Using edge statistics for object recognition

Laurel Issen

May 15, 2006

Abstract

Many perception experiments have shown that object boundaries,
defined by edges, contain a wealth of information for recognizing the
object. This project is an attempt to construct an edge-based method
of recognizing a simple object in a computer vision system. I chose
to explore this problem within the domain of robotic soccer, where
the visual system must identify the soccer ball among other robots,
field features, and objects outside the field. The method presented
in this paper uses only edge boundary statistics and performs better
than chance at this task. I also outline future work that could improve
accuracy in computer recognition of the soccer ball.

There have been several initiatives in both cognitive science and computer
science to recreate human vision with computer algorithms. In cognitive sci-
ence, the goal is to figure out how the visual system works, and in computer
science, the goal is to make intelligent machines that can sense their envi-
ronment. This project is an initiative to bring the two fields together, by
combining two particular projects.

The first of these projects is RoboCup, which is designed as a testbed
for creating rational agents. Teams of researchers program Sony Aibo robots
to play 4 vs. 4 soccer, where each robot is running its own program and
acts based on input from its camera and touch sensors, as well as wireless
communication from its robotic teammates. For a full description of building
a code base in this domain, see Stone et al.[3]

One of the most challenging aspects of this research is the computer vision
algorithms that are necessary for the robots to know what is happening on
the soccer field. Currently, the most successful algorithms get the job done
by relying on color information, such as the approach by Sridharan and
Stone[2] where the visual space is segmented based on color, and this leads
to candidate blobs which are then matched to possible objects.



The RoboCup domain supports this solution by making the important
objects on the field be bright colors. The robots wear stick-on uniforms in
royal blue or red, the goals are bright yellow or bright blue, the soccer ball
is bright orange, and localizing beacons are combinations of pink, yellow,
and blue. Unfortunately, relying on color is not robust enough for the task
because in many cases, when lighting is not uniform on a particular playing
field, or if it is nonstandard across different fields, results can be unreliable.
Because the algorithm would need to accept a variety of brightness and RGB
values as the same orange as the soccer ball, many other things may be
accepted as orange to the robot, such as the hand of a person observing the
game. Other times, because the ball is not well-lit, it will not be in the range
of values accepted as orange, and the robot will not see the ball.

The RoboCup league understands these limitations and aims to move
away from the color- centered vision systems. To encourage this, the league
plans to replace the orange soccer ball with a black-and-white ball. My goal in
this project was to use an edge-based algorithm to identify a black-and-white
soccer ball in robot-eye images of game scenes. I decided to use an approach
similar to Geisler et. al. which created an ideal observer at contour grouping

based on edge co-occurrence statistics (Geisler, Perry, Super & Gallogly,
2000).[1]

1 Method

1.1 Input photographs

The photographs used for analysis were taken with the camera that comes
on the Sony Aibo robots. I converted the images from their native YCbCr
format to black and white, so the project was completed with no color in-
formation whatsoever. I used game-style images that were designed to be
scenes that the robot might encounter in regular game play, including scenes
with other robots, and scenes where the soccer ball is partially occluded. See
Figure 1 for an example. 1 was not able to use actual game images because
the robots were not programmed to recognize the black and white ball.

1.2 Edge extraction

I used the same edge extraction method as is described in Geisler et al.
2001.[1] This method is similar to the response of neurons in the primary
visual cortex, so it is a logical way to begin processing an image. The first
step is to filter the image with a non-oriented log Gabor function, which has a



Figure 1: One example of an input image

similar function to surround-off cells in the visual system. These cells increase
response when the center of its visual field becomes more illuminated, and
decrease response when the edges of its visual field are illuminated. As a
result, as the log Gabor function approaches an edge, the response will go
either from a negative to a positive response, or from a positive to a negative
response. Each of the zero-crossings that the log Gabor functions produce
are treated as potential edge elements. Then, each potential edge element
is filtered by a series of oriented log Gabor filters, and the output of this
function is analyzed to determine the orientation of each edge. Finally, each
edge was assigned an edge strength by determining the normalized contrast
energy at its preferred orientation.

1.3 Edge grouping

The output of edge extraction is a map of the x and y pixel coordinates
of each edge, its orientation, and the edge strength. An edge which went
from pure white to pure black would have the highest possible edge strength.
Figure 2 shows a scatterplot representation of the edge output from Figure
1, ignoring edge orientation.

Based on these scatterplots, I determined there would be enough infor-
mation in the edges that had at least 10% of the maximum edge strength to
identify the edges that had come from the ball. This was because the edges
along the outside of the ball tend to be strong, since they go from the dark
grey ground to the white ball.

Then, for each of the edge elements still left, I created edge groups based
on the idea that if edge A is within a Euclidean distance of 2 pixels of edge B,



Il 1 ) 1 1 ]
40 60 80 100 120 140 160 180

Figure 2: The scatterplot representation of the edge output, ignoring orien-
tation. The dark red pixels are locations of the strongest edges, and the dark
blue pixels are locations of the weakest edges. The scatterplot is not on the
same scale as the image.



then edges A and B should be in the same group, and that the groups should
be transitive. The algorithm does this by creating a matrix of the distance
between each pair of points in an image, then starting with the first edge
element, searches for other edges within the distance threshold to associate
with the first group, and recursively repeats this edge-pair finding on the
newly grouped edges as well. When the last edges added to the group do not
result in any new edges being added, that group has been exhausted, and
the algorithm repeats the process with the next ungrouped edge. Finally, all
edges are contained in a numbered group, even if that group consists only of
a single edge by itself.

I then eliminated any groups which included fewer than 15 edges, which
left about 10 edge groups per picture. For each of these groups, I plotted
one edge group at a time, overlaid onto the input images, and selected which
edge groups contain edges that are part of the edge of the soccer ball.

1.4 Analyzing the properties of edge groups
1.4.1 Method 1

Now that I had groups for each of the eight images numbered and labeled,
I needed to analyze the differences between edge groups that represent the
outside of a soccer ball from edge groups which do not outline the ball. Once
the distinguishing properties of the ball groups have been identified, I will
be able to locate these groups in an input image and therefore identify the
location of the ball.

Recall that the information we have for each edge in a group is its co-
ordinates in the x-y plane, its orientation in radians, and the edge strength.
Since a soccer ball will always project a circular image, I decided first to use
pairs of edges to predict a center-point based on their relative locations and
orientations. In theory, ball-edge groups would have a tight cluster of pro-
jected center points. Other curved surfaces like the other robots might have
a higher standard deviation of projected center points. This method would
also have the advantage of automatically computing the most likely location
of the center of the ball, as a step along the way to determining which edge
groups, if any, are likely to be the boundary of a soccer ball.

The orientation of an edge was defined by the angle in radians that the
edge had traveled in a counter-clockwise direction from vertical, so I was
able to find the slope and y-intersects of the line perpendicular to an edge
by solving the following set of equations:

m = tan 6 (1)
b =19 — mxg (2)



Then with the equations for both perpendicular lines, I found the intersection
point, which would be the predicted center point of the circle. I had to include
special cases for when the lines were parallel to each other, which on a perfect
circle would only happen when the edges were on exactly opposite sides of
the ball, so in this case the center point would just be the average of the x and
y values. I also handled the case where either edge is perfectly horizontal.
When I had an array of estimated center points for each group, I calcu-
lated the average x value, the average y value, and the standard deviation
of the group points from this mean. Our prediction was that the standard
deviations for ball groups would be lower than that of non-ball groups.

1.4.2 Method 1 Results

While the center-point method would work in theory, in practice, the small
amounts of noise in the edge orientations correspond to large error margins in
the results. This is because many pairs of edges within a group are very close
to being parallel to each other, and so being off in one of the orientation angles
by a small amount will shift the intersection point of the perpendicular lines
drastically. Figure 3 shows the standard deviation plot of the ball groups
versus the non-ball groups. The ball-group distribution looks identical to
what you would expect from a sample of the non-ball-group distribution, so
the standard deviation of predicted center points for a group would not be
at all helpful in distinguishing groups of edges that came from the outside of
the soccer ball from groups of edges that came from other objects.

1.4.3 Method 2

The next method that we tried involved seeing how closely the edges match
the equation for a circle. This would likely be an effective method even
ignoring the edge orientations, though the orientations might be another
parameter that is useful to consider in distinguishing ball groups from non-
ball groups. For each group, we will pick xg, 39, and r to minimize S in the
equation

n

> (s — 20)” + (yi — yo)* — 7|
=1

1
S=—
n
where (x;,y;) is the location of the ith edge in the group of n edges.

To find inputs which minimized the error, I used the fminsearch! function
that comes with MATLAB. This function takes the error-finding function

Thttp: //www.mathworks.com /access/helpdesk /help/techdoc/ref/fminsearch.html



1 10 100 1000 10000 100000 1000000

Figure 3: The standard deviation distribution of the non-ball groups (blue)
and ball groups (red)



and a starting value for g, yo, and r, and returns a minimal error and the
X0, Yo, and r values at that minimum. This function can, of course, return
a local minimum instead of a global minimum, so I needed to choose my
starting values carefully. I gave it an r starting value of 60 pixels, because
this would be around the upper bound on how big a ball radius could be,
and I started xy and yy at the group’s centroid, that is, the coordinates of
the mean x and yvalues for the group. This function also has a limit on how
many computations it can do to find the minimum before it returns. If the
function returned without converging on a solution, I coded it to return an
undefined S,,,;, value.

This approach had the advantage that the small amounts of noise in the
information about the edges themselves will correspond to low amounts of
noise in the output. It had the same advantage as before of predicting the
center point of the ball as part of the algorithm, and it also predicted the
radius of the ball, which would aid in determining its distance. I hypothesized
that groups representing the boundary of the soccer ball would have a much
smaller S,,;, than other groups will have.

1.4.4 Method 2 Results

When I plotted the S,,;, results, I realized that I needed to normalize the
data because non-circular groups which take a small amount of space could
still have lower error than circular groups which took a large amount of space.
I was already normalizing for the number of points in the error function itself,
but I decided to plot each groups error divided by its estimated radius. I
also decided to give any groups which had an undefined 5,,;,, or a predicted
radius of less than 2, an S,,;,/r value of 10 for ease in plotting. Figure 4
shows a histogram of the normalized error values for ball groups and non-ball
groups.

Based on this histogram, I decided that my determination function should
predict that any group which had an S,,;,/r value less than 1.5 represented
the boundary of a ball, and any group with an S,,;,/r value greater than or
equal to 1.5 did not represent the boundary of a ball. This function as-is
would be correct on 62% of the input groups. That is, out of the 87 edge
groups in 8 pictures, this algorithm would correctly identify 7 out of the 9
ball groups, and would correctly eliminate 47 out of the 78 non-ball groups.
The two ball groups which would be incorrectly rejected turned out to be
groups which contained some edge elements outside the soccer ball. I explain
this problem and possible solutions in the next section.

I also determined what would happen if I only guaranteed to recognize
soccer balls which were near enough to have a predicted radius of more than



.
.

o ?

0 1.2 3 45 6 7 8 9 1011

Figure 4: The normalized error histogram of the non-ball groups (blue) and
ball groups (red)

10 pixels. This way, I could throw away any groups which had r» < 10. By
doing this, the algorithm improved to 70% accuracy of the input groups, still
correctly identifying the 7 out of 9 ball groups but improving the correct
eliminations to 54 out of 78.

2 Future work

2.1 Distinguishing among round groups

One problem with using only the edge boundary statistics is that groups that
represent the edge of the ball, and groups that represent the edge of other
round objects such as the other robots and the black pentagons on the soccer
balls, do not have statistics which are different enough to distinguish them
reliably. The prediction algorithm could be improved by checking for strong
edges within the bounds of the predicted circle, which are likely to occur in
soccer balls because of the black-and-white pattern, but not in other objects.
An alternative could be to sample random pixels within the ball to see if the
distribution of brightness values is similar to those found in other balls.



20

40

B0

il

100

120

140

160

20 40 G0 g0 100 120 1400 1600 180 200

Figure 5: This complete group should stop before continuing into the black
patch on the right, and should continue the line of the ball instead of the line
of the robot on the left, based on the properties of good continuation.

2.2 Improving edge grouping

It may also be beneficial to improve the edge grouping algorithm to minimize
the amount of edges that are put in a group that they should not belong to.
Figure 5 shows an example of a group boundary that does not follow the true
edge of the ball. Not only does it continue around the black patch into the
internal boundary of the ball, like many of the ball groups do, but it also loses
the edge of the ball to follow another robot’s foot. A sophisticated approach
that might solve both problems would be to add a good-continuation criteria.
We could use this by applying the ideal observer from Geisler et al. 2001[1]
to get a probability that the two edges came from the same contour, and set
a threshold probability as well as a threshold distance for adding an edge to
the group.

10



3 Conclusions

While these methods do not implement real-time algorithms that will be
used as-is in the robots, this project aims to show possibilities for how to
maximize information that will be useful for object recognition from edge
analysis. Also, since I was able to make progress toward recognizing a sim-
ple object using edge analysis alone, using these methods in conjuction with
other methods could reinforce object recognition and make it more robust.
It may be a few years before robots would have the hardware to do all of
the computations necessary in real-time. One of the most expensive calcu-
lations was the application of log Gabor filters to the image, which in our
implementation had to be done serially, but in the human brain this happens
in parallel. If a robotic visual system had extra hardware optimized for this
task, real-time decisions based on edge locations and orientations would be
much more feasible.

4 Acknowledgments

Thanks to Bill Geisler, my advisor, Peter Stone, my second reader, and
Risto Miikkulainen for serving on my committee and helping me with my
experimental design as well as the written work. Thanks also to Jeff Perry for
helping me with technical details, and to Vijaya Ramachandran and Yadirah
Chujachi for assistance with the administrative tasks.

References

[1] Geisler, W.S., Perry, J.S., Super, B.J., & Gallogly, D.P. (2001). Edge
co-occurrence in natural images predicts contour grouping performance.
Vision Research, 41, 711-724.

[2] Sridharan, M., & Stone, P. (2005). Real-time vision on a mobile robot
platform. IEEE/RSJ International Conference on Intelligent Robots and
Systems.

[3] Stone, P., Dresner, K., Erdougan, S. T., Fidelman, P., Jong, N. K., Kohl,
N., Kuhlmann, G., Lin, E., Sridharan, M., Stronger, D., & Hariharan,
G. (2004). The UT Austin Villa 2003 Four-Legged Team. RoboCup-2003:
Robot Soccer World Cup VII

11



