
Closet: A Framework For Combining Scripting and
Static Languages

Andy Boothe

andy.boothe@gmail.com

University of Texas at Austin

Department of Computer Sciences

Undergraduate Honors Thesis

Spring 2006

Abstract
Scripting languages like Python and Ruby allow rapid development of software, but make no guarantees about
the type safety of a program at compile time. While static languages like Java do make strong guarantees about
the type safety of a program at compile time, they are not perceived to be as agile as their more dynamic
counterparts. Is it possible to develop a statically-typed language that makes strong guarantees about type
safety, but looks and acts like a scripting language?

i

Table of Contents

1.0 Introduction 1
2.0 What Do Programmers Like About Languages? 3
 2.1 Case Study: qsort 3
 2.2 Can Scripting Languages and Static Languages Be Combined? 5
3.0 Closet 6
 3.1 Closet by Example 7
 3.2 Closet Features 10
 3.3 Closet Expressions 11
 3.4 Closet's Type System 12
 3.4.1 Overview 12
 3.4.2 Variables 13
 3.4.3 Types 13
 3.4.4 Type Inferencing Algorithm 14
 3.5 Closet Implementation 17
 3.5.1 Design 18
 3.5.2.1 Program Execution 18
 3.5.2 Closet Errors 21
 3.5.3 Performance 21
4.0 Discussion 21
 4.1 Closet Design 21
 4.2 Successes 22
 4.3 Failures 22
 4.4 Future Work 22
 4.4.1 Package System 23
 4.4.2 Generics 23
 4.4.3 Overloading and Exceptions 23
 4.4.4 Object-Oriented Features 23
 4.4.5 Multiple Inheritance 24
 4.5 Cosmetic Changes 24
5.0 Conclusions 25
6.0 References 26
Appendix A Closet BNF 27
Appendix B Closet Expressions 29
Appendix C Closet Statements 40

i

1.0 Introduction

As computers have become more and more important in industry and in the lives of people
around the world, the demand for software has grown with tremendous speed. Rapid growth
continues to this day, and there's no reason to believe this growth will slow in the foreseeable
future. As the demand for software increases, the supply of software must increase as well.
Therefore, the ability to write programs to solve complex problems quickly and correctly can
only become more important.

All modern programs are written in programming languages. Therefore, to write more powerful
programs quickly and correctly, we will need more expressive programming languages that help
us to write programs quickly and correctly. The basis for such languages exist today; indeed,
some good examples are already well defined with reliable implementations and in wide use.
Languages such as Ruby, PHP, Python, and Perl are touted as enabling programmers to write
programs extremely quickly, whereas languages such as Java, C++, and C# are popular for
writing large, mission-critical applications out of libraries of reusable components. However,
there is not yet any one language suitable for both of these pursuits. In fact, quite the opposite is
true. There are two distinct camps which embody one - but not both - of these goals: the
scripting languages camp focuses on languages which are agile but unsafe, whereas the static
languages camp focuses on languages which are safe but not too agile.

In the interest of completeness, there is one other language camp which bears mention:
functional languages. While these languages are inspiring, their popularity pales in comparison
to the popularity of imperative languages. However, functional languages have shown
themselves to be a potent proving ground for new ideas in programming languages, and there are
many ideas in modern functional languages that are very powerful, but still have not yet crossed
over to the other language paradigms. These features and ideas must not be ignored, and instead
should be adapted to new agile languages that are also safe.

Some canonical examples of modern scripting languages are Python, Ruby, and Perl. So-called
scripting languages are largely a reaction to the so-called ``B&D''1 languages which scripting
proponents claim force the programmer to focus on unimportant details such as types, thereby
distracting the programmer from his real task: reasoning about and writing correct and efficient
programs. As a result, scripting languages are written to afford the programmer as much
flexibility as possible and to free his mind from the mundane tasks of programming; the main
focus is on writing programs quickly. Scripting languages are often dynamically typed, feature
high-level language features like true closures and functions as objects, and have elaborate
syntax which allows the programmer to perform complex computations with concise syntax.
While these properties of scripting languages make programming in scripting languages faster,
they greatly reduce the power of the compiler or interpreter to perform static analysis and
identify errors. For example, in a dynamic typing system types are not known until runtime, so
the language cannot make compile-time guarantees about type safety. This makes dynamically-
typed programs susceptible to an entire class of bugs to which statically-typed languages are

1 ``B&D'' is a colloquialism for ``bondage and disciple'' and is usually applied to languages which are

highly restrictive.

2

largely immune.

On the other end of the spectrum there are static languages. Some canonical examples of
modern static languages are Java, C, C++, and C#. Static languages are designed to eliminate as
many errors as possible without disallowing the programmer from performing arbitrary
calculations; the main focus is on writing programs correctly. As a result of this philosophy,
static languages are usually simpler, have fewer languages features, and are explicitly typed.
Explicit typing is a form of static typing, so static languages are empowered to make strong
guarantees about the type safety of programs. This combination of factors results in greatly
reducing the number of programmer errors at runtime. However, explicit typing also requires
the programmer to specify the type of every variable and function explicitly, which makes both
the process of writing new code and the process of changing existing code longer and more
tedious. Also, popular imperative languages often lack critical language features like closures,
programmers must often duplicate this functionality in their programs by hand, resulting in both
duplicated code and longer code, in addition to increased tedium.

One of the most striking differences between these two types of languages is the type system
each uses, where the ``the fundamental purpose of a type system is to prevent the occurrence of
execution errors during the running of a program'' [Cardelli97]. Type systems are implemented
using a type checker, which is used to determine whether or not a program conforms to a
language's type system. Scripting languages are typically dynamically typed, which means that
the language uses a trivial compile-time type system system in which all values are of the same
type, so the compile-time type system has no power to eliminate potential runtime errors. Static
languages use static typing, so they use a more meaningful compile-time type system which
knows intimate details about the type of each value in the program, which allows the language to
eliminate entire classes of runtime errors.

Another important property of a language is its safety. ``A program fragment is safe if it does
not cause any untrapped errors to occur. Languages where all program fragments are safe are
called safe languages. Therefore, safe languages rule out the most insidious form of execution
errors: the ones that may go unnoticed'' [Cardelli97]. Safety in a high-level language is highly
desirable, and both static and scripting languages tend to be safe.

3

Language Typing Safe? Inferred? Paradigm GC?

C Weak No No Imperative No

C++ Weak/Strong Yes/No No Imperative, OO Yes/No

C# Strong Yes/No No Imperative, OO Yes

Java Strong Yes No OO Yes

Python Dynamic Yes No Scripting, OO Yes

PHP Dynamic Yes No Scripting, OO Yes

Ruby Dynamic Yes No Scripting, OO Yes

Haskell Stronger Yes Yes Functional Yes

ML Stronger Yes Yes Functional Yes

Lisp/Scheme Dynamic No No Functional Yes

 Figure 1.1: Examples of Programming Languages

Judging by the popularity of both types of language and the near-religious zeal with which
people defend either philosophy, scripting languages and static languages both have gotten some
things right. However, as proponents of each school are eager to point out about the other, both
have also gotten things wrong. However, many of the drawbacks of both static and scripting
languages are avoidable. This begs the question: is it possible to create a sort of hybrid language
with the advantages of both types of language and the disadvantages of neither? Can a scripting
language be made `safe,' or can a static language with strong typing be made `agile'?

2.0 What Do Programmers Like About Languages?

To better understand why programmers like scripting languages, contrast the following
equivalent code written in two languages: Ruby, a scripting language; and Java, a static
language.

2.1 Case Study: qsort

Consider these implementations of quicksort (qsort) in Ruby and Java:

def qsort(vs)

 if vs.length<=1

 return vs

 else

 pivot = vs.pop()

 return qsort(vs.find_all do |v| v < pivot end) +

4

 [pivot] +

 qsort(vs.find_all do |v| v >= pivot end)

 end

end

Code Listing 2.1.1: qsort in Ruby

public static List<Comparable> qsort(List<Comparable> vs) {

 if(vs.size() <= 1)

 return vs;

 else {

 Comparable pivot=vs.remove(vs.size()/2);

 List<Comparable> left=new ArrayList<Comparable>();

 List<Comparable> right=new ArrayList<Comparable>();

 for(Comparable v : vs)

 if(v.compareTo(pivot) < 0)

 left.add(v);

 else

 right.add(v);

 List<Comparable> result=qsort(left);

 result.add(pivot);

 result.addAll(qsort(right));

 return result;

 }

}

Code Listing 2.1.2: qsort in Java

To be precise, these two implementations are not exactly the same. (The Java version has one
loop whereas the Ruby version has two, for example.) However, the behavior they implement is
the same, so we will consider the two passages to be equivalent.

Both functions sort any collection of ordered objects in the most general way possible in the
language. In Ruby, we get this polymorphism syntactically for free; because Ruby is
dynamically typed, all checks to see if the arguments support the required operations <, length,
pop, and so on are deferred until runtime; therefore, the compiler allows any value to be passed

5

to qsort, including values which will generate a runtime typing error. However, in Java we have
to use the verbose generics syntax introduced in Java5. This added verbosity empowers the
compiler to guarantee that no uses of qsort will generate a runtime typing error.

When comparing these two implementations, the most obvious difference is the lengths of the
two snippets. The Ruby implementation is significantly shorter than the Java implementation,
weighing in at a third as many lines and less than half as many characters, partly due to some of
Ruby's language features and partly due to the lack of type declarations. Also, the Ruby code
looks much less complex than the Java code and is much more clear and readable. Furthermore,
Ruby uses fewer symbols, preferring instead keywords (e.g. end instead of }), so the code
actually reads like English. The aforementioned type-safety guarantee of the Java program,
however, is also attractive. Equally as attractive, while it's not obvious from the code, the Java
code will both start faster and run faster because Java is a byte-code compiled language whereas
Ruby is an interpreted language (although Ruby could in principle be compiled to byte code as
well).

For the sake of argument, let us assume that these differences represent the reasons why
programmers choose one type of language over the other. People like the brevity of scripting
languages and the for free flexibility offered by the dynamic typing system as well as the greater
readability. On the other hand, people also appreciate the guarantees that a static language's
compiler makes, even at the expense of longer code, and the speed it offers.

2.2 Can Scripting Languages and Static Languages be Combined?
There are many lessons to learn from both static and scripting languages:

• shorter programs are better
• more readable programs are better
• guarantees are a good thing
• flexibility is a good thing
• faster is better than slower
• more features are better than fewer features, within reason

How many of these pros can be combined into one language while avoiding as many cons as
possible?

It is possible to achieve compile-time type safety guarantees without explicit typing using
another static typing system called type inferencing. In type inferencing, the types of variables
and expressions are determined at compile time by analyzing the way the variables are used
instead of by explicit declaration. Therefore, the same type information is inferred without
having to write it explicitly, so type safety guarantees are achieved without sacrificing
conciseness or visual simplicity. It is important to note, however, that no type inferencing
system can necessarily infer the type of all useful programming expressions, so some type
information must be stated explicitly from time to time.

Garbage collection is also a feature of the majority of modern popular languages and it appears

6

in both scripting languages and in static languages. In fact, garbage collectors are critical
features in languages. Garbage collectors are important in avoiding many varieties of memory
management errors. Clearly, garbage collectors are a good thing in high-level languages.

There are a few other crucial features that have proved to be important in modern languages.
One such feature is closures. Closures offer a sophisticated versatility while still preserving
modularity, so they allow many programming idioms that are good solutions to difficult
problems. A related feature is the lambda expression, which is borrowed from functional
languages. Lambda expressions embody a functional abstraction of mapping values from one
type to another in a straightforward manner, so they are a very clear way of expression many
ideas in programming. Certain syntactic sugars, such as support for list literals, are also very
useful.

3.0 Closet

Closet is an experimental language designed to explore how to marry the principles of both static
languages and scripting languages together in a single language. Specifically, the goal for Closet
was to make a language which looks and acts like a scripting language but can make all of the
guarantees of a static language.

Closet has the following features:

• Static Typing the types of Closet programs are determined at compile time. Programs are
guaranteed to be type-safe before they ever run, excluding downcasts, which are checked
dynamically at runtime.

• Type Inferencing Closet programs are largely implicitly typed. While function parameters,
return types, and member variables are explicitly typed, local variables are implicitly typed,
eliminating much of the need for type annotations on variables.

• Garbage Collection memory is managed by a garbage collector, so user memory
management is automatic.

• Purely Object-Oriented all values in Closet are objects. This includes user-defined types as
well as built-in types such as integers and functions. Therefore, higher-order functions are
possible in (and important to) Closet.

• Functions as Closures all functions in Closet are closures, which offers the basis of
implementations for objects in Closet.

The unit of compilation in Closet is the file.

A grammar for Closet is in Appendix A of this paper. A synopsis of Closet's type structure and
behavior are given in Appendices B and C.

3.1 Closet by Example

Closet is designed to be readable and safe while still being short and expressive. It is also

7

designed to be highly orthogonal, so a few short examples will offer a good working
understanding of the language.

This is the trivial Hello World program in Closet:

function void main():

puts(“Hello, World!”)

end

Code Listing 3.1.1: Hello World in Closet

The program consists of one function called main with type ()­>void, or a function with zero
arguments and return type void, which is the entry point for Closet programs. The body of
main contains one statement which calls puts passing the String value “Hello, World!” as
an argument. The puts function writes its argument to the output. Note that statements do not
require an explicit statement terminator; a newline is sufficient.

function Boolean evenp(n:Integer):

 return n%2==0

end

Code Listing 3.1.2: Predicate for Evenness of Integers in Closet

This example defines a function called evenp with type (Integer)­>Boolean, or a function
with one argument of type Integer and return type Boolean, that returns true if its Integer
argument is even (i.e. has remainder zero when divided by two) and false otherwise.

function List qsort(xs:List):

 var result

 if xs.size() <= 1:

 result = xs

 else: do

 var pivot=(cast Integer) xs[0]

 var l=qsort(xs[1:].filter(lambda(x:Object)­>pivot>=(cast

 Integer)x))

 var r=qsort(xs[1:].filter(lambda(x:Object)­>pivot<(cast

 Integer)x))

 result = l + [pivot] + r

 end

 return result

8

end

Code Listing 3.1.3: quicksort in Closet

This code snippet defines a function qsort that implements the recursive quicksort algorithm.
It is important to note that this quicksort is not generic as the quicksort algorithms from the
introduction are; this quicksort will only work on lists of Integers. A discussion of an
augmentation to the type system to include generics, which would allow a type-safe polymorphic
qsort is included in the Future Work section. This snippet also demonstrates Closet's type
inferencing system. The locked variable xs has type List by explicit typing. The types of
variables pivot, l, and r are Integer, List, and List .Somewhat more interesting is that the
variable result has the type List, which is the result of unify(List, List). Closet's type
inferencing system is discussed in section 3.4.

function ()­>Integer generator():

 var n = 1

 function Integer g():

 var result = n

 n = n+1

 return result

 end

 return g

end

Code Listing 3.1.4: Sequence generator

This code snippet further illustrates Closet's typing system and shows an example of Closet's
closures and of a higher-order function in Closet. The function generator is a higher-order
function with the type ()­>()­>Integer and the function g has type ()­>Integer. The
variable n receives the type Integer via its initialization.

function Integer geni():

 return 5

end

function Object geno():

 return geni()

end

var f

9

f = geni

f = geno

Code Listing 3.1.5: Function Type Inferencing

This snippet illustrates the how Closet's type system handles function types. The function geni
has type ()­>Integer and geno has the type ()­>Object; since f receives the value of both,
it receives the most general type, ()­>Object.

function Object id(x:Object):

return x

end

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].map(id)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].map(lambda(x:Object) ­> x)

Code Listing 3.1.6: Function Type Inferencing

This code example shows the use of functions as first-class objects and introduces the Closet
List type. A function id is defined, which implements the identity function, and is used as an
argument to the List#map function, which takes one argument of type (Object)­>Object.
An example of using a lambda expression as a first-class object is also given. The lambda
argument implements the same function as id.

function String printHierarchy(C:Class):

 var result

 if C.getParent() === null: do

 puts(" "+C)

 result = "­"

 else: do

 var pfx = printHierarchy(C.getParent())

 puts(" |"+pfx+C)

 result = pfx+"­­"

 end

 return result

end

printHierarchy(Object)

printHierarchy(5.getClass())

Code Listing 3.1.7: Example of Closet's Pure Object-Oriented Nature

10

This example shows the treatment of everything, even integer literals and classes, as an object.
The function printHierarchy will print the path along the inheritance hierarchy from the
given class to the root class, Object. Any object may be queried for its class using the
getClass method.

3.2 Closet Features

Closet is a purely Object-Oriented language, so all values in Closet, including classes and
functions, are objects.

The unit of compilation of Closet is the file. Therefore, all code for a Closet program must be
included in a single file since there is no provision at this time for including code from another
file. (It is important to note that this is purely a reflection of the experimental nature of Closet.)

Closet uses a single-inheritance class-based model for types. Except for the class Object, every
class in Closet has exactly one parent. Object has zero parents because it is the root of the
inheritance hierarchy. Because it is the root of the inheritance hierarchy, Object is an ancestor
of every class in Closet, be it user-defined or built-in. Overriding methods in Closet must have
the same parameter types, but are allowed to have more specific return types, so a method foo
with type ()­>Integer in a daughter class could override a method foo with type ()­
>Object in its parent class, for example.

Functions in Closet are first-class objects, so higher-order functions in Closet are both common
and encouraged. All functions (and methods) in Closet are closures.

Since functions are closures, name lookup in functions is performed in typical closure fashion: name
lookup begins in the outermost scope, then continuing to the next outermost scope, and so on until either
the name is found, which indicates success, or the list of active scopes is exhausted, which is a compile-
time error. Local variable lookup in methods is the same. It is important to note that instance variables
and methods are only available to methods through the const variable self, which is the object on which
a method was invoked (or to which a method was bound in the case of bound methods, which are
discussed below). Values in self are resolved by looking in the class of self, then in the parent class of
self, and so on. Lookup in self is performed according to the dynamic type of self, not the static
type.

Method invocation on objects perform the same in Closet as they do in Java. If an object a of
type A exists with the method foo() defined on it, invoking a.foo() invokes foo() with the
name self bound to the value of a. However, an additional syntax for specifying methods as values
is available. Because methods are meaningless without an object upon which to act, though, method
values in Closet do not exist. Instead, if a method is specified as a value, a special function called a
bound method is returned. For example, the way to specify the function foo invoked on a is a.foo
instead of something like lambda(a:A)­>a.foo(). To implement this behavior, the runtime
system detects the conditions where a method is specified as a value and automatically creates a
clone of the method specified and binds the name self to the object from which the method was
specified by adding an Env to the function's closure environment. (This is always acceptable

11

behavior because all functions in Closet are closures.) So, in the case of a.foo, the runtime copies
foo, binds self to a in the closure environment of this copy of foo, and returns the result, which
is a stand-alone function. (This behavior is the same as bound method behavior in Python except that
binding takes place only when a method is specified as a stand-alone value instead of every time a
method is called.)

Objects in Closet have two kinds of members: methods and member variables. Function
members and class member variables are notably absent.

Objects in Closet are passed by reference, and references are passed by value. Since everything
in Closet is an object, all variables and all values in Closet are references to objects.

Operators like + are implemented using method calls. Taking a hint from Python, the Closet
parser parses each operator as a call to a function with a special name. For example, the
expression a+b parses to a.__add__(b).

3.3 Closet Expressions

There are twenty types of expressions in Closet:

1. And
2. Assign
3. Call
4. Cast
5. Dot
6. Get
7. Integer

8. IsA
9. IsSame
10.Lambda
11.List
12.New
13.Not
14.Null

15.Or
16.Self
17.Slice
18.String
19.Super
20.Sym

The definitions of each of Closet's expressions are defined in Appendix B.

3.4 Closet's Type System

In order to allow the programmer to ignore variable type declarations as much as possible (in
deference to scripting languages) while still offering static type checking (in deference to static
languages), Closet uses a type inferencing system to infer the types of variables.

3.4.1 Overview

In Closet's type system, each variable has exactly one type for its lifetime. It is tempting to have
the type system remember exactly what type a variable has at any given time, thus allowing a
variable to have many types through its lifetime, but because it is impossible to determine when
closures which capture variables will execute this is not practical. Consider the example:

12

var a

a = 5

function Integer bar():

 return a

end

a = new Object()

function Object foo():

 return a

end

bar()

Code Listing 3.4.1: The Intractability of Alternative Type System

It is tempting to allow a to have type Integer in bar and type Object in foo, but in this
code snippet a would only have type Integer until a=new Object() is evaluated, after which
point a would have type Object, so the expression foo() would be a type error because it
returns a, which has type Object, as an Integer. Because it is impossible to decide all the
times when foo is called and guarantee that all calls occur before the evaluation of a=5 in
general, this type system is intractable. (It is interesting to note, however, that in the absence of
closures, or when closures only capture fixed-type variables, this approach is tractable.)
Therefore, all variables have exactly one type during their lifetime.

3.4.2 Variables

Closet allows three kinds of variables: free, locked, and const. A free variable is a variable
whose type is determined by the type inferencing system. A locked variable is a variable whose
type is explicitly specified in the program text. A const variable is a variable whose value is
fixed for the entirety of the program; because the value of a const variable never changes after
initialization, const variables are also necessarily locked, and const variables cannot be the lvalue
of an assignment expression. Functions and classes are automatically const.

var a # Free variable

var c:String # Locked variable; type String

function void d() {} # Const variable; type ()­>void

Code Listing 3.4.2.1: Variable declarations in Closet

3.4.3 Types

There are four kinds of types in Closet: simple, compound, null, and unit.

13

Simple types are class types (e.g. Object).

Compound types represent function types. They have a domain and a range, with the domain
being a tuple of zero or more types representing argument types and the range being a single type
representing the result type of the function. Only compound types are callable. All compound
types are child types of the simple type Function.

The null type is a special, singleton type which represents the absence of type information, as in
the case of an uninitialized free variable which has not yet been the target of an assignment.

The unit type is another special, singleton type which represents the void type.

3.4.4 Type Inferencing Algorithm

At the top level, the program is a list of statements. The interpreter infers the types of each of
these top-level statements, such as function statements, which causes the recursive inferring of
any substatements within these statements, which causes recursive inferring of any
substatements within these statements, and so on. Eventually, the inferring of a statement
involves the inferring of one or more expressions, at which point the interpreter uses the typing
rules for expressions given in Appendix B to build the typing environment, which it then uses to
determine the types of the program's variables. Because of the way the typing rules are laid out,
the types of free variables may become more general as the typing process moves from statement
to statement. As a result, the type inferencing process may need to an arbitrarily large – but
finite – number of passes to fully resolve types.

At a high level, the type inferencing system propagates type information from typed expressions
to free variables through assignment statements. The type assigned to a free variable is the most
specific type which accepts the values of all assignments. The type system uses the function
unify to calculate this most specific type.

Given two types, the unify function will either return the most specific type which can hold
references to values of both types or signal an error. unify(t1, t2) represents the assignment
of a value with type t2 to a free variable which currently has type t1. unify has the following
definition:

unify(Null t1, Simple t2) = t2

unify(Null t1, Compound t2) = t2

unify(Null t1, Null t2) = t2

unify(Unit t1, Unit t2) = t1

unify(Simple t1, Simple t2) = mostSpecificParentOf(t1, t2)

unify(Simple t1, Compound t2) = unify(t1, Function)

14

unify(Compound t1, Simple t2) = unify(Function, t2)

unify(Compound t1, Compound t2) =

 if accepts(t1, t2)

 t1

 else

 if accepts(t2, t1)

 t2

 else

 Function

Code Listing 3.4.4.1: Pseudocode for unify

The accepts function is used to determine if one type accepts assignments from another type.
accept(t1, t2) is true if t1 accepts values of t2, or false otherwise. The definition of
accepts is:

accepts(Simple t1, Simple t2) = isParentOf(t1, t2)

accepts(Simple t1, Compound t2) = accepts(t1, Function)

accepts(Null t1, Simple t2) = true

accepts(Null t1, Compound t2) = true

accepts(Compound t1, Simple t2) = false

accepts(Compound t1, Compound t2) =

 if t1.args.len != t2.args.len

 false

 else

 if for i in 0..t1.args.len, accepts(t1.args[i], t2.args[i])

 if accepts(t1.result, t2.result)

 true

 else

 false

 else

 if for i in 0..t2.args.len, accepts(t2.args[i], t1.args[i])

 if accepts(t2.result, t1.result)

 true

 else

 false

 else

15

 false

Code listing 3.4.4.2: Pseudocode for accepts

The null type is the type of an uninitialized variable, so using the null type as the right-hand side
of an assignment is an error because it indicates the use of an uninitialized variable, which is not
safe because Closet makes no guarantees about the values of uninitialized local variables and so
is therefore an error. However, using the null type on the left-hand side is simply the first
assignment to an uninitialized free variable, so the resulting type should be the right-hand side
type.

The unit type is the void type, so using the unit type as the right-hand side of an assignment is an
error because it is an assignment from void, which is semantically illegal.

Unifying two simple types results in the most specific type which both types share, whereas
unifying a simple type t1 and a compound type t2 is equivalent to unifying the simple type
Function and type t1 since compound types and simple types are not compatible as-is.

Unifying two compound types results in either a new compound type if the two compound types
are compatible, or the simple type Function if they are not. Two function types t1 and t2 are
compatible if either t1 accepts t2 or t2 accepts t1. t1 accepts t2 if t1 and t2 have the same
number of arguments, the return type of t1 accepts the return type of t2, and the each argument
type of t1 accepts the corresponding argument type of t2. If t1 accepts t2, then the result type
is t1.

Because if unify returns it returns the most specific type which accepts assignments from both
types, the resulting type will always be at least as general as each of the parameters. Therefore,
because the type of a variable receives its ultimate type from iterative applications of unify, the
type of a free variable can only get more general with time.

Functions in Closet are const variables, so function parameters are always locked variables and
return types are specified explicitly. Methods are treated in the same way.

Consider the example:

function void main():

var a=0

var b=0

var c=0

var d=0

d = c

c = b

16

b = a

a = new Object()

end

Code Listing 3.4.3: Contrived Type Inferencing Example

This is a good example of a program that takes the type inferencing algorithm many passes to
resolve. Because of the order of the assignment statements and the assignment relationships
among the variables, this snippet takes 5 passes to fully resolve. Because each of the variables a,
b, c, and d receive both Integer and Object values, the correct type for each variable is the
type Object. After the first pass, a has the correct type Object; after the second, b has the
correct type of Object, after the third, c, after the fourth, d, and the last pass makes no changes
to the types of any variables in the program, indicating that the algorithm has fully resolved all
types and may terminate. The reason that this program requires so many passes to resolve is that
type information can only trickle downward, not upward, through a series of statements. The
type inferencing algorithm infers types beginning with the first statement in a list of statements
and moving towards the end. Therefore, if the type ta of variable a is generalized to type ta' at
statement n, then any statement m that occurs before statement n and involves a must be
revisited, so another pass must be made because such statements will not be visited on the
current pass. It is possible to create a program that has arbitrarily many statements arranged in
this way, so a program may require arbitrarily many passes to resolve all of its types. However,
in practice almost no program requires more than two or three passes.

3.5 Closet Implementation

Closet's implementation is fairly straightforward. Complexity was avoided by implementing an
interpreter instead of a compiler or virtual machine.

17

3.5.1 Design

The Closet interpreter is a set of approximately 200 Java classes which implement the Closet
language. The Closet interpreter was designed and implemented to gain insight into both the
process of designing languages in general and the mechanics of Closet.

There is a class for the compile-time version, run-time version, and abstract syntax tree of each
of Closet's twenty expression types and ten statement types.

3.5.1.1 Program Execution

The process of running a Closet program can be broken down into several phases:

• lexical analysis
• parsing
• compilation
• inference
• analysis
• emission

18

Figure 3.5.1.1: UML Diagram of Closet Implementation

• interpretation.

Phase 1: Lexical Analysis

The lexing phase consists of the lexical analysis of the program source file. The Tokenizer
class takes a java.io.InputStream and converts it into an array of Token objects. There are
three categories of tokens: atoms, keywords, and operators.

Atoms are the syntactic representations of the atomic values of Closet: Strings, Integers, and
variable names.

Keywords are combined to produce Closet's syntactic forms. Closet's keywords are function,
return, if, else, while, for, self, null, var, type, void, class, extends, method,
cast, new, isa, true, false, super, lambda, do, end.

Operators are both Closet's separators and operators. Closet's operators are +, (,), ,,
{, }, =, ;, ., ­, *, /, %, ­>, :, ===, ==, !==, !=, <, <=, >=, >, &&, ||, [,].

If the lexer cannot lex the given input stream, it will issue a tokenization error and exit.

Phase 2: Parsing

Parsing is the process of assigning syntactical form to the unprocessed list of tokens produced by
the lexer.

Closet uses a hand-written top-down recursive-descent parser Parser to transform the Tokens
object produced by the Tokenizer into an array of StmtAST objects. The Parser object
implements the BNF in Appendix A.

If the parser cannot understand the given Tokens, it will issue a parsing error and exit.

Phase 3: Compilation

In the compilation phase, the syntactic forms are transformed into an in-memory representation
of the program.

The Closet interpreter uses a ClosetCompiler object to transform the StmtAST objects into
compile-time Stmt objects.

Phase 4: Inference

In the inference phase, the type inferencing algorithm is run against the in-memory
representation of the program to determine the types of the variables in the program.

The ClosetCompiler object from the compile phase is responsible for invoking the declare

19

method exactly once on each element of the list of program statements, which will build the
initial typing environment for the inference step, and then for iteratively invoking the infer
method on the list of program statements, which will populate the typing environment according
to the typing rules in Appendix B and recursively invoke declare and then infer on their
substatements, until the type inferencing process is complete.

If the inference phase encounters any fatal errors, such as undeclared read errors, then it will
issue an error and exit.

Phase 5: Analysis

In the analysis phase, the in-memory representation of the program produced during the
compilation phase is analyzed for proper inheritance, reachability of code, and various other
semantical errors.

The ClosetCompiler object from the compilation phase is responsible for invoking the
analyze method on the compile-time Stmt objects, which implement the checks themselves.

If the analysis phase uncovers any fatal errors, such as a control path in a function which does
not return a value, then it will issue an error and exit.

Phase 6: Emission

The emission phase sees the transformation of the in-memory, compile-time representation of
the program to the in-memory, run-time representation of the program.

The ClosetCompiler object from the compilation phase is responsible for invoking the emit
method on the compile-time Stmt objects, which then return the corresponding run-time Stmt
object, usually by calling emit recursively on substatements.

Phase 7: Interpretation

The interpretation phase is when the program code is actually executed.

The Closet class, which is the main class of the Closet interpreter, takes the set of run-time
Stmt objects which the ClosetCompiler object creates and invokes the exec method of each
one in turn and then calls the main method of the program.

If the program performs an illegal operation, like an illegal dynamic cast or a division by zero,
then an exception will be signaled and the interpreter will exit.

3.5.2 Closet Errors

The Closet interpreter recognizes 31 compile-time errors, 3 compile-time warnings, and 5

20

runtime errors.

3.5.3 Performance

Since Closet is a framework for experimentation, the focus in designing Closet was on
maximizing ease of experimentation. However, an effort was made to design Closet so that its
performance ultimately could be comparable to the performance of other static languages. To be
clear, the performance of this implementation is not at all comparable, but the language was
designed so that such an implementation could be made.

Because variables are completely statically scoped, general variable lookup can be performed on
a set of nested Env structures built at runtime by using a pair of integer indexes depth and
slot determined at compile time, where depth is the number of Envs back to go from the top
Env and slot is the index in that Env to use, and trivial local-scope lookup can be done with a
single index. Because the vast majority of variable fetches will be either fetches from an object
or trivial local fetches, variable fetching performance in Closet will be close to the performance
of that of other languages.

Method resolution in Closet can be done in the same way method resolution is performed in
Java: methods are resolved expensively only the first time they are called and then trivially
thereafter using thunking.

4.0 Discussion

4.1 Closet Design

The design of Closet was a significant undertaking. No other purely object-oriented languages
embracing type inferencing exist, so there was no prior art to study for inspiration or direction.
Including so-called dynamic features in a static language also offered another important
challenge in terms of deciding what to include and what to leave out.

The complexity of a language should lie in its library, not in its core. Therefore, the overall
design philosophy for Closet was simple:

1. Keep the language core as small as possible
2. Include only critical dynamic features.

Ultimately, Closet's core did end up very small: functions are closures; everything is an object;
all variable lookups occur hierarchically in an Env. The only really dynamic feature included in
Closet is closures. The small number of dynamic features included is a result of the primary
litmus test used to determine whether or not a feature is critical: `does anybody ever use this
feature?' Most languages contain features which are rarely, if ever, used because language
authors are paranoid about leaving out a key feature. (Break labels in Java and continuations in
Ruby leap to mind, for example.) In Closet, a feature was included only if it was determined to

21

be important and it could not be produced by the other language features already included. For
example, many of the dynamic-looking features of Closet are actually just syntactic sugar: List
literals, for example, and list indexing using [].

Closet was also designed with performance in mind as a final steering mechanism, although this
was far from the foremost concern.

4.2 Successes

Closet was successful in showing that a language that looks and acts like a scripting language but
has the guarantees of a static language can be made. The use of type inferencing to determine
types at compile time without explicit type annotation was shown not only to be possible but
also to be very effective and practical in real-life programs.

4.3 Failures

While Closet did fulfill its role as an investigation of the marriage of static and scripting
languages, it is still only a prototype and therefore lacks many desirable features. There are
obvious shortcomings, such as a package system and exceptions. Solutions to these problems
are well-known, so these omissions only reflect Closet's status as a proof-of-concept language.
However, a more critical error, the weakness of the type system, must be corrected before Closet
is even a really effective proof of concept. While the type system works very well for simple
types and function types, it does not support generics, which are crucial to enabling the
programming style which is so popular in scripting languages. Before Closet can be considered
a unilateral success, generics at the minimum must be added.

4.4 Future Work

There are several pieces still missing from Closet, as explained in the sections below.

4.4.1 Package System

The first, most significant improvement would be a package or module system which allows a
program to be organized into a hierarchical set of files as opposed to a single file. The ability to
include functionality from another body of code is of critical importance because external
libraries cannot exist in any practical sense without it. Furthermore, Java showed that organizing
code into a hierarchical set of separate namespaces is highly effective in organizing code and
dealing with name collisions, in both the programmatic and the human, cognitive sense.

4.4.2 Generics

Generic typing is a critical next step. One of the key features of dynamic languages is their
wholly polymorphic nature: any operation can be applied to any value in source and the runtime

22

system sorts out if these operations are valid. Polymorphism is also possible in Closet, although
verbose casts are required to satisfy the type checker and Closet can make few static checks on
such casts. The introduction of generics to the type inferencing system would allow Closet to
have the same polymorphic behavior of dynamic languages while still maintaining static typing
and therefore type safety.

Generics are possible under Closet's current type model. Closet's type inferencing system uses
assignment statements to propagate type information from typed expressions to free variables;
this general idea can be extended to implement generics. By propagating type information to
generic type variables through the parameter types of function calls and through being the target
of the return statement of a function, flexible and effective generics should be possible.

4.4.3 Overloading and Exceptions

Function overloading is important for the ease-of-use of the language. Exceptions are important
for the same reason. These features are well-known and well-understood; adding these features
in Closet should not pose a significant problem.

4.4.4 Object-Oriented Features

Various Object-Oriented programming constructs would be useful in Closet. One example of
such a construct is a privilege system allowing the programmer to assign privilege levels
(public, protected, private) to class members. A more developed notion of constructors,
in particular the guaranteed calling of superclass constructors, is important for safety and object
semantics. Abstract classes would also be very useful.

4.4.5 Multiple Inheritance

Controlled multiple inheritance has also been shown to be effective by languages such as Ruby
and Java. Adding interfaces, or classes with only abstract methods as members, to Closet's
typing system is possible, although it does somewhat complicate the unify function and raises
the possibility of a typing conflict. Consider the following example:

class A:

end

interface I:

end

class B extends A implements I:

end

23

class C extends A implements I:

end

function void main():

 var a=new B()

 a = new C()

end

Code Listing 4.4.5.1: Example including interfaces

The type of a should be the most specific type which accepts values of type B and C, so what
should the type of variable a in function main be: A or I? The type system could choose an
arbitrary policy about resolving such conflicts, issue a fatal error, or try to determine which type
is best using the remainder of the variable's scope. Regardless, Closet should print a notice to
the user about the conflict.

Another possible addition to Closet's typing system would be mixins, or abstract classes which
contain only methods, with or without implementations, but no data members.

4.5 Cosmetic Changes

Various other syntactic sugars should be added to Closet to make Closet look and act more like a
dynamic language. One good example is a Range type with a syntactic literal like 0..10.
Additional looping constructs would be useful, in particular a foreach loop. A simple syntax
for anonymous functions and classes would also be useful.

5.0 Conclusions

Closet has proved to be a good medium for exploring the marriage of static and scripting
languages. The use of type inferencing combined with explicitly typed functions and member
variables is an effective method for inferring types under a single-inheritance class-based type
model. Furthermore, generics and multiple inheritance appear to be possible under the same
approach to typing, although the feasibility is not known for certain. In light of the work done
on this project, it is clear that there is potential for combining these two paradigms for
programming languages.

24

6.0 References

1. Cardelli, Luca. Type Systems. In the Handbook of Computer Science and Engineering, Allen

B. Tucker Jr. Ed., CRC Press 1997.

2. Java 1.4.2 API Documentation.

http://java.sun.com/j2se/1.4.2/docs/api/index.html.

3. Pierce, Benjamin. Types and Programming Languages. MIT Press, London. 2002.

4. Edwards, Stephen. Tiger Language Reference Manual. Online.

http://www.cs.columbia.edu/~sedwards/classes/2002/w4115/tiger.pdf.

5. Guy Steele. Growing a language. In Proc. of OOPSLA'98, 13th Annual Conf. on Object-

Oriented Programming Systems, Languages, and Applications, October 1998. key note.

25

Appendix A: Closet BNF

prgm ::= prgm_stmt*
prgm_stmt ::= class_stmt
 | function_stmt
eval_stmt ::= expr ;
declare_stmt ::= var id (: type)? (= expr)? ;
return_stmt ::= return expr ;
function_stmt ::= function type id (arg_list) {
 function_stmts* }
if_stmt ::= if expr : block
 | if expr : do function_stmt* else : block
while_stmt ::= while (expr) block
class_stmt ::= class id (extends simple_type)? :
 class_stmts* end
method_stmt ::= method type id (arg_list) :
 function_stmts* end
mdeclare_stmt ::= var id : type ;
expr ::= expr + expr
 | expr ­ expr
 | expr * expr
 | expr / expr
 | expr % expr
 | expr === expr
 | expr !== expr
 | expr == expr
 | expr != expr
 | expr < expr
 | expr <= expr
 | expr > expr
 | expr >= expr
 | expr && expr
 | expr || expr
 | ! expr
 | expr isa stype
 | (cast stype) expr
 | value
value ::= id
 | self
 | value . id
 | value (param_list)
 | (expr)
 | int
 | string
 | bool
 | new stype (param_list)
 | lambda (arg_list) ­> expr
 | null
arg_list ::= id : type (, id : type)* | ε
param_list ::= expr (, expr)* | ε
type_list ::= type | (, type)* | ε

26

class_stmts ::= method_stmt
 | mdeclare_stmt
function_stmts ::= function_stmt
 | class_stmt
 | if_stmt
 | while_stmt
 | eval_stmt
 | return_stmt
 | declare_stmt
bool ::= true
 | false
type ::= stype
 | ctype
stype ::= id | void
ctype ::= (type_list) ­> type

NOTES:
• Single-line comments begin with `#' and continue to the end of the line. There is no block

comment.
• End-of-line can be used in place of a semicolon to terminate a statement

27

Appendix B: Closet Expressions

This appendix describes each of Closet's twenty expression types in detail. Each expression type
has a listing in the following format:

ExpressionType
Syntax: BNF

Typing: Type Rule

Inference Step: Any compile-time errors issued during the inference phase of
compilation.

Runtime Errors: Any runtime errors which evaluating this expression may signal

L-value: Yes if the expression is a valid l-value; no otherwise

Side-Effects: Yes if the evaluating this expression can have side-effects; no otherwise

Summary of the Expression including evaluation order for sub-expressions and any special
scoping information.

AndExpr
Syntax: expr && expr

Typing:

Inference Step: If either of the expressions does not have the type Boolean,
then an IllegalBooleanOpError is thrown.

Runtime Errors: If an evaluated expression has the value null, a
NullDereferenceError is signaled.

L-value: No.

Side-Effects: If either subexpression has a side effects, then yes; otherwise, no

AndExprs are evaluated using short-circuit logic, as they are in C and Java. If the value of the
left expression is false, then the value of the entire expression is false and the right
expression is never evaluated. Otherwise, the value of the entire expression is the value of the
right expression.

28

AssignExpr
Syntax: expr = expr

Typing:

Inference Step: If the expression on the left is not an l-value, an IllegalAssignError
is issued. If the expression on the left is an l-value but is const, an
IllegalConstAssignError is issued. If the left-hand expression is a
locked variable and the right-hand expression has an improper type, then
an IllegalLockedAssignError is issued. If the left-hand side
expression is an undeclared variable, then an UndeclaredWriteError
is issued. If this assignment causes the type of a free variable to unify to
Object from a more specific type, an
AssignUnifiesToObjectWarning is issued.

Runtime Errors: None.

L-value: No. (AssignExprs are right-associative, though, so they may be
stacked.)

Side-Effects: Yes.

The value of an assign expression is the value of the right-hand side of the expression. As a
side-effect, the lvalue on the left-hand side is given the value of the right-hand side. The value
on the right is evaluated before the assignment takes place.

Boolean Expression
Syntax: true | false

Typing:

Inference Step: None.

L-value: No.

Runtime Errors: None.

Side-Effects: No.

The value of a Boolean expression is a Boolean object with the value of the specified literal.

29

CallExpr
Syntax: value (param_list)

Typing:

Inference Phase: If the static type of value is not a CompoundType, then an
IllegalCallError is issued. If the wrong number of parameters are
specified, then an IllegalArityError is issued. If a actual argument
type does not match an expected argument type, then an
IllegalArgumentError is issued. If value is null, then a
NullDerefenceError is issued.

Runtime Errors: None.

L-value: No.

Side-Effects: Yes.

A CallExpr is a call to a value with a static type of some CompoundType. The arguments are
evaluated from left to right.

CastExpr
Syntax: (cast stype) expr

Typing:

Inference Step: If the static type of the given expression is not related to the casting type,
then an IllegalCastError is issued. If the cast type is not known, an
UndeclaredTypeError is issued.

Runtime Errors: If the dynamic type of the given expression is not compatible with the
casting type, an IllegalCastError is issued.

L-value: No.

Side-Effects: No.

The value of the cast expression is the value of the expression on the right-hand side, but the type
of the whole expression is the type specified in the cast.

30

DotExpr
Syntax: value . id

Typing:

Inference Phase: If the specified value does not exist within static type of the given
object, then an UndeclaredDotReadError will be issued. If the value
on the left has the null type, then a TypelessDereferenceError is
thrown.

Runtime Errors: If the left-hand value is null, a NullDereferenceError is signaled.

L-value: If the given value is a SelfExpr, then yes; otherwise, no.

Side-Effects: No.

The value of a dot expression is the value of looking up id in value. Dot expressions with a
SelfExpr as the left-hand side are lvalues, again only if the expression evaluates to a non-const
variable. In the case of methods, the returned value is a bound method.

GetExpr
Syntax: value [expr]

Typing:

Inference Step: Because of the semantics of the GetExpr, any errors which are issued
when inferencing a CallExpr may be issued when inferencing a
GetExpr.

Runtime Errors: If the specified index is out of range, an IndexOutOfRange error is
signaled. What values are out of range is defined by
the object implementing __get__.

L-value: Yes.

Side-Effects: If evaluating the specified value or the given expression has
side-effects, then yes; otherwise, no.

The GetExpr is syntactic sugar for accessing the elements of an aggregate structure.

The expression a[i] is evaluated as a.__get__(i), so any class can use this syntax by
defining a __get__ method. The interpreter does not check the signature of user-defined
__get__ methods, but only get methods that take exactly one argument will be useful for using

31

this special syntax. Any argument types or return type may be used.

The expression a[i] = b is evaluated as a.__set__(i, b), so any class can use this syntax
by defining the __set__ method. The interpreter does not check the signature of user-defined
__set__ methods, but only set methods that take exactly two arguments will be useful for using
this special syntax. Any argument types or return type may be used.

IntegerExpr
Syntax: int

Typing:

Inference Step: None.

Runtime Errors: None.

L-value: No.

Side-Effects: No.

The value of an IntegerExpr is an Integer object with the value of the specified literal.

IsAExpr
Syntax: expr isa type

Typing:

Inference Step: If the static type of the expression and the specified testing type are
unrelated, then an IllegalIsAError is thrown. If the testing type is
not known, and UndeclaredTypeError is thrown.

Runtime Errors: None.

L-value: No.

Side-Effects: No.

The value of the expression is true if the dynamic type of the value of the given expression is
assignment-compatible with the specified type at runtime, or false otherwise.

IsSameExpr

32

Syntax: expr === expr

Typing:

Inference Step: If the specified expression are of incompatible types, then an
IllegalIdentityCheckError is issued.

Runtime Errors: None.

L-value: No.

Side-Effects: No.

The value of the expression is true if the reference on the left is the same reference as the
reference on the right, or false otherwise. The expression on the left is evaluated before the
expression on the right.

LambdaExpr
Syntax: lambda (arg_list) ­> expr

Typing:

Inference Step: If an argument type is not declared, an
UndeclaredTypeError is issued.

Runtime Errors: None.

L-value: No.

Side-Effects: No.

The value of a LambdaExpr is a function with a body of exactly one return statement which has
the value of the given expression. The type of a lambda is a CompoundType with the domain
part specified explicitly in the argument list and the range part induced by the type of the right-
hand side expression.

ListExpr
Syntax: [expr_list]

Typing:

Inference Step: None.

Runtime Errors: None.

33

L-value: No.

Side-Effects: If any of the subexpressions has side effects, then yes; otherwise, no.

The value of the expression is a new List with the leftmost expression specified at index 0, the
next leftmost expression at index 1, and so on. Expressions are evaluated from left to right.

NewExpr
Syntax: new stype (param_list)

Typing:

Inference Step: If the specified type has no __init__ method defined, an
IllegalDotRead error is issued. If the wrong number of arguments
are specified to the constructor, then an IllegalArityError is issued.
 If a specified and expected argument type do not match, an
IllegalArgumentError is issued.

Runtime Errors: None.

L-value: No.

Side-Effects: Yes.

The value of the expression is a reference to a new instance of an object of the given type. The
parameters are passed to the object's __init__ method, which is called before the reference is
returned.

NotExpr
Syntax: ! expr

Typing:

Inference Step: If the specified expression does not have type Boolean, then an
IllegalBooleanOpError error is issued.

Runtime Errors: None.

L-value: No.

Side-effects: If the specified expression has side effects, then yes; otherwise, no.

34

If the value of the given expression is true, the value of the whole expression is false, or true
otherwise.

NullExpr
Syntax: null

Typing:

Inference Step: None.

Runtime Errors: None.

L-value: No.

Side-Effects: No.

The value of the given expression is the special null reference.

OrExpr
Syntax: expr || expr

Typing:

Inference Step: If either of the expressions does not have the type Boolean, then an
IllegalBooleanOpError is issued. If one of the evaluated
 expressions is null, a NullDereferenceError is thrown.

Runtime Errors: None.

L-value: No.

Side-Effects: If either expression has a side effects, yes; otherwise, no

OrExprs are also evaluated using short-circuit logic. If the value of the left expression is true,
then the value of the entire expression is true and the right expression is never evaluated.
Otherwise, the value of the entire expression is the value of the right expression.

SelfExpr
Syntax: self

Typing:

35

Inference Phase: If the expression is not in the scope of a method, an
IllegalSelfError will be thrown.

Runtime Errors: None.

L-value: Yes.

Side-Effects: No.

In a method, the value of a SelfExpr is the object on which a method was invoked.
SelfExprs are only legal within the scope of a method body.

SliceExpr
Syntax: value [expr? : expr?]

Typing:

Inference Phase: Due to the implementation of the SliceExpr, any errors which may be
issued by inferencing a CallExpr may be issued by inferencing a
SliceExpr.

Runtime Errors: An IndexOutOfRangeError may be thrown.

L-value: No.

Side-Effects: If the specifed value or one of the subexpressions has side-effects, then
yes; otherwise, no.

A SliceExpr is used as syntactic sugar for retrieving multiple elements from an aggregate at
once. There is no hard specification for how a SliceExpr should behave, but the convention is
that the return type should be itself an aggregate type and that the two expressions should have
the key type for the aggregate type and that the result of a[i:j] should contain all the values
corresponding to the keys in the open interval [i, j). If i<=j, then the result should contain
the value corresponding to i first moving to j last, or vice versa if j<i. So, [0,1,2,3][0:2]
=> [0,1] and [0,1,2,3][2:0] = [2, 1].

Super Expression
Syntax: super

Typing:

Inference Phase: If the SuperExpr appears in a class without a parent, an

36

IllegalSelfError is issued. If the super expression appears on its
own, a StandaloneSuperError is issued.

Runtime Errors: None.

L-value: No.

Side-Effects: No.

In a method, the value of a SuperExpr is the object on which the method was invoked.
SuperExprs are only valid within the scope of a method. In DotExprs with a SuperExpr as
the left-hand side, value lookup starts with the parent of the static type of self, which
distinguishes it from all other expressions, which starts lookup dynamic type of the value.

SymExpr
Syntax: id

Typing:

Inference Phase: If the specified variable has not been declared, an
UndeclaredReadException will be thrown. If the specified variable
has not been initialized, an UninitializedReadError will be thrown.

Runtime Errors: None.

L-value: Yes.

Side-Effects: No.

The value of a SymExpr is the value of a given variable at the time of evaluation. Syntactically,
SymExprs are valid lvalues, although semantically only SymExprs evaluating to non-const
variables are l-values.

StringExpr
Syntax: string

Typing:

Inference Step: None.

Runtime Errors: None.

L-value: No.

37

Side-Effects: No.

The value of a string expression is a String object with the value of the specified literal.

38

Appendix C: Closet Statements

This appendix describes each of Closet's ten statement types in detail. Each statement type has a
listing in the following format:

StatementType
Syntax: BNF

Inference Phase: Any compile-time errors issued during the inference phase of
compilation

Analysis Phase: Any compile-time errors issued during the analysis phase
of compilation

Runtime Errors: Any runtime errors which executing this statement may
signal

Summary of the Statement's effects and uses.

ClassStmt
Syntax: class id (extends simple_type)? : class_stmts* end

Inference Phase: If a non-void __init__ method is specified, then a
NonVoidConstructorError is issued. If an overriding method has a
signature which cannot override its parent method, then a
MismatchedOverrideError is issued. If the parent type is not
declared, then an UndeclaredTypeError is issued. If the return type
or an argument type in a method is not known, an
UndeclaredTypeError is issued. If the type of a member variable is
not known, an UndeclaredTypeError is issued.

Analysis Phase: None.

Runtime: None.

A ClassStmt is the syntactic form for defining a new class type. Methods are closures, so class
methods capture the variables in the scope where the class is defined.

DeclareStmt
Syntax: var id (: type)? (= expr)?

Inference Phase: If an initialization value was specified which does not match the type
specified for a locked variable, an
IllegalLockedInitializationError will be thrown. If a variable
with this name was declared in this scope, not an enclosing scope, then a|

39

RedefinitionError is thrown. If the type is specified but not
declared, an UndeclaredTypeError is thrown.

Analysis Phase: None.

Runtime: None.

A DeclareStmt is the syntactic form for introducing a new variable into the current scope. A
type may be specified explicitly to indicate a locked variable, and an initial value may be
specified as well.

EvalStmt
Syntax: expr ;

Inference Phase: None.

Analysis Phase: The interpreter will generate a StmtHasNoSideEffect warning if the
evaluation of the expression can have no side-effects.

Runtime: None.

An EvalStmt evaluates the given expression. EvalStmts should have a side-effect.

FunctionStmt
Syntax: function type id (arg_list) { function_stmts* }

Inference Phase: If the return type or an argument type is not known, an
UndeclaredTypeError is thrown.

Analysis Phase: In a non-void function, the interpreter will generate a
NotAllControlPathsReturnError if not all return paths return a
value.

Runtime: None.

A FunctionStmt is used to introduce a new named function into the current scope. Functions
in Closet are closures, so function statements may be nested.

IfElseStmt
Syntax: if expr : block |

if expr : do function_stmt* else : block

Inference Phase: If the condition does not have type Boolean, an
IllegalConditionError will be issued.

40

Analysis Phase: None.

Runtime: If the condition is null, a NullDereferenceError is signaled.

An IfElseStmt is one of the syntactic forms for making a decision based on a Boolean truth
value. If the condition is true, the first block is executed; if the condition is false, the second
block (or nothing, if no second block is given) is executed.

ReturnStmt
Syntax: return expr? ;

Inference Phase: If the return value of this return statement does not match the return type
of its enclosing function or method, an IllegalReturnError will be
issued.

Analysis Phase: None.

Runtime: None.

A ReturnStmt is the syntactic form for returning a value from a function.

WhileStmt
Syntax: while expr : block

Inference Phase: If the condition does not have type Boolean, an
IllegalConditionError will be thrown.

Analysis Phase: None.

Runtime: If the condition is null, a NullDereferenceError is
signaled.

A WhileStmt is another construct for choosing a control path based on a Boolean expression
and is the only syntactic form for iteration. The condition is evaluated. If the condition is true,
then the block is executed and the condition is evaluated again in preparation for possibly
running the block again; if the condition is false, then the block is skipped. Therefore, the
expression is evaluated at least once and the block is executed zero or more times.

41

