1 8.nbi4

(oseg abpamouy] :.dVIN,, & Pue)

spouiel .2|doad,,
019 ‘uonoensqy ‘Abojeuy
Abojens ‘e

s1on0id asodind [e1oads

SPOYISIN dluewsas

sde)g aoualaju| abie
:soloe] ¢

(0)0 ‘sejni—aumay Bulidwo) pue) Buydwod-ssne|)
BuUISS920.d [9|[eled ‘@iempleH Jsised
:SO[OIYSA doualaju| ised ‘|

AHIAOOSIA 4004d A3LVYINOLNY 40 MAIAHIAO

strategy? Probably not. Perhaps analogy comes the closest to it; whereby,
the (complete) proof of one theorem acts as an overall guide to finding the
proof of another. Abstraction is surely another. All such methods that
are used or appear to be helpful, can be classified under the heading of
“people methods”, methods routinely used by practicing mathematicians,
but hardly used at all by existing programs. And it is quite clear that there
is an absolute requirement for a structural knowledge base of mathematical

knowledge (a “map” if you will), if we are to attain substantial success at

this field.

5.1 Tactics
5.1.1 Large Inference Steps

Under tactics, we have listed large inference steps (or multi-steps), where
the prover tries to accomplish its goal (discover the proof) by a few large
steps rather than a whole bunch of small ones.

The key here is to discard the intermediate results. Many current provers
“choke” from retaining unneeded proof fragments, such as intermediate
clauses.

Another key point is to identify for each such large step, the objective
of that step. The prover then sets out to achieve that objective, and if it
succeeds it retains only the objective and discards all intermediate results.
In fact it discards the intermediate results even if it fails to achieve the
desired objective. Thus it keeps only a few powerful results for further use.
These results act as a kind of subsummers to those discarded.

Some examples of systems using large inference steps are:

e Hyper-Resolution (J. A. Robinson})
e Linked-UR-Resolution (Wos, et al)

e Terminator (Antoniou & Ohlbach, Kaiserslautern, Germany)

30

Variable Elimination (Bledsoe & Hines)

Hyper-chaining (Hines)

Theory Resolution (Stickel)

Complete Sets of Resolutions [KB70, etc., See Section 3]

Hyper-Resolution [Ro65A]

As mentioned earlier, hyper-resolution has been extensively used for a
number of years. Figure 15 gives an example of its use, showing also the
objective, and the discarded intermediate clause. The example shown 1is
from propositional logic, but the method works equally well for full FOL,

using unification.

Figure 15 near here.

Linked-UR-Resolution [Wo84]

Linked-UR-Resolution is somewhat like hyper resolution. The idea is
depicted in Figure 15A, where a nucleus is given which contains a goal
literal. The objective is to obtain a unit clause by a set of resolutions, which
eliminates all literals except (possibly) one, the goal literal. A variation
allows the goal literal to occur in one of the satellite clauses. Also an
initiating satellite (a unit clause) might be used to start the process. The
goal literal can also be required to satisfy a given predicate P. ”"This allows

the use of semantic criteria for guiding the proof discovery.”

Figure 15A near here.

Terminator [A088]
The objective is to try for a unit proof of O, at various points in the

proof.

Variable Elimination [BH80]

31

G| &bl

asnejo e WoJj S[ela)| sAedsu jje saowey JALO3r40

3 9-H4 3 0- -4
SJUSA|0SaY djeipawelul pi1edsiq
*au0 Ul sdejs uonnjosay 8aiyL

4 HD 4
‘JuUSAj0SaY—-I1adAH

H O
9 d
4V

:s9sne|) d)9les
3 0- 9- V-
:asne[n) SndjoNN

o|dwex3
NOILNTOS3d-H3dAH

ec| ainbi4

'SPOYIS|\ UONIBUU0)) JaUj0 01 palejed St |
K1on00sIp J00id BuipinG 1o} eusiu) JRuUeWSS JO 8SN SYi SMOJIY

asnep yun 'y 3AILO3Arg0

- [-
= =
|— ﬁ llllll -
lllllll Y_
1 | - o)
VY /== -
T HL ! :Salle1es
Y Y _ Y =
fi - - =1l
] B e S WS [SN Ry = _
[eon) ﬁm:m_ozz
nn

:a)jeyes buneniul

[Zop] NOLLN10OS3Y-4dN A3xNI.

This procedure is designed for the field of real analysis, where the in-
equality predicates < and < are used.

Figure 16 shows an example where the variable « is eliminated from the
target clause 1. to obtain the VE-Resolvent 2. The objective is to remove

an eligible® variable from a target clause.

Figure 16 near here.

In this example, the one large step is equivalent to six resolution steps.
The method implicitly uses the axioms of real inequality theory, including
those for transitivity and interpolation.

This method has greatly helped with proofs in intermediate analysis.
For exambple, the proof of lim+, a limit theorem for sums,

lim f(z) = £ & lim g(z} = k — lim [f(z)+g(z)] = £+k

I (L

took only 13 steps instead of an estimated 100,000 or more by resolution.
Hyper-Chaining [Hi87]

Hyper-Chaining is an extension of variable elimination, wherein the
variable z being removed does not need to be eligible in the target clause.
The hyper-chain rule works to make the variable eligible (using other hyper-
rules) and then eliminates it.

Figure 17 shows hyper-chaining on a simple example. A much harder
example, the limit of a sum theorem, lt, shown above, is proved in three
steps. See Figure 18. The objective is to remove the variable é from the
target clause 10, which is done in one step to obtain Clause 11. This large
step also utilizes Clauses 2, 3, 5, 6, 8, 9, and is equivalent to at least 22
resolution steps. Two more uses of Hyper-chaining yields O. Figure 19

shows a few of the intermediate steps which were discarded.

8A variable clause z is eligible in a clause C if it does not occur within the scope of any
uninterrupted function of predicate symbol.

32

g} a.nbi

(a1qibije J) 8SNe|o e WoJj djgeleA e sAoWsy IALLD3Ard0

(A>M>N)ME<«—A>N :uonejodio|

010 ‘Zz>X <«<—Z>AV A>X :QInsuel |
:Buipnjoul ‘Aloay Ajienbaul [eay JO SWOIXe sy} Sesn Anondul

*9uo Ul sda)s uoinjosay XIS

X 3N} O gq>e ¢
JUBA|0SOH-IA

© ul BuLLINO20 JOU 8|CelieA B SI X
O g>x x>e |}

:asne|)) 19bie |
NOILVNINIME F19VIHVA

lFigure 17, 18 and 19 near here.

Theory Resolution [St85]

Stickel’s Theory Resolution encompasses many of the ideas from the
other large inference steps methods discussed above. It incorporates a
theory (or theories) into a Resolution Theorem Prover, thereby making
it unnecessary to resolve directly upon the axioms of that theory. Two or
more clauses are resolved with respect to that theory. Intermediate results
are discarded.

Figure 20 shows two simple examples from taxonomic theory and in-
equality theory. See [ST83] for other examples, especially for useful appli-
cations in Al Figure 21 lists some of the other work that resembles theory

resolution.

Figure 20 and 21 near here.

Complete Sets of Reductions [KB70, etc]
See Section 3. The objective is to reduce a target formula (e.g., clause)

as far as possible by applying to it a (complete) set of rewrite rules.

5.1.2 Semantic Methods

One of the most characteristic methods employed by people is to use se-
mantics to guide proof; a mathematician knows what his symbols mean (for
example, he knows that z is a real number when doing analysis). He also
knows many examples of predicatively defined structures. (such as groups,
continuous function, etc.) He uses this knowledge in at least two ways: 1)
by extending known examples (closely related to analogy; see section 5.2.1
below); and 2) by not attempting to prove intermediate goals for which he
has a counterexample.

Method 2, checking for reasonableness seems to be extremely powerful—

it probably accounts for a major portion of the mental effort used by human

33

/| 8inbid

©++ ‘Buiurey ‘uoneulu ojqeueA :S3SN

‘9SNe|o B WoJj 9jqeleA e acowey :JAILLO3NG0

X A a>p (q>e ¢
‘Juanjosay ureyD—-J1adAH

M>p ¢
:sosne}) buipoddng

010 ‘q ‘e ul Buund20 Jou ‘S|geleA B SI X
o>(X)] g>X X>e 7|

:asne|n) jabie |

o|dwex3
ONINIVHO-H3dAH

e
0. ¢l
(v 1,3 21 wegD-12dAH)
0>,/ 05 "9 A>3 71
(1 :[3] 11 ureqD-12dAH)
0>, 0>"9 0>/ 057% S2+p>0°T
(3866 s '9 ‘2 ¢ :(9] O ureq)-10dAH)
0> ¢
e TS (0 6) + (02 §) > 03+ (%2 6) + (= /)
[2 VYL (92 6) + (% £) > (°z 6) +(° f) + 79 "01
) 059 9+02>7%76
\ 0S¢ 9+z>0T '8
03>0 °L
05,2 »~2+,z6)>(b) >4y T>,2+59 9
0S5 2 2+ (06 S(z6) SL>F we 0z>,T+%9 S
| 05,3 "9>0 Y
05 3 p+(zf)S(zf) E>TH 0z> z+79 '€
05, A+(zH>0z)) x> 04 0> T+79°T
0> /73 9>0 1

wra1097 J, SHUI-jo-umg Jutaold
- i amd Low

\Q\\\ W ~ gt MDL

415"
0> .2 0> "9 0>7 05 7% ~£S+P2"
0> g>"9 0> 7 wv.i
0> ¢ 2+3>0
[¢ Jo oryeuTmID JqELIEA s10pq] (g Surareud)
0> # g>g I>1IT+Tg 057 9>"9
0> 9 a+2>0
(g *** SururewD)
0> g>mg T>IT+59 057 g>7 x>+
0> ¢ 3+ p>0
(- Surureq)
05 2 fx>0Tdg T>IT 05> 7 9> 0>+
0> ¢ A+3>0
(6 - Sururew))
05 2 fT>0T+%9 >tz 05 2 1Z>0TH 0z > Iz +9
0> 9 A+3>0
(g *** Surureq))
05 2 1T>0T+% >z +g 05 A 12>+ 0z > 1z 479
0> 9 A+e>03 .ui.achuiﬁs
(9 - SururerD)
05 3 12>+ 0r > 149
05> 9 3+ (0z 6) > 03+ (2 B) 3+ (1 6) > 03 +(°zH)
(z *** Surureq))
05 2 12>+ 0z > 17 +"9

= - fn=F\ L (O BVom.fchmv.?QHMv

34 (92 6) > 93+(°z 6)

papreIsTD

o e —— — -

02 ©Inbi4

6 180 0)
O>eg ¥ 90>q9°L ‘q>e’g BNOSSY

z>X«—z>A% A>X7
(X > X)— "}

:f1oay | Ayenbau
-doys auo Ul (gys)hog "€l

186 0} (suyD)seybnedoN ‘ot
UIM (2)S ‘SUUD)PIUD “L1 BAj0S8Y

(R)hog — (AX)pIuD % (x)seiybnedoN 9
(X)uosied «—(x)hog ‘|

:f108Y | dlwouoxe |

ST1dINYX3 NOILLNTOS3H AHOZHL

12 24Dl

181014 punoib payoeny
[eAowaY Wid | buipjaIus
uoneulwlg s|qeueA

[ogHg] (seuiH pue oospalg) Jenoid Auenbaul [elsusn
[;gop] (je 18 ‘sop) Sjdidulid Soudiojul paXUT
[690N] (SWIO 1) uounjossi-3

[gHl (wany pue uosileH) uonnjosal pazieiouab-N
[e/xid] (uoxig) uonnjosal-Z

fysoow] (Uosuiqoy v 'f) uonnjosauadAH

NOLLN1OSIH AHOTHL DNITANISIH ¥HOM H3HLO

mathematicians. Several researchers have attempted to apply this princi-
ple with varying success (Gelernter [Ge39], Bledsoe [BBS2], BI83], Wang
[Wan85 and Section 6.3 below]).

It appears to be quite challenging both to represent and to access the

large variety of examples the human has available.

5.1.3 Special Purpose Provers

We list here areas for which a few special purpose provers have been devel-

oped, and which are classified under "tactics.”

e Inequalities

— Ground [NO78?, Sho77, Sho79, Bu83, 7AAAI paper?]
— General [Bh80, BIXS83, Hod72]

o Geometry (Wu and Chou) (See Section 6)

o Non-standard Analysis (Ballantyne) [BBSS]

Algebraic Manipulation (Macsyma, etc.)

Equality Subsystems (Richard ?)

5.2 Strategy
5.2.1 Analogy

Analogy is the heart and soul of intelligent behavior. We do very little
that is absolutely new. Somehow intelligent machines (including reasoners)
must make use of analogy, but success with it has been limited, so far. It
is closely related to the field of Machine Learning [ML1, ML2].

There have been a number of Al researchers working on Analogy, in-

cluding Winston, Carbonell, Greiner, Russell, and others. I will not review

34

all of that literature here. Much of it is reviewed by Dedre Gentner’s sur-
vey paper in this conference. (There are also a number of other papers
in this conference on analogy). Another review, with an extensive set of
references, is given by Hall [Ha83].

There are many aspects to analogy, but we are concerned here only
with the situation where the solution of one problem is used as guide to the
solution of another, or the proof of one theorem the guide to the proof of
another.

A signal paper of this sort, is that of Bob Kling [K1i71], wherein he
used the proof of a theorem in Group Theory to guide the search for an
analogous proof in Ring Theory.

Figure 22 depicts this idea.: The guiding proof proposes actions to the
prover. If the proposed action fails, then the prover must somehow recover,
to get the process back on track. Also a fetching mechanism is needed to
automatically select, from a database, proofs that might be used as a guide

to the current endeavor.

[Figure 22 near here.

As an example of this, three University of Texas graduate students
working at MCC have developed an analogy prover based on Resolution
and Chaining [BCP86], which has used the proof of lim+ as a guide for
proving lim*. See Figure 23. Since the proof of limx makes some major
detours from that of lim+, it was necessary to rely on its "expert system”
component for recovery from failed actions, and to also rely on its stand-
alone proving capability. See [BCP86] for details. This same prover handled
other pairs of theorems, including those depicted in Figure 24, and has been
extended and converted to a natural deduction format [BCP87], which we
feel will be better able to handle more complex proofs, especially where

parts of proofs are needed as guides.

Figure 23 and 24 near here.

35

2¢ @.nbi4

. (Areonewoiny

| paALaQ)
. jooid snobojeuy

Joold buping

waloay| snobojeuy

9y} JO
JUBWaRIS

wialosy | Buiping

oyl Jo
JusWalRIS

1VINHOd ADOIVNY

£z 91nbi4

Be—X Be«— X Be—X

s 1=[(X) 6 - 00 W «— X=X Buwy |= (X)) Wi

«AI'T

Be«—X B <¢«— X Be«—X

N+ 1=[(X) B+ (X)f] W« A=) 0wy |=(X) 4 Wi

+ NI

FTdNVXE NV

7 9In31]

. N < >bos * I

\” \ 4
+ NI < »bas + NI

As was pointed out by Carbonell [Car83}, the derivational history of a
problem solution is very important when that solution is used as a guide
to solving an analogous problem. The reason for this is that when an
analogous action fails, the problem solver needs to "know” what was the
intended goal of the action, so that it can try to attain that goal by another
action (through analogy, or by stand-alone methods). Such a derivations
history provides for annotating a proof, with motivational information.

Another reason for the natural deduction format, is that subgoals of the
proof can be treated in a hierarchical way. Thus, in Figure 25, suppose the
hierarchical structure represents the proposed proof of a new theorem (as
proposed by a guiding proof). Now if, for example, goal G23 fails, then the

prover can execute the following strategy:
1. Fetch another guiding proof and try to apply it to G23.
2. If step 1 fails, try to prove G23 by a stand-alone prover.

3. If step 2 fails, fail the goal, backtrack and try steps 1-2 on goal G2.

Figure 25 near here.

Such a hierarchical structure helps make use of the derivational history
(annotated proof) that is needed. (Other useful information could also be
included in the derivational history.)

A problem with this is that one must collect and store this additional
information (i.e., not just proofs, but annotated proofs) if it is to be used
" to guide new proof searches.

Some possible mechanisms for these annotated proofs are:

e Expansion Trees (Andrews, Miller) (Section 1)

e Proof Parsers (Simon) (Section 6.9.2)

36

Gz ainbi4

€2o |

J 1

49

4004d TvOIHOYVHdIH V

e Requirement Graphs (Bledsoe) [BI80)
e Multi-Step Rules (Hines) (Section 5.1.1)

e Other formal representations (Section 1)

We believe that in the long term a large structured knowledge base will
be needed, such as CYC, the commonsense knowledge base being built by
Doug Lenat and his team at MCC [LeS86, LF87]. See also [Hob83, Bor?].

Indeed, analogy plays a central role in the building and use of CYC.

5.2.2 Abstraction

The idea here is to prove an abstraction of a theorem, as a subgoal, and
use that proof as a guide for proving the theorem itself. For example, one
could abstract a formula P(z,y) by suppressing the second argument and
retaining only P(z).

Such an idea was first introduced by Newell, Simon, and Show [NSS56].
But the best work in this area is by Plaisted [P181, P182], wherein he
suggests and uses a number of kinds of abstraction, and uses a number of

layers of abstraction.

5.2.3 Other “People” Methods

We list here some other methods in addition to analogy and abstraction,
that are extensively used by professional mathematicians, with some refer-

ence to machine implementation:
e Generating and using Examples in proof discovery [BB82, BI83]

e Using Counter-examples to prune search trees [Ge59, BB82] (See Sec-
tion 5.1.2)

¢ Automatic Conjecturing of lemmas and subgoals [Le76, Le82]

37

e Automatic Fetching of useful lemmas and definitions from a large

Knowledge Base

¢ Agenda mechanisms for controlling the proof search [Ty81]

o Higher-level reasoning, meta-reasoning [Ges83], higher-order logic [An84]

6 CONTEMPORY PROVERS, CENTERS,
PEOPLE

We describe here the work of a few groups and individuals conducting ATP
research. Some of the efforts of others are described in other parts of this
survey. This list is by no means complete, nor is it ordered by importance.
For example, much of the work in Expert Systems is not included as well

as the work in PROLOG and common-sense reasoning. See also [Pas87].

6.1 Argonne Laboratory Theorem Provers, L. Wos,
E. Lusk, R. Overbeek, et al. [Wo84, Wo87]

Argonne is one of the most prolific center for ATP research in the world.
They have implemented a series of systems including AURA [Wo81] and
ITP [Lu84]. Currently, [But86] they are implementing a new system aimed
largely at getting an increase of speed (> 100 times) compared to ITP. This
system will use implementation techniques from Prolog (e.g. clause com-
piling), multiprocessors, associative-commutative unification, and database
indexing techniques (for clause retrieval). McCune also has implemented
an interactive resolution proof checker. With Boyer, this system was used
to prove some basic mathematical theorems from Godel’s axiomatization
of set theory[Bo8Ga).

The Argonne group has used ITP extensively in ATP research, proving

many theorems, verifying software and hardware, solving word problems

38

using ATP methods [AAR newsletter often reports examples of this work],
and solving open questions in mathematics. They have distributed ITP to
over 200 sites (it is written in Pascal for portability).

The basic technique is clausal resolution with set-of-support, paramod-
ulation, demodulation, and subsumption (all optional). Elaborate data
structures are used to permit full structure-sharing for terms and literals
(only one copy of each unique object is kept). Indexing techniques allow
efficient access to terms which might unify with a given term. A complex
evaluation function is used for prioritizing the next resolution step. A “user

friendly” interface is provided for interactive or batch use.

6.2 KLAUS Automated Deduction System (originally
called CG5): Mark Stickel (SRI) [St85, St86,
St86a)

This large system implements a number of techniques of ATP. The basis is
a connection graph encoding possible resolution steps between non-clausal

first-order formulae. Special techniques include:

1. Control of inference direction (a formula may be restricted to forward

or backward chaining);

2. Theory resolution [St83] which increases efficiency by allowing a single
resolution step to incorporate a whole “theory” such as rewriting (de-
modulation), associative-commutative unification, many-sorted unifi-

cation, taxonomic hierarchies, etc. (See Section 5.11);

3. A Knuth-Bendix algorithm is provided for completion of sets of rewrite

rules;

4. a Priority control mechanism employing evaluation function;

39

5. A Prolog Technology Theorem Prover (PTTP) component. Using
Loveland’s Model Elimination style of Prolog-like linear search, PTTP
compiles each clause into LISP functions which carry out the search
corresponding to that clause. Iterative deepening is the search strat-
egy. Occurs check is used except in cases where it can be determined

that it is necessary. (See Section 4.2)

Stickel has proved a good collection of standard ATP test theorems and

theorems from mathematicians.

6.3 Kaiserslautern: N. Eisenger, H. J. Ohlbach, J.
Siekmann, Universitat Kaiserslautern

The Margraf Karl Refutation Prover (MKRP) [Karl84]is a powerful system
developed over many years at Kaiserslautern and Karlsruhe. It uses con-
nection graphs, due originally to Kowalski [Ko75]. Each possible inference
step (resolution, paramodulation, factoring) in the clause set is represented
as a link in a graph. After performing a chain of inference steps, it is often
possible to “reduce” the graph, removing irrelevant and redundant links
[Oh187]. This is the source of efficiency of the algorithm, but it is also the
source of a problem: there is no completeness theorem for connection-graph
resolution with inference restriction strategies typically used (In practice,
this does not seem to be a problem).

Unification in MKRP is many-sorted [Wa83] (see section 3.4). Further
research on unification theory promises to add the capabilities for handling
equational theories and structured sorts.

An important technique in MKRP is the “terminator module” [AO83]
which quickly detects situations where the refutation of a set of clauses can
be completed immediately.

Extensive input and output translation facilities are provided.

The Kaiserslautern group is currently working on a successor system

40

called HADES (Highly Automated Deduction System). Among other fea-
tures, it attempts to incorporate higher level links as atomic inference steps
in the connection graph.

They aim to encode and prove all theorems in a standard textbook on

semigroups and automata.

6.4 Munich: W. Bibel’, S. Bayer, et al.

The Munich group has implemented as a project within ESPRIT, a PROLOG-
like theorem prover called PROTHEO based on Bibel’s connection method
[BiS3]. Special hardware including associative memory for accessing con-
nections and highly parallel multiprocessing is under development.

Available input preprocessing includes translation to clausal form. Lem-
mas are generated and retained. Depth bound search is used. The system
is complete for first order logic.

Special reductions of the clause set [Bi87] are used for efficiency; for

example, Schubert’s steamroller is proved in T steps.

6.5 University of North Carolina: David Plaisted

Plaisted’s Simplified Problem Reduction Format prover (SPRF) [P182, P187]
is written in PROLOG and obtains efficiency by encoding first-order for-
mulae as PROLOG clauses. A special splitting rule is used for non-Horn
clauses for completeness. Contrapositives of the input clauses are not re-
quired, but help in some cases. Rewrite rules can also be given and Knuth-
Bendix completion is available.

The search strategy is depth-limited with iterative deepening. Solutions
to subgoals are cached.

The code is noteworthy for its conciseness, about 15 pages of PROLOG.

Speed is competitive with major resolution based provers such as ITP,

Snow at Univ. British Columbia

41

Stickel, etc.

6.5.1 Greenbaum

The Illinois Prover was written by S. Greenbaum [Grb86, GP8(] as a test-
bed for Plaisted’s abstraction methods [P181]. It became a general purpose
prover of considerable power, employing many interesting implementation
techniques.

A special refinement of locking resolution and unit preference is used
which simulates backwards and forward chaining. Complex data structures
are used for structure sharing and indexing speed.

The aim in uniformly good performance with minimal user guidance.

Schubert’s Steamroller is obtained in about 1 minute on a VAX.

6.6 Edinburgh: A. J. Milner, M. J. Gordan, et al.

Logic for Computable Functions (LCF) [GMW82] is a large system for ver-
ifying properties of computable functions defined in typed lambda calculus.
It is efficiently implemented in ML [Card82].

LCF has been used to verify thousands of standard mathematical the-
orems. It has recently been enhanced by Larry Paulson to include higher-
order deduction [Pau86].

6.7 Boyer-Moore Prover: University of Texas [BM79]

This is a large system for verifying properties of recursive functions defined
by lambda expressions in “pure LISP”. Structural Induction on the size of
the input is used, with many heuristics available.

The prover has been implemented in several dialects of LISP and is
widely distributed, referenced and used by others. Applications, some of
commercial importance, have included program verification [BM81], hard-

ware verification [Hun86, Borr87), verification of compilers, and verification

42

of the proofs of many theorems in mathematics and metamathematics in-
cluding the uniqueness of prime factorization for natural numbers, Wilson’s
Theorem [Ru85], The Church-Rosser theorem for pure lambda calculus, and
Goedel’s Incompleteness Theorem [Sh8G, Sh8T].

One of the commendable features of this Prover is its ability to automat-
ically carry out the proof of a theorem when given the necessary lemmas
by the user. Another is its ability to automatically construct a generalized
induction hypothesis when the obvious one does not suffice.

Boyer has also done important work on compiling rewrite_rules [Bo8G).

6.8 The Wu-Chou Geometry Provers

An interesting Proof Procedure for Theorems in Geometry has been given
by the Chinese mathematician, Wen-Tsun Wu [Wu78, 84]. Shang-Ching
Chou (University of Texas) has extended and refined that work and used his
implementation to prove a number of difficult theorems in Plane Geometry
(about 2000 Theorems), some of which are new. [Cho85, Cho86, Cho87,
CS86)

The procedure is as follows:

Transform the Hypotheses and Conclusion of a theorem in Ge-
ometry to sets of Algebraic equations. Show that the conclusion
follow from the hypotheses by performing a series of “divisions”
(somewhat like Matrix operations). This requires factoring of
polynomials over algebraic extensions of fields of rational func-

tions (very difficult in some cases).

The method does not apply to all parts of Plane Geometry (only cases
where hypotheses and conclusions can be expressed as equalities, not in-
equalities). The general method can be applied to other areas, such as
Differential Geometry. Figure 26 shows drawings from two examples from

[Cho87], the first of which was given in Section 1 of this survey.

43

E‘igure 26 near here;l

6.9 Bledsoe, et al (University of Texas & MCC)

Figure 27 shows some provers from this group. See also [B184, BI&6).

[Figure 27 near here.}

6.9.1 Wang’s SHD (Semantically-guided Hierarchical Prover)
[WaT85, WaT87]

An interesting aspect of SHD is the hierarchical format. This is similar to
SL-resolution, recording extra information along with each clause to record
the history of subgoals which led to the clause. Wang has implemented
a number of completeness-preserving refinements (restrictions on resolu-
tion) allowed by this annotation. For example, redundant subgoals can be
avoided, certain forms of subsumption can be checked quickly, etc.

A number of heuristic methods for assigning priority to subgoals are
available, and a user interface allows control of parameters affecting these
heuristics.

Another goal of Wang’s prover was to provide a base for semantic guid-
ance to the proof process. A partial model of the axioms of the input
theorem may be provided by the user. The user specifies a finite set of
(ground) terms from the Herbrand universe and provides effective proce-
dures for evaluating predicates built on these terms. Candidate subgoals
are only attempted if they are acceptable in the model.

Several difficult theorems have been proved, such as IMV (a first-order

form of the intermediate value theorem).

44

97 2M3L]

6p-2cVv @nbid 62-0cy oinbi4

3

HIAOHd NOHD-NM FHL DNISN SFTdNVXS

/2 ©nbi4

a2Jald pue ‘1edoo) ¥Hoolg — IOA0ld Abojeuy
uowis uog - Aioay] JequinN ur Bundsyd J00id
(ybanquipg ") Jowwin|d — buizen

soulH Aue - seny woixy deisiniy u-duipjing
[/g1eM] Jonoid [edyoresdlH s.buem

sisAjeuy Ul SJ00ld -
[ygig]l Jenoid Auenbay [eleusd

SUOISIOA aAjoBISl| pue Jejnbay -
[c/g] Jonoid 8jfig uononpa([einieN - ATdIAl

(DD pue sexaln) e ‘30Sd3ad

6.9.2 Proof Checking Number Theéry: Don Simon

This system accepts a proof in its Natural Language form (Figure 28) ex-
actly as it is written by the mathematician.!®. The proof is then parsed:
first the sentences are parsed, then the whole proof (See Figure 29, 30),
using a proof grammar. This enables the deduction component to verify
the statements in the proof. A powerful reducer for number theory [Sim84]

is used.

Figure 28, 29 and 30 near here.J

All proofs in Chapter’s 1 and 2 of LeVeque’s book were proof checked
[Sim8&8].

6.9.3 Building-In Multistep Axiom Rules: Hines [Hi&6, Hi87]

This system compiles multistep actions into a single rule, thereby attaining
higher-level objectives. Interim results are discarded.

Examples of these are the VE rule and Hyper-Chaining rules described
in 5.1 above. Each rules has restricted entry points, and other restrictions
on their use. Most rules will not apply, but when one does, it can give sizable
results. They are somewhat like expert systems rules in that respect.

The rules are built up in a hierarchical way, some rules are subparts of

others.

6.9.4 GAZING: Dave Plummer [Plu87]

His system, VOYER, is a natural-deduction style prover, which uses the

concept of gazing to control the use of rewrite rules. Abstractions of rules

10The system is currently working on proofs from LeVeque’s book on Numbered Theory
[LeV62)

45

