauses [Lo87].

The depth-first search problem (2), is avoided by “iterative deepening”,
i.e., by repetitively searching to deeper and deeper levels of the search tree.
The added cost for recomputing the top parts of the tree is minimal when
the search tree is branchy, which is usually the case.

There have been two ways used for avoiding the occurs check problem
(3): |

6Model Elimination was discovered by Loveland [Lo68, Lo69]; it is equivalent to SL-
Resolution, developed independently by Kowalski and Kuener [KoT71].

7e.g., for the clause P — Q A R, we would add the contrapositives ~Q «— (=P A R)
and =R — (=P A Q) .

27

(i) by detecting at compile time which literals can possibly have an
occurs-check problem e.g., P(z, f(z)), tagging them, and handling

only them during the proof.

(ii) by examining the substitution resulting from any successful unifica-

tion to determine if there was a problem, and rejecting substitutions
with “cyclic” terms, like z « h(g(z)). (Plaisted, Overbeek and Lusk)

Both methods cause a loss of speed, but not a severe one because such
problems rarely occur. (e.g., it is necessary for a variable to occur twice in
such a literal for it to present an occurs check problem.)

We believe that clause-compiling will be very important for the future
of ATP. These great speeds cannot be ignored. Granted that the ultimate
solution is not in speed, but in the better use of knowledge to prune the
search tree. Nevertheless, fast reasoning components will be important
parts of future technology.

Also, compiling methods of the kind that we have described, are useful
for other components of the reasoning process. For example, similar im-
provements in performance have been obtained for forward chaining [Fo80],
rewriting or demodulation [BoS0), inheritance [AN85], and data-base index-
ing [But86).

5 OVERVIEW OF PROOF DISCOVERY

Now let us give an overview of (our version) of Automated Proof Discovery.

How do we classify the research that is being done and should be done?
We feel that building a program for discovering proofs is like designing

an autonomous vehicle to cross the USA, say from Atlantic City to Fresno.

See Figure 13.

Figure 13 near here.

28

‘v .
xx-dej\ -

a wes e semmemm.m Beak TH o 0w 8 ¥

/ ../A [L
PR Y Raath . Kobnba of -t
NP s g aq S-Gy ARSI e Ty LA

Ameap @v g oy Fpm ot
Puw Bupes @ e By SFCW TN YIS ST RET 0

- —
~a

- S .
. S3iVLiS GILINA FHL 4O / M,
\ dVWN 3INLL L~ . Budtng @8 400 B WIS 1 g PTIBOS UYY
.) P S Suna- e R 5S4 .o o -
D ‘ o B @ Serven wasamin Siamg
* e e wemus 20 3
[Fa T a4

— . ONIAING GNY uucua.:\ \
'\ IVAININILNOISNYYL . A

.i-i‘ln\\.\.

4 -
. |
\q. EN
Jix¢ /
5 /
q*.) " N A
Siputlig W V-V
T e e
’
1 N A
e i

To do so one needs:

1. Fast cars;

[V

. Tactics: For getting from city to city;
3. Strategy: An overall plan of action.

And one needs a map.

But note that speed alone is not enough; dashing off in more less the
right direction will not lead to a distant goal without some guidance, no
matter how fast the car.

One could liken this to the way that automated proof discovery is being
attacked. See Figure 14. Here again we have “fast cars” (fast inference

vehicles), tactics and strategy. Let us break this down into more detail.

Figure 14 near here.

Category 1 is easy to define, it consists of those efforts which produce
speed of inferencing. They are essential to the success of ATP. Whatever
else we do to prune the tree, it is absolutely necessary that we have great
speeds for the “vehicle.”

Examples of parallel processing in ATP, are the efforts of Overbeek et
al, at Argonne National Lab [REF], the Munich Group [REF], and Waltz
and Stanfield at Thinking Machines [REF].

But speed alone is not enough. Again we need overall guidance that
comes from tactics and strategy.

It is not so clear what to put in Category 2, tactics, but we feel that
those methods which employ “large inference” steps tend to have the “city
to city” flavor, as do the special purpose provers. We will discuss these in
more detail shortly.

But what do we put in Category 3, strategy? Is there any method being

used, that takes an overall,global view, that provides and uses an overall

29

