
Copyright

by

Mark Gebhart

2006

Implementation of a Streaming Parallel Model for the

TRIPS Architecture

by

Mark Gebhart

Undergraduate Honors Thesis

Presented to the Faculty of the

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Bachelor of Sciences

The University of Texas at Austin

May 2006

Implementation of a Streaming Parallel Model for the

TRIPS Architecture

Approved by

Supervising Committee:

Acknowledgments

I would like to thank the following people:

• My supervisor Dr. Stephen Keckler for his guidance over the last two years

• Saurabh Drolia, Sadia Sharif, Paul Gratz, and the TRIPS team members for

their help throughout this project.

Mark Gebhart

The University of Texas at Austin

May 2006

iv

Implementation of a Streaming Parallel Model for the

TRIPS Architecture

Mark Gebhart, B.S.

The University of Texas at Austin, 2006

Supervisor: Stephen W. Keckler

One common method of improving performance is to use a collection of

processors to execute a large scale program in parallel. The Streaming Virtual

Machine (SVM) model of computation is one method of extracting concurrency

from traditional programs. In an SVM program tasks are partitioned into kernels

that consume and produce streams of data rather than traditional operations that

consume and produce single data values. This streaming model is particularly ad-

vantageous on architectures such as TRIPS that contain a Direct Memory Access

(DMA) controller that allows for the overlapping of communication and computa-

tion. The author developed several parallel benchmarks along with enhancements

to the TRIPS simulators to evaluate the viability of the SVM model on the TRIPS

system. Initial result show that the SVM model holds promise in several domains

v

and a prototype system of four processors achieves an average speedup of 3.70 times

over uniprocessor sequential execution on a collection of computationally bound

benchmarks.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables ix

List of Figures x

Chapter 1 Introduction 1

Chapter 2 Background 5

2.1 SVM Overview . 5

2.2 TRIPS System Overview . 10

2.3 SVM Library Implementation . 11

Chapter 3 Simulator Enhancements 13

3.1 TRIPS Execution Model . 14

3.2 Uniprocessor Simulator Enhancements 15

3.2.1 Advanced Modeling . 16

3.3 Simulator Simplifications . 17

3.4 Simulation Precision . 18

3.5 Simulation Speed . 18

vii

3.6 System Simulator Modifications . 20

Chapter 4 Application Development 21

4.1 Benchmark Suite Overview . 21

4.1.1 Computationally Bound . 21

4.1.2 Memory Bound . 22

4.1.3 Other Types of Applications 22

4.2 TRIPS SVM Toolchain . 23

4.3 Analysis of HLC Generated Code . 24

Chapter 5 Results 29

5.1 Speedup over Sequential . 29

5.2 Execution Breakdown . 30

5.3 DMA Utilization . 31

5.4 Library Optimizations . 33

5.4.1 Compilation with Full Optimizations 33

5.4.2 Linear Search . 34

5.4.3 Library Race Conditions . 34

5.4.4 Future Optimizations . 35

Chapter 6 Conclusions 36

Bibliography 39

Vita 41

viii

List of Tables

2.1 SVM Kernel API . 7

2.2 SVM Block API . 7

2.3 Vector Add SVM Program for 1 Processor 8

3.1 Cycle Estimation Error for EEMBC Benchmarks 19

5.1 Initial Results . 30

5.2 Execution Breakdown . 31

5.3 DMA Utilization . 33

5.4 -O4 Compilation . 34

5.5 ID Lookup Optimization . 35

ix

List of Figures

1.1 High Level Overview of SVM System 2

1.2 SVM Application Development . 3

2.1 Vector Add Compilation . 6

2.2 TRIPS System . 9

2.3 SVM Library Implementation . 11

3.1 TRIPS Processor . 14

4.1 TRIPS SVM Toolchain . 23

4.2 Different Addressing Options for Vector Add Program 27

4.3 Processor’s Local Memory for Vector Add Program 28

5.1 Visualization of Matrix Multiplication 32

6.1 Possible Execution of FIR Algorithm 37

x

Chapter 1

Introduction

One common approach to reducing a program’s execution time is to execute the

program in parallel on a collection of processors. In order to accomplish this a pro-

grammer must have a well defined method of portioning work among this collection

of processors. The Streaming Virtual Machine (SVM) model [12] is one method of

extracting concurrency from traditional programs.

The SVM model employs three main principles to allow traditional programs

to execute efficiently on a collection of processors. First, SVM programs express data

parallelism across multiprocessors. This is accomplished by partitioning the dataset

and assigning a portion of the total data to each processor. Each processor then

performs the same action of its portion of the total data. Secondly, the SVM model

has better locality behavior due to its streaming nature. In a streaming program,

operations consume input streams of data and produce output streams of data.

By operating at a higher level of granularity than single data items the model can

reduce the overhead of data access. Further, processors only operate on data in their

own local memory, avoiding the long latency associated with main memory. Figure

1.1 shows the conceptual operation of the SVM system. Finally, the SVM model

overlaps communication and computation by using DMA controllers to perform data

1

Processor
Local

Memory
DMAOperations

Processor
Local

Memory
DMAOperations

Processor
Local

Memory
DMA Operations

Main
Memory

Processor
Local

Memory
DMA Operations

Figure 1.1: High Level Overview of SVM System

transfers while the processor continues to perform useful work.

The SVM model also seeks to reduce a programmer’s burden when develop-

ing parallel applications. To accomplish this a two-staged compilation approach is

used where a machine independent High Level Compiler (HLC) is used to detect

and exploit parallelism from a program written in a high level language. Figure

1.2 shows the process of developing SVM applications. Along with the program

the HLC is also given a machine model [11] that describes the system that the

program will run on. This machine model contains details such as the number of

processors, the size of local memory, and other machine specific details. The output

of the HLC is standard C that makes calls to the SVM Application Programming

Interface (API) to express parallelism. A Low Level Compiler (LLC), a machine’s

standard C compiler, then compiles the SVM application to native code for the tar-

get architecture. The Morphware Forum [6] developed the SVM standard with the

target architectures of TRIPS, Monarch, RAW, and Smart Memories [17, 16, 9, 10].

This approach allows the machine independent HLC to handle the difficult task of

extracting parallelism and then all participants can use the results.

We evaluate the SVM model on the TRIPS system, which is a collection of

up to sixty-four TRIPS processors. The TRIPS system uses a shared memory ap-

proach where a global physical address spaces allows interprocessor communication.

Each TRIPS processor contains local memory that behaves as a software controlled

2

Application

High Level Compiler
Machine

Model

Streaming Virtual Machine

LLC LLC LLC LLC

TRIPS RAW Monarch Others

Figure 1.2: SVM Application Development

cache and a DMA controller that make it a good match for the SVM model of

computation. In order to operate on data a TRIPS processor uses it DMA to pull

data from main memory into its local memory and then once computation is com-

plete returns the result to main memory using the DMA. The TRIPS processor is

the first implementation of an EDGE ISA that seeks to scale future performance

by explicitly encode instruction dependencies in the ISA [1]. A grid of replicated

execution units allows for high IPC and allows the TRIPS processor to perform well

on applications with high ILP.

This thesis describes the method and results of evaluating the viability of the

SVM model on the TRIPS system. To quantify the performance of the SVM model

we enhanced the multiprocessor functional simulator to generate an estimate of the

cycle cost of an SVM program. We used a functional functional simulator because

the large size of the SVM programs made running a cycle-accurate simulation im-

practical. To test the precision of the cycle estimation we ran a suite of benchmarks

and found the estimates to be within 20.34% of the true values. These benchmarks

have highlighted areas where future work could improve the model, such as a more

3

accurate model of the memory system and modeling of the branch predictor that

will serve as future work.

To test the performance of the SVM model on TRIPS the author developed

a suite of benchmarks from the scientific computing and digital signal processing

domains with a collection of both computationally and memory bound algorithms.

The modified simulator ran these benchmarks using a prototype system of 4 TRIPS

processors and produced performance results. On average the SVM programs out-

performed their sequential versions by a factor of 2.95. Further, the average speedup

for the computationally bound algorithms was 3.70. These results show that the

SVM model holds promise especially for computationally intensive applications and

when the actual hardware completes fabrication later this year we can obtain a more

accurate measure of overall system performance.

4

Chapter 2

Background

2.1 SVM Overview

The Streaming Virtual Machine (SVM) is a model for parallel execution that the

Morphware Forum developed as part of the PCA project [2]. An SVM program

divides the work into kernels that perform a specific task on input streams of data

and produce output streams of data. The size of these streams is arbitrary but in

our benchmarks is typically on the order of thousands of elements per stream. Under

the SVM model one of the processor serves the role of Master and is responsible for

initializing the shared structures at startup time along with the initial assignment

of work to other processors. The SVM models addresses three main issues:

Programmer Burden: One of the obstacle for parallel programs is that the

programmer is responsible for determining the parallelism within a program and

writing the program to extract this parallelism. In order to move this responsibility

away from the programmer the SVM model introduces a High-Level Compiler (HLC)

which is responsible for taking a program that is written in a high level language

such as C and translating it to a parallel SVM program. Figure 2.1 shows the

5

doloop (int k =0; k < 1000; k ++)

C[[k]] = A[[k]] + B[[k]];

Pseudo SVM Code for Processor 0

Execution Model of Vector Add SVM Program

HLC

Augmented C

Time

Load A3 Load B3 Store C3

Load A2 Load B2 Store C2

Load A1 Load B1 Store C1

Load A0 Load B0

C0=A0+B0

Store C0

P
0
 D

0

 P

1

D
1

 P
2

D
2

 P

3
 D

3

P
ro

c
e

s
s
o

r
a

n
d

 D
M

A
 O

p
e

ra
ti
o

n
s

C1=A1+B1

C2=A2+B2

C3=A3+B3

DMA Operations

Computation

DMA Operations

Computation

Load A[0] to A[249] from Main Memory

to Processor 0’s SRF using DMA 0

Load B[0] to B[249] from Main Memory

to Processor 0’s SRF using DMA 0

Compute C[0] to C[249]

Store C[0] to C[249] from Processor

0’s SRF to Main Memory using DMA 0

Figure 2.1: Vector Add Compilation

process of SVM application development on the TRIPS system for a simple vector

add program. First, a programmer writes the vector add program in Augmented

C, the standard C programming language with additional language constructs to

allow the HLC to extract parallelism. These additional constructs include a doloop

structure instead of a for loop and double array indices to indicate to the HLC there

is no aliasing present in the arrays. Then this vector add program is provided to

the HLC along with the TRIPS machine model that contains around 200 system

specific parameters such as the number of processors, the size of local memory,

etc. The output of the HLC compiler is standard C with calls to the SVM API to

express the parallelism. For the vector add example, we see that first a portion of

the A and B arrays are loaded into the processor’s memory and then the processor

performs the element-wise addition. Finally, the program copies the result back to

main memory using a DMA controller. The final image in Figure 2.1 shows how the

various operations map to the TRIPS processors and DMAs. While this example

6

Function Description Blocking

svm kernelInit Initializes a kernel object for use No

svm kernelAddDependence Enforces the order of kernel No
execution

svm kernelRun Executes a kernel once all Yes
dependences have executed

Table 2.1: SVM Kernel API

Function Description Blocking

svm blockInit Initializes a memory object for use No

svm moveB2B Transfers data from one contiguous No
area to another

svm stridedScatterB2B Transfers contiguous data to a No
destination using strided stores

svm stridedGatherB2B Transfers data in strides to a No
contiguous destination

Table 2.2: SVM Block API

shows no overlap between the processor and DMA operations, software pipelining

can be used to overlap the processor and DMA operations to improve performance.

Division of Work: The SVM API has two major objects for controlling execution.

First, svm kernels control actions that need to be executed such as computation

or DMA transfers. The API for SVM Kernels is shown in Table 2.1. The most

important functions of the API is the ability to add dependences between kernels

and to execute kernels. The svm kernelAddDependence call signals that one kernel

must not start executing until its dependent kernels complete. The svm kernelRun

call is used to start the execution of a kernel. This is a blocking call that first waits

for all of a kernel’s dependencies to finish executing and then executes the kernel.

Using these kernel calls, a SVM program explicitly encodes the parallelism in a

program for the hardware to execute. Table 2.2 shows the API for the other main

SVM object, a svm block. A svm block represents a piece of memory that stores

7

svm blockInit(A, size, location)
svm blockInit(B, size, location)
svm blockInit(C, size, location)
svm moveB2B(main memory, A)
svm moveB2B(main memory, B)
svm addDependence(compute kernel,move kernel)
svm kernelRun(compute kernel, A, B, C)
svm kernelAddDependence(move kernel, compute kernel)
svm moveB2B(C, main memory)

Table 2.3: Vector Add SVM Program for 1 Processor

application data. This data either resides in a processor’s local memory or in the

global main memory. Through the SVM API a programmer can control transfers

from one block to another such as when data is transferred from main memory to

a processor’s local memory. These block move operations contain an svm kernel

object that allow dependencies to be expressed and control execution. The most

powerful block transfer operations are the stridedScatter and stridedGather move

operations. These operations are useful when extracting sub-blocks from a matrix

which is common when operating on large matrices using a blocked algorithm. The

memory move operations are nonblocking so the processor can continue to perform

useful work while the DMA is transferring data. An example of how the SVM API

is used to encode the previously discussed vector add program for one processor

is shown in Figure 2.3. Each processor would run a version of this same code

with the only difference being the portion of the data that it operates on. This

allows the SVM program to exploit data parallelism across the processors. First,

the programmer defines three blocks of memory to store the A, B, and C arrays.

Next, the A and B arrays are moved into local memory. Then, the computation can

begin as soon as the move operations are complete. Finally, the DMA moves the

result back to main memory.

8

 Slave
 0

SRF DMA I

GLOBAL
MEMORY

D
 Slave

4 SRF DMA
I

D L2

Slave
1

SRF DMA I
D

L2

 Slave
2

SRF DMA I
D

L2

L2

 Slave
5

SRF DMA
I
D L2

 Slave
6 SRF DMA

I
D L2

 Slave
3

SRF DMA I
D

L2

 Master SRF DMA
I
D L2

Figure 2.2: TRIPS System

Main Memory Access Latency: To mitigate the latency of a main memory

access, processors using the SVM model first use their DMAs to bring data into

their local memory and then perform operations on the data there. On the TRIPS

processor a memory request to the local memory takes approximately 10 - 15 cycles

while a request to main memory takes several hundred cycles. As long as the cost

to execute a work kernel is greater than the cost of the DMA transfer that moves

the data to and from local memory from the processors point of view there is no

cost for moving the data. This is because the processor can perform useful work

while the DMA is transferring data. This is true in general for algorithms with a

computation complexity greater than linear, the cost of data transfer.

9

2.2 TRIPS System Overview

The TRIPS SVM system can be configured with up to sixty-four processors. All

of these processors are homogeneous and the choice of which processor to perform

the master duties is arbitrary. The master is responsible for initializing shared

structures such as a mutex, message queue, and processor id mappings and initial

work assignment. A block diagram of an 8 processor system, corresponding to a

single TRIPS board is shown in Figure 2.2. Each processor has its own private L1

instruction and data cache and the L2 is distributed with a portion of the L2 on

each processor. A static mapping from addresses to L2 assignments ensures that a

data item can only reside in 1 of the L2 caches. For data, such as control structures

that is shared among processors we mark that shared segment as L1 un-cacheable

to avoid coherency issues. A later optimization would be to allow L1 caching and

ensure that the L1 is flushed on writes to the shared segment or when a processor

is polling on a shared variable.

DMA Engine Each TRIPS processor contains an on-chip DMA engine that al-

lows for the overlapping of computation and communication. As the processor-

memory gap continues to widen it becomes more important to mitigate the long

delays associated with main memory access; the TRIPS DMA engine allows the

processor to perform useful work while the DMA fetches data. This DMA is ca-

pable of performing contiguous, strided gather, or strided scatter operations. The

strided operations are useful to extract sub-blocks of a matrix [4]. Because the DMA

operates in terms of physical addresses, the virtual addresses must be converted to

physical addresses with a system call before the DMA is programmed. The cost

of doing the system call will be high so the actual hardware will only make the

translation once per segment and calculate all subsequent physical addresses with

an offset to the known base physical address. In addition to being able to transfer

10

Synchronization Library

lock_acquire
lock_release

Message Queue Library

message_send
message_receive

DMA Library
start_transfer

get_transfer_status

TRIPS SVM Library

initialize kernel
get kernel status

run kernel

SVM Specific

SVM Independent

Figure 2.3: SVM Library Implementation

memory from global memory to a processor’s local memory the DMA has the abil-

ity to transfer data from one processor’s local memory to another processor’s local

memory which is useful for pipelined applications where the processors operate on

data in succession.

Streaming Register File (SRF) Each TRIPS processor contains 8 64KB mem-

ory tiles which compose a portion of the global L2 cache. Any number of these

memory tiles can be dynamically reconfigured to serve as a SRF. The SRF behaves

like a software controlled cache where transfers into and out of the SRF are explic-

itly controlled by the application. For the study, 4 tiles per processor are used as a

SRF and the other 4 tiles remain in use as L2. This provides each processor with

256 KB of local memory.

2.3 SVM Library Implementation

A TRIPS specific SVM library is used to implement the SVM API. Rather than a

single monolithic library we developed four disjoint libraries that facilitated debug-

ging and code reuse as shown in Figure 2.3.

11

Synchronization Library: Contains the basic synchronization objects such as a

mutex that multiprocessor programs can use to coordinate their actions. The author

developed this library based on a technical report that proposed synchronization

primitives for the TRIPS architecture [13]. The synchronization objects are built on

top of an atomic lock instruction that is part of the TRIPS ISA. Additionally, special

block flags indicate to the hardware that blocks that try to access a shared lock need

to be the only block running on the processor at the time the lock instruction is

issued.

The following libraries were originally developed by Saurabh Drolia [3].

Message Queue Library: Allows processors to send messages to each other using

the shared memory segment. This library is used by the SVM system to allow the

master processor to assign work functions to the slave processors.

DMA Library: Presents an interface to applications to allow them to program

the DMA controller. This library is used by the SVM system to initiate transfers

of data streams.

TRIPS SVM Library: This library is the TRIPS specific implementation of the

SVM API. It is built using primitives from the other three libraries.

The modular library design has proven effective for debugging and has al-

lowed the majority of the code in the three support libraries to be reused for a

current project to implement the Message Passing Interface (MPI) parallel model

[8].

12

Chapter 3

Simulator Enhancements

When simulating a uniprocessor program for the TRIPS architecture a programmer

currently has two choices. Either they can run their program on tsim proc, a cycle-

accurate simulator that fully models all of the actions of the processor, or they

can run their program on tsim arch, a functional simulator and does not provide

performance metrics such as cycle counts. On a modern workstation the cycle

accurate simulator can simulate one thousand instructions per second while the

functional simulator can execute one million instructions per second.

The simulation time to run a large SVM program on the cycle accurate sim-

ulator is prohibitively expensive. For example it would take approximately four

months to run the matrix multiplication SVM program on the cycle accurate sim-

ulator. Therefore the system simulator was constructed by using a collection of

functional simulator instances, with each instance modeling one processor in the

SVM program. The system simulator also models the inter-processor communica-

tion via the shared memory system. The use of the functional simulators limited

performance metrics to extremely course statistics. In order to more closely model

the viability of the SVM model, we modified the system simulator and the unipro-

cessor simulator to produce an estimate of the cycle cost of an SVM program.

13

ED

RGI R R R

E E E

EEEE

E E E E

EEEE

D

D

D

I

I

I

I

ED

RGI R R R

E E E

EEEE

E E E E

EEEE

D

D

D

I

I

I

I

Figure 3.1: TRIPS Processor

3.1 TRIPS Execution Model

The SVM model views the TRIPS processor as a black box, but to explain the

author’s simulator enhancements the TRIPS execution model is presented. The

TRIPS processor does not operate on an instruction granularity like conventional

processors. Instead the atomic unit of execution is a block of up to 128 instructions.

The functional simulator only reports the number of blocks executed per processor.

Each block can contain up to 32 register reads, writes, and memory operations [19].

Each processor is capable of executing up to 8 blocks simultaneously. These instruc-

tion blocks are generated by the Scale compiler [14] and each instruction is statically

assigned to one of 16 ALUs which are arranged in a two-dimensional mesh topology

on the processor. Rather than returning intermediate results to the register file

producing instructions pass their results directly to consuming instructions via an

on-chip network that connects the execution units [7]. These instruction dependen-

cies are explicitly encoded by the EDGE ISA. Figure 3.1 shows the tiles that make

up 1 TRIPS processor. The tiles are as follows: I, instruction cache, D, data cache,

14

G, control, R, register file, and E, execution tile. Once the block starts executing

each instruction fires dynamically as soon as its operands are available [15]. This

combination of static placement and dynamic issue makes the TRIPS architecture

a novel design.

3.2 Uniprocessor Simulator Enhancements

Along with being able to provide cycle estimates for SVM programs, the modified

uniprocessor simulator can be used by other developers wishing to obtain approx-

imate cycle times for long running sequential programs. This will be particularly

useful when optimizing programs to obtain a estimate of the improvements of dif-

ferent optimizations without having to wait for the results of the cycle accurate

simulator. To facilitate development, the simulator analysis code began extremely

naive and was gradually enhanced with various factors to improve the model’s pre-

cision. The various factors that were initially considered by the analysis code were:

• Static Instruction Cost: By examining the opcode a static cost for an in-

struction can be assigned. For example, the cost of executing a floating point

instruction will be higher than the cost of an integer instruction.

• Static Routing Delay: When one instruction produces a value and passes this

value through the on-chip network to a consuming instruction the cost of this

transfer is 1 cycle per hop. We calculate the number of hops between the

producer and consumer and factor this cost into the consuming instruction.

Additionally, we consider the static cost of routing from the execution tiles to

the register file for register reads and writes and the cost of routing to data

tiles for memory operations.

Using this analysis we determine the critical path through the block and

assign the block a cycle cost equal to the critical path plus a block fetch and commit

15

delay. This analysis provided a very coarse estimate of cycle cost but it become

apparent after testing that a more precise model would be needed.

3.2.1 Advanced Modeling

Modeling Multi-Block Execution: In order to correctly model how the TRIPS

processor would execute multiple blocks at the same time one must track the critical

path through the entire program. The only way that instructions in a block depend

on instructions from other blocks is if there is a producer/consumer relationship

through the register file or memory. To account for this, we track for each register the

cycle time when the last write occurred; whenever a read occurs, it must be delayed

until after the last write to that register occurred. A similar approach is taken with

regards to memory. While the simulator models multi-block execution, it executes

the blocks one at a time and then looks backwards in time to see how blocks would

have overlapped. This greatly simplified the implementation since modeling all eight

blocks executing at the same time would have introduced numerous complications

and slowed simulation time.

The following two enhancements were implemented by Paul Gratz.

Cache Modeling: An L1 data and instruction cache model that is used to deter-

mine if a load will hit or miss in the L1 cache. Since the difference in latency for

an L1 hit versus a L2 hit is roughly 100%, this further improved the precision of

the model. The instruction cache model is used to determine the fetch delay of the

block. On an i-cache miss an extra delay of 20 to 30 cycles is added to the block

fetch making this metric important to consider.

Load Store Dependence Prediction: When a load executes before all prior

stores have executed, the TRIPS processor uses a dependence predictor to predict

whether or not the load depends on the store. As long as the load does not depend

16

on the store, it is legal to execute the load, and thus all instructions that depend

on the load can begin executing. However, if the load does depend on the store

the load must be delayed until the store executes [18]. The two cases that are

important to model are independent loads that are predicted to be dependent and

dependent loads that are predicted to be independent. In the former case the load

is delayed until after all prior stores have committed. This can be a severe penalty

so it is important that the predictor be highly accurate. In the later case the load

will receive invalid data causing the block to generate an exception. This exception

flushes all ongoing work and re-executes the block ensuring that the load executes

after the store. The inter-block analysis that examines producer and consumer

relationships through memory operations correctly handle the remaining cases.

3.3 Simulator Simplifications

The current simulator makes several simplifications when it is calculating cycle

estimates.

• Memory System: The current cycle accurate simulator assumes a perfect L2

cache. Our current modified simulator makes this same assumption. Since

one of the main goals of the SVM model is to mitigate main memory latency

this simplification masks any gains we would receive by using the streaming

model. Future work could extend the simulator to model the L2 cache and

thus model main memory latency.

• Network Contention: The analysis code that calculates the routing delays

through the On-Chip Network (OCN) only considers the static cost based

on the producer and consumer’s location on the chip. However, in the real

hardware only one value can be sent on a given link per cycle so link contention

can add a dynamic delay to an instruction’s routing cost.

17

• Branch Prediction: While currently we assume a perfect branch predictor we

plan to add modeling of the branch predictor. On the EEMBC benchmarks

we found the branch predictor to be accurate around 80% of the time. This

presents an opportunity to increase the precision by modeling the branch pre-

dictor.

Since these simplifications are optimistic, the estimated cycle time that we

generate represents the best case scenario and the actual cycle number can be ex-

pected to be higher than our estimated cycle count.

3.4 Simulation Precision

To evaluate the precision of the modified simulator, a suite of benchmarks from

the standard EEMBC benchmark suite was used. All of the available benchmarks

that the TRIPS compiler would compile successfully were used. Table 3.1 shows

the results of comparing the actual cycle counts, obtained with the cycle accurate

simulator, with the estimated number of cycles, obtained with our modified sim-

ulator. We see that there are two benchmarks where our estimate is pessimistic

compared with the cycle accurate simulator. These cases are being investigated and

most likely can be attributed to a bug in analysis code. On average our estimate

proved to be within 20.34% of the true value.

The analysis code for the simulator was written primarily for correctness.

Over the next several months as its use get more widespread it will be tuned for

performance and additional analysis may be added to increase precision.

3.5 Simulation Speed

Because the point of this work was to create a fast but reasonably accurate simulator,

the cost of the added analysis code was closely monitored. If the entire processor is

18

Benchmark Error

automotive/a2time01 15.97%

automotive/aifftr01 10.21%

automotive/aifirf01 12.93%

automotive/aiifft01 7.51%

automotive/basefp01 3.25%

automotive/bitmnp01 -13.49%

automotive/cacheb01 87.04%

automotive/canrdr01 25.17%

automotive/idctrn01 11.87%

automotive/iirflt01 -1.96%

automotive/matrix01 14.86%

automotive/pntrch01 5.50%

automotive/puwmod01 26.70%

automotive/rspeed01 23.00%

automotive/tblook01 19.96%

automotive/ttsprk01 23.69%

networking/ospf 18.21%

networking/routelookup 24.65%

office/dither01 20.01%

telecom/autcor00 17.58%

telecom/conven00 4.38%

telecom/fbital00 24.63%

telecom/fft00 24.13%

telecom/viterb00 51.49%

Average 20.34%

Table 3.1: Cycle Estimation Error for EEMBC Benchmarks

19

modeled in the functional simulator we will have simply recoded the cycle accurate

simulator. However, all of the analysis only introduced a slowdown of only 20%.

This makes the modified simulator still roughly 800 times faster than the cycle

accurate simulator and practical for running large SVM programs.

3.6 System Simulator Modifications

The system simulator initially operated on a block granularity where each processor

would execute one block in a round robin fashion. However, to correctly model

how applications would execute on hardware, the system simulator was enhanced to

operate on a cycle granularity where each processor would execute a block, receive

the estimate cycle cost of that block from the uniprocessor simulator, and then

delay the execution of the next block based on this estimate. The system simulator

also makes an estimate of the cycle cost of executing a DMA transfer based on the

number of bytes transferred and ensures that the processor does not view the DMA

transfer as finished until the specified number of cycles has passed. The system

simulator was also enhanced to produce several metrics such as the number of times

a blocks was executed, the average cycle cost of each block, and the DMA utilization.

20

Chapter 4

Application Development

4.1 Benchmark Suite Overview

In order to test the viability of the SVM model on the TRIPS systems, the author

developed a suite of benchmarks. This suite is composed of benchmarks from the

scientific computing and digital signal processing domains where inherent parallelism

is common.

4.1.1 Computationally Bound

On applications that are computationally bound, the processors operate for ex-

tended periods of time without interactions with the SVM library so the overhead

of establishing the SVM model can be easily amortized.

• Matrix Multiplication: The matrix multiplication algorithm, common in sci-

entific computing, consisted of the multiplication of two 1040 by 1040 element

matrices. The matrices were composed of double precision data so floating

point operations were necessary. A blocked algorithm was used so that entire

sub-blocks could fit into a processor’s local memory. Further, the applica-

tion was constructed so that the computation and communication could be

21

overlapped [5].

• Fast Convolution: Fast Convolution is an application from Digital Signal Pro-

cessing where the algorithm performs repeated element wise multiplication on

arrays of double precision data. Again the local memory was partitioned in

a way such that the DMA could service part of the data while the processor

operates on the other data.

• Finite Impulse Response Filter (FIR): The FIR benchmark is common is Dig-

ital Signal Processing and is used to filter signal data. It is a staged algorithm

composed of a FFT, element wise multiplication, inverse FFT, and an element

wise division.

4.1.2 Memory Bound

Memory bound applications have the potential to achieve substantial performance

gains from the streaming nature of the SVM model.

• Matrix Corner Turn (Transpose):

The matrix corner turn algorithm operates on a matrix of 250,000 elements.

To perform the transpose the processor needs to execute a load, store, and the

appropriate address calculations for each element. This is a very simple work

function so the cost of transferring data into local memory is greater than the

cost of executing the work kernel. This leaves the processor underutilized.

4.1.3 Other Types of Applications

Not all applications can be as easily decomposed across multiple processors as the

current set of benchmarks. Applications with more frequent interprocessor com-

munication would spend more time executing library code and synchronizing their

actions. These applications still could benefit from the SVM model and future work

22

TRIPS component

Machine Independent

R-Stream HLC

System Simulator

TRIPS Compiler

Augmented
C

SVM

Code

Executable

TRIPS
MM

Linker

Visualization Tool

DMA Device Drivers

Synchronization Library

Message Queue

TRIPS SVM Library

TRIPS Hardware

TRIPS componentTRIPS component

Machine IndependentMachine Independent

R-Stream HLC

System Simulator

TRIPS Compiler

Augmented
C

SVM

Code

Executable

TRIPS
MM

Linker

Visualization Tool

DMA Device Drivers

Synchronization Library

Message Queue

TRIPS SVM Library

DMA Device Drivers

Synchronization Library

Message Queue

TRIPS SVM Library

TRIPS Hardware

Figure 4.1: TRIPS SVM Toolchain

will expand the suite of benchmarks to examine the effectiveness of the SVM model

for these applications that are not trivially parallelizable.

4.2 TRIPS SVM Toolchain

We developed these applications using the TRIPS SVM Toolchain shown in Figure

4.1. Initially, the author wrote them in Augmented C, a modified version of C

with additional constructs to facilitate the HLC’s discovery of parallelism. These

Augmented C programs were compiled with the HLC along with the TRIPS machine

model, that describes all of the system parameters of the TRIPS SVM system. Next

23

the TRIPS C compiler was used to compile the SVM code along with the support

libraries discussed in Section 2.3. The system simulator, discussed in Chapter 3 was

then used to run the resulting executable.

4.3 Analysis of HLC Generated Code

The author conducted extensive analysis of the output of the HLC to determine

the HLC’s ability to generate code that would be efficient on the TRIPS system. It

became clear that several modifications would need to be made by hand in order

to generate the most efficient SVM code for the TRIPS system. Since the HLC

is still a prototype and there is ongoing work to improve the code quality this

should not be seen as a sign that the two-phased compilation approach does not

hold promise. All of the hand changes were made for performance reasons and

not correctness. However, there were some cases where the HLC was not able to

correctly identify how to parallelize code sections. In these cases, in order to produce

working benchmarks, the code was hand generated. The SVM API does not depend

on the HLC and the analysis undertaking was of the effectiveness of the SVM model

rather than the HLC therefore hand coding for evaluation purposes was applicable.

This hand coding highlighted several areas where the HLC could be improved and

these observations were communicated to the HLC team who have included some

of the features in the current generation of the HLC.

Address Generation: The original HLC generated code used function calls to

access elements in a svm block. This provides a high level of abstraction when

dealing with data objects but has serious performance implications. Our analysis

showed that this presented a significant cost on the TRIPS system and we pro-

posed replacing the function calls with macros. While this provided a speedup, the

low level compiler had difficulty unrolling loops with macro accesses. The macros

24

translated into pointer operations so when the loop was unrolled a separate address

calculation was made for each pointer reference. When the macros were replaced

with array accesses the compiler was able to reduce the number of address calcu-

lations and increase the unroll factor of the innermost loop providing a significant

speedup. The three different approaches are shown in Figure 4.2. This optimization

was communicated to the HLC team who implemented the change in subsequent

versions.

Overlapping Communication and Computation: To fully exploit the SVM

model one must ensure that communication and computation are overlapped. This

ensures that the processor does not have to sit idle while data is transfered into its

SRF. On some algorithms, such as matrix corner turn, where the work function is

very simple this may not be possible. However, the complexity of many algorithms

is n
2 or higher while the cost to transfer data into the SRF space is linear. One

way to overlap communication and computation is to partition the local memory

so that both the processor and DMA can operate on different portion of memory.

For example in a vector add program the SRF space would be partitioned into four

input blocks and two output blocks as shown in Figure 4.3. While the processor is

adding two of the input blocks to produce an output block the DMA can be storing

the results of the other output block and refilling the other two input blocks. Once

the processor finishes operating on its data the processor and DMA switch memory

spaces so that the processor operates on the new data that the DMA copied in and

the DMA operatates on the results of the processor’s computation. This technique

proved very effective at improving the processor utilization.

Distributed Control: In the initial HLC generated code, computation was di-

vided into rounds and the processors synchronized at the end of each round after

which the master would assign another round of work. The programs were modified

25

so that all of the control was pushed to the individual processor so the master only

has to intervene at the very beginning and at the very end of program. As this model

scales to a larger number of processors it is important that it is decentralized.

26

// Using Function Calls
void svm_blockRead(svm_block block, int index, double * data) {
 (*data) = *((double *)(block->address + index * (block->elementSize)));
}
void svm_blockWrite(svm_block block, int index, double * data) {
 *((double *)(block->address + index * (block->elementSize))) = *data
}

double A, B, C;
for (i=0; i < 250; i++) {
 svm_blockRead(blockA, i, &A);
 svm_blockRead(blockB, i, &B);
 C = A + B;
 svm_blockWrite(blockC, i, &C);
}

// Using Macros
#define svm_blockReadMacro(block, index, data, type)
 ((type) data) = *((type*) (index * block->elementSize + block->address

#define svm_blockWriteMacro (block, index, data, type)
 ((type) (index * b->elementSize + b->address))= *((type*) data)

double A, B, C;
for (i=0; i < 250; i++) {
 svm_blockReadMacro(blockA,i,&A,double);
 svm_blockReadMacro(blockB,i,&B,double);
 double C = A + B;
 svm_blockWriteMacro(blockC,i,&C,double);
}

// Using Array Indexing

double * A = blockA->address;
double * B = blockB->address;
double * C = blockC->address;

for (i=0; i < 250; i++) {
 C[i] = A[i] + B[i];
}

Figure 4.2: Different Addressing Options for Vector Add Program

27

A 1

B 1

C1

A2

B2

C2

Processor
DMA

Main

Memory

Figure 4.3: Processor’s Local Memory for Vector Add Program

28

Chapter 5

Results

In order to test the effectiveness of the SVM model on the TRIPS system, we

simulated the sample SVM programs with the modified simulator on a prototype

system composed of 4 processors. Further, we developed sequential versions of all

of the benchmarks in native C and used the modified sequential simulator to run

them.

5.1 Speedup over Sequential

We show the results of running the applications in Table 5.1. We see that the

speedups for the three computationally bound applications range from 3.6 to 3.7

which is within 10% of the optimal speedup of 4.0 that could be expected from 4

processors. However on the memory bound application our initial results indicate

that the SVM program is actually outperformed by the sequential program. This

result arises because our simulation model currently makes no attempt to model

main memory access latency so all the longest delay a memory instruction can be

assigned is an L2 hit. The corner turn application consists of 250,000 pairs of load

and store operations which on the SVM system would hit in the local memory with

29

Application SVM Program Sequential Program Speedup over
(millions of cycles) (millions of cycles) Sequential

Matrix 687.0 2,554.8 3.718
Multiplication

Finite Impulse 32.7 121.9 3.730
Response Filter

Fast 5.7 20.8 3.646
Convolution

Matrix Corner 5.7 5.1 0.922
Turn

Table 5.1: Initial Results

an approximate cycle cost of 10-15 and on the sequential applications these memory

operations would face a main memory latency of several hundred cycles. Therefore,

we expect the SVM version of corner turn to outperform the sequential version

and additional work could extend the simulator to account for main memory access

latency.

5.2 Execution Breakdown

To evaluate the overhead of the SVM model we examine the amount of time the pro-

cessor spends performing different operations. Table 5.2 shows a breakdown of the

execution time of the master processor. We see that for the three computationally

bound programs only 1-2% of the execution time is spent setting up the program or

executing SVM library code. This high percent of useful work explains why we were

able to achieve near ideal speedups. On the matrix corner turn benchmark the pro-

gram spends nearly 40% of its execution time running overhead code for the SVM

model. This corresponds with poor performance of the SVM version. To visualize

program execution, we developed a tool that creates a graphical view of processor

and DMA actions. Figure 5.1 show the visualization of the matrix multiplication

30

Benchmark % useful %work %DMA %message queues,
work assignment control init, sync

Matrix 99.799 0.042 0.129 0.065
Multiplication

Finite Impulse 98.207 0.004 0.012 1.777
Response Filter

Fast Convolution 98.917 0.002 0.003 1.078

Matrix Corner 63.312 13.204 16.512 6.972
Turn

Table 5.2: Execution Breakdown

SVM program. A dark horizontal line means that work is being performed at that

time step. The four leftmost solid vertical lines show that the four processors are

performing work throughout the entire execution. The four rightmost dashed ver-

tical lines show that the four DMAs are only used intermittently throughout the

execution. While it appears that the DMA are used a high percentage of the time,

this is an artifact of the scale of the picture and Section 5.3 shows that the DMA

utilization for the matrix multiplication program is less than 1%.

5.3 DMA Utilization

Another useful metric is what percent of the time the DMA was transferring data.

Table 5.3 shows the DMA utilization of the four benchmarks. We see that the

computationally bound programs make little use of their DMAs while the corner

turn program uses its DMA over fifty percent of the time. The current model of the

cost of a DMA operation is rather optimistic so the latency of a DMA operation in

the actual system is likely higher than we predict. Therefore the DMA utilization

in the actual system are likely to be higher than shown here and matrix corner turn

for example will likely use its DMA almost all of the time. The DMA utilization

for the computationally bound kernels might suggest that a DMA controller is not

31

Figure 5.1: Visualization of Matrix Multiplication

32

Benchmark DMA Utilization (%)

Matrix 0.139
Multiplication

Finite Impulse 0.046
Response Filter

Fast Convolution 0.025

Matrix Corner 57.028
Turn

Table 5.3: DMA Utilization

necessary since it was underutilized. However, the utilization will increase with a

more accurate model of the latency and the use of the DMA could have a larger

impact on different classes of applications such as those with more frequent inter-

processor communication.

5.4 Library Optimizations

Using the modified simulator to determine where execution time was spent, the au-

thor made several optimizations to the TRIPS SVM library. Initial analysis showed

that the computationally bound kernels spent less than 2% of their time execut-

ing library code, so extensive effort was not spent completely optimizing the library.

However, the memory bound application spent a far greater amount of time, around

40%, executing library code so optimizations provided more benefit for them.

5.4.1 Compilation with Full Optimizations

The initial SVM library did not use the volatile keyword to mark shared variables.

In C the volatile keyword is used to indicate to the compiler that no optimizations

should be performed on a variable. Without this keyword the TRIPS C compiler

was register allocating shared control variables that processors polled on, creating

race conditions. The initial solution was to compile the SVM library with no opti-

33

Application Original -O4 Overall Improvement
Speedup Compilation to Execution Time (%)

Matrix 3.718 3.756 1.00
Multiplication

Finite Impulse 3.730 3.680 -1.34
Response Filter

Fast Convolution 3.646 3.679 .89

Matrix Corner 0.899 1.096 15.45
Turn

Table 5.4: -O4 Compilation

mizations but this had performance implications. The author augmented the library

with the correct use of the volatile keyword and then compiled the library with full

optimizations Table 5.4 shows the results of using the -O4 optimizations. The higher

level of optimization actually hurt the performance of the FIR benchmark because

of some issues regarding how the compiler backend handles the volatile keyword are

still being resolved.

5.4.2 Linear Search

Analysis of execution time found several functions that were performing linear scans

of an array of processor ids in order to translate from a SVM virtual identifier to

a physical processor identifier. This code was replaced with an array lookup to

avoid the linear scan. This will also serve to reduce pressure on the shared segment

of memory where processor identifiers are stored. Table 5.5 shows the results of

performing this optimization.

5.4.3 Library Race Conditions

Along with optimizations the author spent a significant amount of time debugging

race conditions in the library code. Since the library code was developed on the

original functional simulator, where each block cost the same amount of time to

34

Application Original -O4 Overall Improvement
Speedup Compilation to Execution Time (%)

Matrix 3.718 3.758 1.05
Multiplication

Finite Impulse 3.730 3.721 -0.22
Response Filter

Fast Convolution 3.646 3.698 1.42

Matrix Corner 0.899 1.199 23.12
Turn

Table 5.5: ID Lookup Optimization

execute, when the simulator was modified, to execute blocks in an order based on

the estimated cycle time, several race conditions appeared. Additional checks were

inserted to prevent these scenarios from occurring.

5.4.4 Future Optimizations

There is still room for further optimization to the SVM libraries. Currently whenever

the DMA is invoked to transfer data a system call is made to translate the virtual

address to a physical address. This is a very expensive operation and a more efficient

method for performing this translation would be to only translate the base addresses

for each segment and then generate all physical addresses as an offset from the known

base address. Since we do not attempt to model the cost of system calls, had this

optimization been made we would not have been able to measure its effectiveness

and therefore leave it for future work.

35

Chapter 6

Conclusions

This thesis evaluates the performance of the SVM model of parallel computation

on the TRIPS system. The SVM model provides a method of dividing large com-

putations amongst a collection of processors while trying to minimize the burden

on a programmer. While we found the current High Level Compiler to be weak

in certain areas, optimizations have been discovered which will hopefully improve

future version of the High Level Compiler. Along with work distribution the SVM

model uses a streaming approach which takes advantage of the TRIPS processor’s

DMA to mitigate the high cost of main memory access.

Related work, such as the StreamIt programming language, has exploited

concurrency through high level language support for streaming. StreamIt aims to

improve programmer productivity by directly exposing high-level streaming con-

structs that the programmer can use to write a concise program that the StreamIt

compiler can execute effectively, using a streaming model of computation [20]. All

of our current benchmarks have focused on applications where processors always

return their results directly to main memory. In some situations it may be prefer-

able for processors to pass their results directly to another processor, bypassing

main memory. Applications that have several distinct stages could benefit from this

36

P 0
fft kernel

P 1
elMult kernel

P 3
ifft kernel

P 2
elDiv kernel

Main
MemorySRF

SRF

SRF

SRF

DMA

DMA

DMA

DMA

Figure 6.1: Possible Execution of FIR Algorithm

model, as long as the work is distributed approximately equally across the stages.

Figure 6.1 shows an alternative implementation of the FIR algorithm, where each

processor performs one of the four stages of the FIR algorithm and then uses its

DMA to transfer its results directly from its local memory to another processor’s

local memory. Then the DMA can move the final result to main memory. This

approach would also improve the i-cache performance since each processor is only

executing a subset of the total code. Future work compare this approach of work

distribution to the approach where each processor pulls and pushes data directly

between main memory and local memory.

To quantify the performance of the SVM model, enhancements were made

to the functional simulator to determine the approximate cycle cost of a TRIPS

program. While several simplifications were made, this estimate proved to be within

20.34% of the true value on the EEMBC benchmark suite. Further the analysis code

only introduced an overhead of 20%, meaning that it was still 800 times faster than

the cycle accurate simulator. Future work will enhance the simulators memory

model and add a model of the branch predictor.

37

The suite of SVM benchmarks shows that with 4 processors the SVM pro-

gram executes 2.95 times faster than a native C sequential version of the same

application. On the three computationally intensive benchmarks the SVM version

is 3.70 times faster than the sequential version. This shows that for a large class of

applications the overhead of using the SVM model can be mitigated and significant

speedups can be obtained. Future work on the SVM project will extend the suite of

benchmarks and quantify the performance for applications that express less inherent

parallelism.

38

Bibliography

[1] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, C. R. Moore,

J. Burrill, R. G. McDonald, and W. Yoder. Scaling to the End of Silicon with EDGE

Architectures. IEEE Computer, pages 44–55, July 2004.

[2] DARPA. Polymorphous Computing Architecture Program,

http://www.darpa.mil/ipto/programs/pca, January 2006.

[3] S. Drolia. Support for Stream-based Parallel Programs:The TRIPS Architecture. Mas-

ter’s thesis, University of Texas at Austin, December 2005.

[4] S. Drolia and S. Keckler. TRIPS DMA Controller Specification. Technical Report

Internal, Department of Computer Sciences, The University of Texas at Austin, 2005.

[5] M. Gebhart and S. W. Keckler. Matrix Multiplication on TRIPS SVM System. Tech-

nical report, The University of Texas at Austin, December 2005.

[6] Georgia Institute of Technology and Space and Naval Warfare Systems. Introduction

to Morphware. Technical report, Polymorphous Computing Architecture, 2004.

[7] C. Kim, P. Gratz, and R. McDonald. On-chip Network Specification. Internal Technical

Report, Department of Computer Sciences, The University of Texas at Austin, July

2004.

[8] M. Krishnan and S. W. Keckler. Implementation of MPI on TRIPS Specification

Document. Technical report, The University of Texas at Austin, April 2006.

[9] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amaras-

inghe. Space-time Scheduling of Instruction-level Parallelism on a RAW Machine. In

ASPLOS-VIII: Proceedings of the eighth international conference on Architectural sup-

port for programming languages and operating systems, pages 46–57, New York, NY,

USA, 1998. ACM Press.

39

[10] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart Memories:

A Modular Reconfigurable Architecture. In ISCA 2000: Proceedings of the 27th Annual

International Symposium on Computer Architecture, pages 161–171, 2000.

[11] P. Mattson. PCA Machine Model. Technical report, Reservoir Labs, December 2004.

[12] P. Mattson, B. Thies, L. Hammond, and M. Vahey. Streaming Virtual Machine Spec-

ification. Technical report, Polymorphous Computing Architecture, March 2005.

[13] R. McDonald. Proposed Thread Synchronization Support. Internal Technical Report,

Department of Computer Sciences, The University of Texas at Austin, June 2004.

[14] K. S. McKinly, J. Burrill, D. Burger, B. Cahoon, J. Gibson, J. E. B. Moss, A. Smith,

Z. Wang, and C. Weems. The Scale Compiler. Technical report, University of Mas-

sachusetts, University of Texas, 2005.

[15] R. Nagarajan, S. K. Kushwaha, D. Burger, K. McKinley, C. Lin, and S. W. Keck-

ler. Static Placement, Dynamic Issue (SPDI) Scheduling for EDGE Architectures. In

International Conference on Compilation Techniques (PACT), September 2004.

[16] R. D. Rettberg, W. R. Crowther, P. P. Carvey, and R. S. Tomlinson. The Monarch

Parallel Processor Hardware Design. Computer, 23(4):18–28, 30, 1990.

[17] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler,

and C. R. Moore. Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS

Architecture. In Proceddings of the 30th Annual International Symposium on Microar-

chitecture, pages 422–433, May 2003.

[18] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W. Keckler. Scalable

Hardware Memory Disambiguation for High-ILP Processors. IEEE Micro, 24(6):118–

127, 2004.

[19] A. Smith, J. Burrill, R. McDonald, D. Burger, S. W. Keckler, and K. S. McKinley.

TRIPS Application Binary Interface (ABI) Manual. Technical Report TR-05-22, De-

partment of Computer Sciences, The University of Texas at Austin, March 2005.

[20] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A Language for Streaming

Applications. In International Conference on Compiler Construction, Apr 2002.

40

Vita

Mark Gebhart was born on August 3, 1983 in Richardson, Texas. He graduated

from Berkner High School in May of 2002 and enrolled at the University of Texas

at Austin in the Fall of 2002. During his summers he has completed two internships

with Lockheed Martin and an internship with the Department of Defense. He began

working in the Computer Architecture and Technology Laboratory (CART) under

Dr. Stephen W. Keckler in August of 2004. In May of 2006 he graduated with a

Bachelor of Sciences in Computer Science and plans to begin work on a masters

degree in August 2006 at UT-Austin.

Permanent Address: 2217 Windsor Dr., Richardson, TX 75082

This undergraduate honors thesis was typeset with LATEX2ε
1 by Mark Gebhart.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark

of the American Mathematical Society. The macros used in formatting this undergraduate honors

thesis were written by Dinesh Das, Department of Computer Sciences, The University of Texas at

Austin, and extended by Bert Kay, James A. Bednar, and Ayman El-Khashab.

41

