
WEB DATABASE (WDB):
A JAVA SEMANTIC DATABASE

by

Bo Li

A thesis submitted in partial fulfillment of the
requirements for the degree of

Bachelor of Science In Computer Sciences: Turing
Scholars Honors

University of Texas at Austin

Spring, 2006

UNIVERSITY OF TEXAS AT AUSTIN

ABSTRACT

Building a Semantic Database in Java

By Bo Li

With the widespread use of relational database systems such as MySQL and Oracle, the flaws

of such systems become more apparent. While the relational model presents the database

designer with a great degree of flexibility, it captures little meaning of the stored data and

offers limited data integrity capabilities. This paper describes a database based on the

semantic data model to capture the meaning of data so that the schema better represents its

corresponding real world objects. A subset of the data definition and manipulation language

is also explained. Furthermore, a detailed examination of implementing such a database

management system in Java with the SleepyCat database engine is presented along with

possible ways of utilizing dynamically compiling Java objects for data storage. By using the

semantic data model, it is demonstrated how querying for entries in a hierarchic structure or

with entity relationships is much simpler when compared to the equivalent SQL query.

TABLE OF CONTENTS

Introduction...i
Chapter 1: Basic Concepts..1

1.1 Concepts ..1
1.2 Object Definition Language ..3
1.3 Data Manipulation Language ..8

Chapter 2: Using WDB...16
2.1 Defining Classes..16
2.2 Inserting Entities...17
2.3 Modifying Entities ..19
2.4 Retrieving Entities ..20

Chapter 3: Implementation...23
3.1 Project Design...23
3.2 WDB Architecture..27

Chapter 4: Comparison and Conclusion...33
4.1 Comparing WDB against SQL..33
4.2 Conclusion...37

References...38
Appendix A: Sample Organization Schema..39
Appendix B: BNF for SIM Parser ...47
Appendix C: Java Class Structure ..50

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Professor Phil Cannata for all his help

and guidance on the project. In addition, special thanks goes to Dr. Don Batory and Dr.

Greg Lavender for serving on the project committee and providing valuable input. Last but

not least, thanks to Doug Tolbert of Unisys for developing the SDM and the SIM

framework.

i

INTRODUCTION

Database Management Systems (DBMS) have gained tremendous popularity with the

increase in demand for rich, data-driven web applications. With almost all websites using

some type of database backend, database systems are no longer confined to storing and

organizing business critical data for large corporations. Today, database systems are used to

power anything from personal websites such as myspace.com to mobile applications found

in cell phones. Although there are many different database systems with different data

models, the most commonly used database system utilizes the relational data model. While

the relational model offers many advantages such as flexibility and scalability, it does not

capture the meaning of the data and has limited data integrity constraints. With the current

relational model, it is very difficult for users to manipulate the data without prior knowledge

of the semantics and the model constructs utilized to design the schema. Furthermore, with

the widespread use of complex object oriented programming languages such as Java and C#

to develop modern data driven applications, it is very difficult for developers to translate

their application objects to a relational schema for storage on disk. This results in the

developer creating objects with complex relationships and rich constraints that accurately

represent their real world objects, but with no way to store and run queries against them in

relational database systems.

The semantic data model (SDM) is designed to overcome some of the shortcomings of the

traditional relational models. Developed by Hammer and McLeod, SDM shares some

concepts of object-oriented programming such as attributes, classes, hierarchies, and

inheritance. It also incorporates structural semantic concepts such as bidirectional

relationships, multi-valued attributes, and integrity constraints. Unisys developed the initial

implementation of a database based on SDM in the 80s for A series machines. Their

product, called the Semantic Information Manager (SIM) was never released for x86 PCs

due to business reasons. This project aims to implement the fundamental features of SIM

ii

entirely in Java for platform interoperability. Web Database (WDB) utilizes a subset of the

SIM data definition and manipulation languages for schema definitions and queries.

However, the implementation of WDB is completely unrelated to that of SIM. Although the

current version is nothing more then a prototype used for testing and research, we hope it

will contribute to furthering the knowledge of implementing semantic database systems in

modern programming languages.

1

C h a p t e r 1

BASIC CONCEPTS

The Web Database (WDB) is an implementation of the Semantic Data Model (SDM)

developed by Hammer and McLeod. It is aimed to overcome the limitation of hierarchical,

network, and relational models by including more information about the meaning of the

data and what they represent in the real world. Semantic modeling allows for more complex

data relationships while maintaining data integrity as well as the flexibility to model the

schema in both a hierarchical or relational fashion.

1.1 Concepts

Entity

Entities in the SDM represent the real objects being modeled such as people, places, or

things. These are analogous to tuples in a table of a relational data model or objects in

object-oriented programming.

Attribute

Attributes are the characteristics of an SDM entity. In an entity that represents people for

example, an attribute would be name, height, weight, etc. The collection of attributes defines

an entity. WDB offers two types of attributes: data-valued attributes (DVAs) and entity-

valued attributes (EVAs). A DVA defines a displayable value of an entity that is

characteristic of that entity. For example, an entity that represents person would have DVAs

such as name, age, etc. WDB uses three data types for DVAs: Boolean, Integer, and String.

An EVA establishes a bidirectional relationship between the entity in its owning class and

the entities of a target class. The target class can also be the owning class itself. The

relationship implied by EVAs also requires WDB to maintain referential integrity of the link

between the entities. WDB guarantees that an EVA cannot be assigned an invalid reference

2

when it’s inserted or modified. In addition, upon the deletion of an entity, all EVAs

referencing that entity are automatically updated as long as the deletion does not violate

other integrity constraints. EVAs can either be defined as single or multi-valued. Single

valued EVAs can only establish a one-to-one or one-to-many relationship depending on the

inverse EVA in the target class. On the other had, multi-valued EVAs can “point” to many

entities and establish many-to-many or many-to-one relationships.

Class

Classes represent a collection of similar entities or entity types. For example, entities that

represent “France”, “New York”, and “San Francisco” are all members of the City class.

Each class must have a unique name and all entities of that class share the same attributes.

Subclass and Superclass

Each base class can also have a subclass that inherits all the attributes of that base class. A

subclass extends a class with attributes that are only specific to the subclass. Subclasses are

often used to define a subtype of an object in the real world. For example, class employee

can be a subclass of the class person. An employee is a subtype of person. In this case, the

parent of subclass employee is called the superclass. The class that does not have any

superclasses is called the base class. A SDM class can have many subclasses. With this

strategy, a generalization hierarchy is much easier to model in WDB than other relational

database systems where there is no built in support for hierarchy data structures. In addition,

since the subclass contains all the attributes of the superclass, EVAs can also reference

entities of the subclasses of the EVA’s target class. This is often referred to as

polymorphism in object oriented programming languages. All hierarchies in WDB must

represent a valid directed acyclic graph (DAG). This means that all hierarchies must stem

from a single base class. In other words, all superclass paths in a hierarchy must meet at the

same base class. In addition, cycles where a subclass is a superclass of itself is not allowed.

3

Index

An index is a special internal construct used by WDB to optimize query performance. By

default, WDB assigns a unique global identifier to each entity upon creation. WDB uses this

identifier to access and retrieve a particular entity from the SleepyCat database engine. Since

this identifier provides no information about the values of attributes in a particular entity,

the only way WDB can search for an entity that satisfies a particular condition is to perform

a linear search over all entities. The index provides an auxiliary path that can be used to

access these entities by using the values of attributes in an entity as its key. Much like an

index of a book, when a query searches for an entity that contains a value for an indexed

attribute, WDB can quickly construct a key based on the conditional expression to access

that entity. If no such entry is found in the index, an entity that satisfies the conditions does

not exist. This dramatically decreases the amount of time required to search for entities since

WDB does not have to search through all the entities. When a query is performed, the WDB

query optimizer automatically chooses any indexes that can be used to increase the speed of

the query. Due to limitations of indexes in the SleepyCat database engine, WDB only

supports queries with equality conditions (ie. dva_name = value) and complete key

matches (all attributes in the index must be used). In addition to optimizing query

performance, indexes can also be used to enforce uniqueness constraints. When a unique

index is declared, WDB ensures that the key represented by its DVA values exists only once.

1.2 Object Definition Language

The Object Definition Language (ODL) is one of the two main languages used to

communicate with WDB. ODL is mainly used to define the data structures and their

behaviors in the WDB database. This is analogous to the Data Definition Language (DDL)

used by other database systems to define the schema. ODL is a declarative language which,

unlike programming languages, does not include any executable statements. Since WDB

aims to capture the core functionalities of SIM, only a subset of the ODL is utilized. The

implemented declarations include base class, subclass, and index elements of the schema.

4

Base Class Declaration Syntax:

CLASS bass_class_name [comment] ([class_attributes,…]);

base_class_name Unique string that identifies the base class being defined. A

base class name must be a valid WDB identifier, namely, any
combination of letters, digits, hyphens, or underscores,
starting with a letter and ending with a letter or digit. The
WDB identifier is not case sensitive and does not distinguish
between underscores (_) and hyphens (-).

comment Optional remarks about the base class such as a brief
description of its purpose. The comment must be enclosed
in quotation marks (“ “).

class_attributes Specifies all class attributes associated with the base class
being defined. The syntax for defining class attributes is
presented under later in this section.

Subclass Declaration Syntax

SUBCLASS subclass_name [comment] OF superclass_name
([class_attributes,…]);

subclass_name Unique string that identifies the base class being defined. A

base class name must be a valid WDB identifier, namely, any
combination of letters, digits, hyphens, or underscores,
starting with a letter and ending with a letter or digit. The
WDB identifier is not case sensitive and does not distinguish
between underscores (_) and hyphens (-).

comment Optional remarks about the subclass such as a brief
description of its purpose. The comment must be enclosed
in quotation marks (“ “).

superclass_name The name of the base class or subclass to be extended by
the subclass being defined.

class_attributes Specifies all class attributes associated with the base class
being defined. The syntax for defining class attributes is
presented under later in this section.

5

Class Attribute Declaration Syntax

The attributes in a base class declaration or subclass declaration can be data-valued attributes

(DVAs) or entity-valued attributes (EVAs).

data_valued_class_attributes:
dva_name [comment] : data_type [dva_options,...];

dva_options:
 REQUIRED
| INITIALVALUE initial_value

data_type:
 INTEGER
| STRING
| BOOLEAN

dva_name Unique string that identifies the base class being defined. A

base class name must be a valid WDB identifier, namely, any
combination of letters, digits, hyphens, or underscores,
starting with a letter and ending with a letter or digit. The
WDB identifier is not case sensitive and does not distinguish
between underscores (_) and hyphens (-).

comment Optional remarks about the DVA such as a brief description
of its purpose. The comment must be enclosed in quotation
marks (“ “).

dva_options Special characteristics or integrity constraints for the DVA.

REQUIRED
This option ensures that this DVA never has a null value. By
default, DVAs are not required to have values and will have
a special “NULL” value if no value is assigned with the
OML.

INITIALVALUE initial_value
The INITIALVALUE option allows a default value to be
assigned to the DVA when an entity is inserted without an
explicit value. The value must be valid values for the data
type of the DVA. These specifications are the same with
explicit DVA value assignments used in the insert statement
of the OML.

data_type Specifies the data type of the class attribute. For the current

6

implementation, only integers, strings, and booleans are
supported. These types are directly mapped to the
corresponding Java types in the query driver. As an effect, all
the rules and restrictions for those Java types also apply to
these data types.

In the SDM, a pair of EVAs defines the relationship between entities. The cardinality of the

EVA in the class that owns that EVA (perspective class) and the inverse EVA in the target

class defines the type of relationship formed. Table 1.1 shows the various relationship types

that can be constructed based on the cardinality of the EVA pair.

Perspective Class
EVA

Target Class
Inverse EVA

Relationship Type

SV SV One-to-one relationship

MV SV One-to-many relationship

SV MV Many-to-one relationship

MV MV Many-to-Many relationship (Duplicate
instances are allowed)

MV DISTICT MV DISTICT Many-to-many relationship (duplicate
relationship instances not allowed)

Table 1.1: Relationships Between EVA Pairs

entity_valued_class_attributes:
eva_name [comment] target_class_name [eva_options,…];

eva_options:
| REQUIRED
| SV | SINGLEVALUED
| MV | MULTIVALUED [(DISTINCT [,MAX limit])]
| INVERSE IS eva_name

eva_name Unique string that identifies the base class being defined. A

base class name must be a valid WDB identifier, namely, any
combination of letters, digits, hyphens, or underscores,
starting with a letter and ending with a letter or digit. The
WDB identifier is not case sensitive and does not distinguish

7

between underscores (_) and hyphens (-).

comment Optional remarks about the EVA such as a brief description
of its purpose. The comment must be enclosed in quotation
marks (“ “).

target_class_name Identifies the target base class or subclass of the entities that
can form a relationship with the EVA being defined. The
referenced entities must either be an entity of the target class
or a subclass of the target class.

eva_options Special characteristics or integrity constraints for the EVA.

REQUIRED
This option ensures that this EVA always points to one or
more entities in the target class depending on the cardinality
of this EVA. By default, EVAs do have any relationships
with other entities of the target class.

SV or SINGLEVALUED
Defines that this EVA can only form a relationship with
only one entity in the target class. By default, all explicitly
declared EVAs are single valued (SV).

MV or MULTIVALUED
Defines that this EVA can form a relationship with one or
more entities in the target class.

DISTINCT
This option is only allowed for EVAs that are multivalued.
It ensures this EVA never references the same entity in the
target class twice for any entity of the class that owns this
EVA. By default, SIM allows duplicate instances when the
relationship type formed by the EVA pair is many-to-many.

MAX limit
This option is only allowed for EVAs that are multivalued.
This option limits the number of entities this EVA can
reference for each entity of the class that owns this EVA. If
this EVA is required, the limit must be bigger then 1.

INVERSE IS eva_name
This required option specifies the EVA in the target class as
the inverse of the EVA currently being defined. Be defining

8

the inverse EVA, it allows the database user to update the
relationship from the perspective of either EVA while
ensuring referential integrity.

Index Declaration Syntax

INDEX index_name [comment] ON target_class_name (dva_name,…)
[UNIQUE]

index_name Unique string that identifies the base class being defined. A

base class name must be a valid WDB identifier, namely, any
combination of letters, digits, hyphens, or underscores,
starting with a letter and ending with a letter or digit. The
WDB identifier is not case sensitive and does not distinguish
between underscores (_) and hyphens (-).

comment Optional remarks about the base class such as a brief
description of its purpose. The comment must be enclosed
in quotation marks (“ “).

target_class_name Identifies the target base class or subclass that the index
spans. The index applies only to entities that participate in
its target class.

UNIQUE Ensures that each value corresponding to the index key
specification is never used twice. In addition, the uniqueness
constraint is enforced for entities with null attribute values.

dva_name The immediate data-valued attributes of the target class that
are used to construct the index key. Since WDB only
support complete index key matches, the number of data-
valued attributes an index uses is important. For example, if
an index uses the DVA named “address” and
“phone_number”, a query that only specifies the attribute
“address” in its equality condition will not be able to take
advantage of this index. Due to this fact, It is important to
define indexes for commonly searched attribute
combinations.

1.3 Object Manipulation Language

The Object Manipulation Language (OML) is the second of two languages used to

communicate with WDB. OML is a high-level language used to construct update and

retrieve queries.

9

Retrieval Query Syntax

FROM perspective_class RETRIEVE attribute_definition,… WHERE
global_filter_expression;

attribute_definition:
* | dva_name [[OF eva_name]…]

perspective_class Unique string that identifies the base class being defined. A

base class name must be a valid WDB identifier, namely,
any combination of letters, digits, hyphens, or underscores,
starting with a letter and ending with a letter or digit. The
WDB identifier is not case sensitive and does not
distinguish between underscores (_) and hyphens (-).

attribute definition This element specifies the data to be retrieve from the
entities. This information includes immediate or inherited
DVAs or target attribute expressions that traverse the EVA
relationships. Use an asterisk (*) to indicate all the
immediate and inherited DVAs of the perspective class to
be returned.

dva_name The DVA attribute to output from the retrieve query.

eva_name Specifies the EVA of the extended attributes to retrieve
from. A DVA from the EVA’ target class entities must be
specified before specifying the EVAs. Multiple levels of
extended attributes could be retrieved with multiple OF
eva_name clauses.

global_filter_expression The last element of the retrieve query specifies conditions
limiting the entities to be retrieved. Only one WHERE
clause can be included with the retrieve query. This
implementation of SIM supports both equality (=) and
inequality (<, >, <=, >=, <>) conditions. In addition, the
expression also supports the following Boolean operators
along with their order of operation: AND, OR, NOT. The
expression must evaluate to a Boolean value. Literal
Boolean values can also be used. For example, to retrieve
all entities of a perspective class, just specify WHERE
TRUE as the global filter expression.

The filter can apply to immediate, inherited, and extended
attributes of the perspective class. For single-valued
extended attributes, the behavior is similar to that of

10

DVAs. However, if the extended is multi-value, if one
value of the EVA satisfies the condition, a true value is
returned.

Output from Retrieve Queries

Output from retrieve queries are represented in tabular form. Each row of the table

represents one entity of the perspective class. Table 1.2 illustrates the tabular output from

the example query above where only single-valued attributes (DVAs or single valued EVAs)

are requested.

Project Number Project Title
101 Camelot

102 Excalibur

103 Galahad

Table 1.2: Tabular output for single-valued retrieve query

When values from multi-valued target expressions are requested in the query, the outputted

table represents a tree structure. There are two types of multi-valued target expressions.

Dependent target expressions are all single-valued or extended attributes in the same class

and are connected to the perspective class by the same multi-valued EVA. In the example

retrieve query:

FROM PROJECT_EMPLOYEE
RETRIEVE LAST_NAME, PROJECT_NUMBER OF CURRENT_PROJECTS,
PROJECT_NAME OF CURRENT_PROJECTS, FIRST_NAME OF CHILDREN WHERE
TRUE;

PROJECT_NUMBER OF CURRENT_PROJECTS and PROJECT_NAME OF CURRENT_PROJECTS

are dependent multi-valued target expressions since they all belong to the class PROJECTS

and are connected to the perspective class PROJECT_EMPLOYEE by the EVA

11

CURRENT_PROJECTS. Please refer to Appendix A for the example schema used by the

example query above.

Multi-valued target expressions are independent if they are single-valued or extended

attributes that are connected to the perspective class by different multi-valued EVAs. In the

example above, LAST_NAME OF CHILDREN and PROJECT_NAME OF CURRENT_PROJECTS

are independent multi-valued target expressions since they are connected to the perspective

class by two different multi-valued EVAs: CHILDREN and CURRET_PROJECTS.

In the structured tabular output of queries containing multi-valued target expressions, each

single-valued attribute of each entity in the perspective class is only shown on the first row

for that entity. Blank values for each single-valued attribute are displayed for all other

occurrences of multi-valued target expressions in subsequent rows. Table 1.3 illustrates an

example output for the example query described above. The query returns each value of the

single-valued attribute Last Name once for all the values in the dependent multi-valued

target attributes Project Number, Project Name, and First Name. Dependent multi-valued

target expressions, Project Number and Project Name, for each connected entity of class

Project are shown in each subsequent row. Since First Name is an independent entity of

Project Number and Project Name, each row of First Name is not correlated in any way to

the Project Number and Project Name rows.

12

Last Name Project Number Project Name First Name
Carlin 101 Camelot Billy

 102 Excalibur Ashley

 103 Galahad

Aquino 102 Camelot Corin

 103 Galahad Kirsten

Reinholtz 101 Camelot Charles

 Jeff

Table 1.3: Structured tabular output for a multi-valued retrieve
query

Insert Query Syntax

The Insert query is used to create new entities of a target class. Values and relationships to

the DVAs and EVAs respectively can also be assigned in the insert query.

INSERT perspective_class [FROM super_class WHERE
transferred_entity_filter_expression] (
assignment_expression,…);

assignment_expression:
 dva_name := dva_value
| eva_name := INCLUDE eva_target_class WITH
 (eva_filter_expression)

perspective_class The class of the entity to be created.

super_class The optional from clause is used to extend a pre-
existing entity of a super class into the
perspective class, which must be a sub class of
the super class. Extending a pre-existing entity
will preserve all the existing attributes from the

13

super class along with their values and add the
attributes of the sub class. The super class needs
not to be an immediate super class of the target
sub class. WDB will create any new entities of
intermediary classes between the super class and
the perspective sub class. If the target class has
more then one super classes, it will create any
required entities for those super classes.

transferred_entity_filter_expression Use this expression to specify which entities
from the super class to extend to the perspective
class. The syntax of this expression is the same as
the global filter expression of the WHERE clause
used in the RETRIEVE query.

assignment_expression The assignment expression is used to assign
values to the different attributes in the entity to
be created. Values can be assigned to both
immediate and extended attributes if the
perspective class is a sub class.

The expression syntax for DVAs are fairly
straight forward. The name of the immediate or
extended DVA . dva_name, is on the left side of
the assignment operator (:=) while the value to
be assignment , dva_value, is on the right side.
Similar to the filter expressions used in WHERE
clauses, the values must be formatted according
to the value type of the attribute.

For EVA assignments, the name of the EVA,
eva_name, is on the left side of the assignment
operator like the DVA. On the right side, the
eva_target_class is the target class from which
WDB will search for entities to establish a
relationship with the entity being created. The
EVA target class must either be the target class
of the EVA specified during its declaration or a
subclass of that target class. The
eva_filter_expression is used to qualify the entities of
the EVA target class for establishing the
relationship. The syntax for this filter expression
is the same as the filter expressions used in the

14

WHERE clauses of the RETRIEVE query.

Modify Query Syntax

The modify query alters attribute values in existing entities. The modify query can
alter the values of DVAs as well as add, remove, or replace the relationships in an
EVA.

MODIFY [LIMIT = ALL | limit_number] perspective_class (
assignment_expression,…) WHERE global_filter_expression

assignment_expression:
 dva_name := dva_value
| eva_name := [INCLUDE | EXCLUDE] eva_target_class WITH
 (eva_filter_expression)

limit_number The optional LIMIT clause is used to limit the

maximum number of elements that will be
altered by a MODIFY query. If that number is
exceeded, the query is rejected and the database
will be left unchanged. By default, the number of
1 is assigned to the LIMIT clause. Assigning the
value ALL will allow alterations to all the entities
that satisfies the global filter expression of the
WHERE clause.

perspective_class The class of the entity to be created.

super_class The optional from clause is used to extend a pre-
existing entity of a super class into the
perspective class, which must be a sub class of
the super class. Extending a pre-existing entity
will preserve all the existing attributes from the
super class along with their values and add the
attributes of the sub class. The super class needs
not to be an immediate super class of the target
sub class. WDB will create any new entities of
intermediary classes between the super class and
the perspective sub class. If the target class has
more then one super classes, it will create any
required entities for those super classes.

assignment_expression The assignment expression is almost identical to
the assignment expressions in the insert query

15

with the exception of the EVA assignment
expression.

By default, specifying new target entities for an
EVA with the EVA assignment expression will
replace any existing relationships. To add more
relationships to a multi-valued EVA, use the
INCLUDE keyword right after the assignment
operator. Any entities that match the EVA filter
expression will be added to the relationships
formed by that EVA. To remove relationships
from a multi-valued EVA, use the EXCLUDE
keyword. Any entities matching the EVA filter
expression will be removed from any existing
relationships formed by the EVA.

global_filter_expression This filter expression is identical to the filter
expression used the in WHERE clause of the
RETRIEVE query. Only entities matching the
filter will be altered.

16

C h a p t e r 2

USING WDB

This chapter will present some examples of using WDB for an example organization

database schema. The complete ODL and ER diagram of the schema is located in the

appendix for reference.

2.1 Defining Classes

This example defines the base class “Person” for the organization database.

Example 1

CLASS Person "Persons related to the company”
(
 person-id : INTEGER, REQUIRED;
 first-name : STRING, REQUIRED;
 last-name : STRING, REQUIRED;
 home_address : STRING;
 zipcode : INTEGER;
 home-phone "Home phone number (optional)" : INTEGER;
 us-citizen "U.S. citizenship status" : BOOLEAN, REQUIRED;

 spouse "Person's spouse if married" : Person, INVERSE IS

spouse;
 children "Person's children (optional)" : Person, MV

(DISTINCT), INVERSE IS parents;
 parents "Person's parents (optional)" : Person, MV (DISTINCT,

MAX 2), INVERSE IS children;
);

The first seven attributes are DVAs that contain basic information about the person. For

example, the class attribute “person-id” is a DVA that stores integer values. The

REQUIRED keyword means a valid value is required for each entity of this class. The last

three attributes are EVAs that reference other entities. The first EVA, “spouse”, is a single-

valued reflexive EVA that references other entities of its own class. Notice the inverse EVA

17

for “spouse” is also identified in this EVA definition. The last two EVAs, “children” and

“parents” are both multi-valued EVAs as indicated by the MV keyword. Notice that extra

integrity constraints, DISTINCT and MAX are also used to limit the entities those EVAs

can reference. Lastly, all comments are contained by double quotes.

The next example defines a sub-class “Employee” of the organization database.

Example 2

SUBCLASS Employee "Current employees of the company" OF Person
(
 employee-id "Unique employee identification" : INTEGER,

REQUIRED;
 salary "Current yearly salary" : INTEGER, REQUIRED;
 salary-exception "TRUE if salary can exceed maximum" : BOOLEAN;

 employee-manager "Employee's current manager" : Manager,

INVERSE IS employees-managing;
);

This sub-class definition extends a previously defined “Person” class. The “Employee” sub-

class will inherit all the attributes from the “Person” class. This sub-class defines three more

DVAs and one more EVA. The “employee-manager” EVA references entities of the

“Manager” class. Note that the target class, in this case “Manager,” does not need to be

defined before a referring EVA, in this case, “employee-manager”, is defined.

2.2 Inserting Entities

The following example adds a person into the organization database.

Example 1

INSERT Person (person-id := 1 , first-name := "Bill" , last-
name := "Dawer" , home_address:= "432 Hill Rd", zipcode :=
78705, home-phone := 7891903 , us-citizen := TRUE);

This basic INSERT statement adds an entity to the “Person” base class with attribute

assignments listed in the parentheses. Each of the assignment statements assigns a value on

the right hand side to the DVA identified on the left hand side of the assignment operator

18

(:=). Notice string values for STRING typed DVAs are enclosed in double quotes while

INTEGER and BOOLEAN values are not.

Example 2

INSERT Employee (person-id := 6 , first-name := "Susan" , last-
name := "Petro" , home_address:= "323 Country Lane", zipcode
:= 73421, home-phone := 6541238 , us-citizen := TRUE ,
employee-id:= 106,salary:= 70210, employee-manager := Manager
WITH (employee-id = 106));

This is another example of using the INSERT statement to add entities. However, this

example inserts an entity to the sub-class “Employee.” When adding new entities to a sub-

class, WDB will automatically create new entities for all the super-class of the inserted sub-

class. Values for both immediate and extended attributes can be supplied in the assignment

list when creating new sub-class entities. In this example, a new entity of the “Employee”

sub-class will be created along with the new entity for the “Person” super-class. Each entity

will be supplied with the appropriate values from the assignment list. Notice that the

employee-manager EVA will reference a Manager entity with employee-id 106.

Example 3

INSERT Employee FROM Person WHERE first-name = "Bill" AND last-
name = "Dawer" (employee-id:= 101,salary:= 70200, salary-
exception := TRUE);

In this example, an entity of the “Employee” sub-class is inserted from the super-class

“Person”. This statement will promote pre-existing entities of the class “Person” that satisfy

the conditions in the WHERE clause to entities of the “Employee” sub-class. The

immediate attributes in the newly promoted entity of the “Employee” sub-class will contain

values identified in the assignment list. Values can only be supplied for the immediate

attributes of the new “Employee” entity.

The super-class from which the new entity is inserted does not need to be an immediate

super-class of the inserted sub-class. If the entity being promoted does not exist in the levels

between the super-class in the FROM clause and the inserted sub-class, new entities will be

19

created automatically as part of the insert operation. In addition, if the inserted target sub-

class extends multiple super-classes, SIM will also create the entities for the other super-class

where appropriate.

2.3 Modifying Entities

The MODIFY statement can be used to add, alter, or delete attribute values from pre-

existing entities.

Example 1

MODIFY LIMIT = 1 Person (spouse := Person WITH (first-name =
"Bill" AND last-name = "Dawer")) WHERE first-name = "Alice"
AND last-name = "Dawer";

This example replaces the value of the spouse EVA to an entity from the “Person” base

class that satisfies the conditions in the WITH clause. The WHERE clause specifies which

entity will be altered, in this case, an entity of the “Person” class with first name of “Alice”

and last name of “Dawer.” The LIMIT clause is used to ensure that only one entity will be

altered by this statement even if more the one entity satisfies the WHERE clause.

Example 2

MODIFY Person (children := INCLUDE Person WITH((first-name =
"Bill" AND last-name = "Dawer") OR (first-name = "Alice" AND
last-name = "Dawer"))) WHERE first-name = "Mike" AND last-
name = "Dawer";

This MODIFY statement differs slightly than the one in Example 1 in that it’s modifying a

multi-valued EVA. The INCLUDE keyword in this example adds entities that satisfie the

condition in the WITH clause to any existing ones. If the INCLUDE keyword is not used,

the entities satisfying the WITH clause conditions will replace any existing referenced

entities. Using the INCLUDE statement when modifying single-valued EVAs will not alter

the modification process. Lastly, since a LIMIT clause is not specified, the default value of

one will be applied, meaning at most one entity will be altered by this statement.

20

Example 3

MODIFY Manager (spouse := Employee WITH (employee-id = 106))
WHERE first-name = "Henry" AND last-name = "Silverstone";

Lastly, this example illustrates the class hierarchy features of WDB. This MODIFY

statement alters the value of the inherited attribute “spouse” of an entity of class “Manager.”

The value of the “spouse” EVA is replaced by entities from the “Employee” class that

satisfy the conditions in the WITH clause. Since the class “Employee” is a sub-class of the

target class “Person” identified in the EVA definition, an “Employee” entity can take the

place of the corresponding “Person” entity. SIM checks that all entities being assigned to an

EVA are either an entity or a sub-class entity of the target class identified during EVA

definition.

2.4 Retrieving Entities

The RETRIEVE statement can be used to query the database for entities that satisfy certain

conditions.

Example 1

FROM Person RETRIEVE first-name, last-name WHERE TRUE;

This query will retrieve all entities of the “Person” base class and display the values of the

DVAs “first-name” and “last-name.” Other attribute values can also be displayed by adding

to the target list. The target list can include any immediate or inherited DVA. In addition, an

asterisk(*) can be used in the target list to display all immediate and inherited attribute values

of the perspective class. The output from the following two examples is the same.

Example 2

FROM Project RETRIEVE * WHERE TRUE;

Example 3

FROM Project RETRIEVE project-no, project-title WHERE TRUE;

21

The target list can also include extended attributes values from EVAs. However, they must

be qualified with the EVA name to show their relationship to the perspective class.

Example 4

FROM Person RETRIEVE *, first-name OF spouse OF children WHERE
TRUE;

This example retrieves all of the DVA values for all the “Person” entities along with the first

name of their children’s spouses. EVAs are traversed from right to left. In this case, the

EVA “children” is an immediate EVA of the class “Person”. The EVA “spouse” of all the

entities referenced by the “children” EVA are then traversed to retrieve the value of the

DVA “first-name.” When retriving extended values, only immediate and inherited DVA

values of the target class specified during the EVA definition can be retrieved. In Example 5,

an error is produced because the DVA “salary” is not a valid DVA for the target class

“Person” specified by the EVA definition in the “Person” class definition.

Example 5

FROM Person RETRIEVE *, salary OF spouse WHERE first_name =
"Henry" AND last_name = "Silverstone";

In addition, an asterisk(*) can also be used to retrieve all the immediate and inherited values

of an EVA traversed entity. In this example, the WHERE clause is used to filter for a

person named Henry Silverstone. In addition to immediate attributes like the ones used in

this example, inherited and extended attributes can also be used as filter criteria.

Example 6

FROM Manager RETRIEVE *, * of projects_managing WHERE TRUE;

Finally, the WHERE clause can also be used to filter the entities that will be returned by the

retrieve query. An entity will only be returned and displayed if the expression in the

WHERE clause evaluates to a Boolean true value. Example 7 shows an example that uses

immediate and inherited single-valued attributes.

22

Example 7

FROM Manager RETRIEVE * WHERE bonus = 200000 AND last-name =
“Silverstone”;

Since the DVAs “bonus” and “last-name” are immediate and inherited DVAs respectively,

no qualifications are needed.

Filters can also be based on extended EVA values. Qualifying extended attribute values are

similar to syntax used in target lists. If the EVA is single valued, then the behavior is similar

to filtering with DVAs. Example 8 illustrates filtering with single-valued EVAs. It displays all

entities of “Person” who has a spouse with the first name “Bill.”

Example 8

FROM Person RETRIEVE * WHERE first-name OF spouse = “Bill”;

For multi-valued EVAs, the condition is applied to all values of the EVA. If any one value

of the EVA satisfies the condition, a true value will be returned.

Example 9

FROM Person RETRIEVE * WHERE first-name of children = “Bill”;

This query will return any “Person” entity if the first name of some of their children is

“Bill.”

Example 10

FROM Person RETRIEVE * WHERE first-name OF children <> “Alice”;

Example 11

FROM Person RETRIEVE * WHERE NOT first-name OF children =
“Alice”;

Example 10 and 11 are equivalent queries that will return any “Person” entity if the first

name of some of their children is not “Alice.”

23

C h a p t e r 3

IMPLEMENTATION

The choice of implementing WDB in Java is mainly based on the object oriented nature of

Java, which is very similar to the Semantic Data Model (SDM). Many of the concepts in

SDM such as classes and entities can be directly translated to class and objects in Java. In

addition, since the SleepyCat database engine used in this project is also written in pure Java,

WDB could run on multiple platforms without any porting efforts.

The choice for using SleepyCat over Java Data Objects (JDO) as the persistence mechanism

lies in SleepyCat’s support for indexes and ACID transactions (ACID is defined later in this

chapter). The lack of support for indexes in JDO means that they must be implemented

with B-Trees explicitly in WDB. In addition, since most queries require modifications to

multiple Java objects, it is important to employ the ACID model so that the query is

executed reliably. Both of these requirements will add large level of complexity to WDB if

they are not available in the database engine. While JDO provided a query language called

JDOQL that makes retrieving objects easier then SleepyCat, it still required translation

between SIM’s OML and JDOQL.

This project considered two implementation approaches that utilize some unique features of

Java in very different ways.

3.1 Project Design

First Approach

In the first approach to design, we wish to take advantage of as much object oriented

features of Java as possible. Since the SleepyCat database engine directly stores serialized

Java objects, this approach aims to translate SDM classes into Java classes on the fly and

24

dynamically load them into WDB. WDB could then create new objects of these translated

classes and store them directly in the SleepyCat database engine. SDM attributes are

translated into Java properties in these generated classes and their values could be altered

using the reflection class in Java. This approach decreases the amount of storage overhead

needed by translating SDM classes to Java classes using a custom object generated on the fly

to store object data. In addition, the dynamically compiled Java classes generated based on

their SDM counterparts will implicitly perform type checking tasks without explicit coding.

Since SleepyCat does not allow retrieving all objects that match a partial key, an array stored

with a known permanent key will serve as the master index of defined classes in SleepyCat.

This allows WDB to randomly access a known class object as well as search through existing

classes. In addition, each transplanted class will maintain an array of keys to its instances so

they can be recalled when a RETRIEVE query is requested. The basic steps taken by this

approach are outlined below.

SDM Class Definition

1 Translate the SDM class into a Java class and write it out to a temporary Java file on

disk. DVAs in the SDM class are translated to public properties in the Java class with the

same type. EVAs in the SDM are translated into an array along with other properties to

store metadata information such as cardinality, inverse EVA, and other options.

2 Call the Java compiler on the local machine to generate a temporary class file.

3 Load the compiled class into the running program and store the class object in the

SleepyCat database with a key derived from the class name for quick retrieval. In

addition, update the master index with the key at which the class object is stored.

SDM Entity Creation

25

1 Load the compiled Java class object from SleepyCat and create a new instance of that

class.

2 Use the reflection class to assign values to the translated public properties.

3 Store the new object back to SleepyCat with a key derived from the class name and an

unique identifier. Update the instance list of the class with the key used to store the new

object.

Although this method offers many advantages in theory such as low overhead and implicit

type checking of attributes, actual implementation revealed many limitations:

• Performance Issues: Since each translated Java class needed to be compiled in the

background while running WDB, the user experiences a delay when defining new

classes for the first time. The delay could be substantial depending on the size of the

class being defined and the efficiency of the Java compiler installed. While caching

mechanisms could be used to speed up access to the compiled Java class after the

initial compilation, a compiling process is still required when the class definition is

updated such as the removal or addition of attributes. Additionally, since the objects

of these dynamically generated classes are stored in a serialized format in SleepyCat,

an updated class definition might not be compatible with the previous serialized

objects.

• Security Issues: Another side effect of dynamic compiling is security vulnerabilities.

A user could potentially modify the temporary generated Java file and insert

malicious code in the constructor that could lead to program crashes or deletion of

user data.

• Compatibility Issues: Lastly, the SDM offers some unique features that are not

part of the Java language. For example, SDM supports multiple inheritance where a

subclass could have multiple super classes. One way to simulate this unsupported

26

feature in Java is to wrap the dynamically generated objects inside of custom pre-

defined objects in SIM or add more metadata information inside of dynamic Java

classes. This approach will not take advantage of the inheritance and type casting

features in Java at all and adds additional overhead. On the other hand, the Java

language also contains certain limitations that will make the translation process

difficult and complex. For example, there is a hard limit for how many properties a

class can contain set by the Java compiler. However, SDM does not set a limit on

the number of attributes in a class to allow for scalability to large data sets. This

approach will thus hinder the scalability of WDB.

All these limitations and side effects prompted us to look for an alternative design that will

provide improved flexibility and scalability while reducing the security flaws and

performance issues.

Second Approach

Despite the high utilization of object oriented features of Java to implicitly implement many

analogous features of SDM, the first approach lacked the flexibility needed to fully

implement all the characteristics of SDM. In addition, the use of reflection classes and

dynamic class loaders added complexity to the project that could cause problems in future

debugging. The second approach is much simpler than the first since all classes are defined

statically at compile time instead of using dynamic compiles and loads. The generated Java

classes used in the first approach are replaced by a custom Java class that describes all

aspects of the SDM class such as name, attributes, comments, instance keys, etc. (more

details about this class is described in later sections). An instance of this class is created and

stored in SleepyCat for every new SDM class definition. This improves on overall query

processing performance by removing the translation step needed in the previous approach.

SDM entities are represented by another custom Java class that stores all the attribute values

and relationship connections. Like before, each object is assigned a unique identifier that is

stored in an array of keys to all instances of a particular SDM class. Additionally, inheritance

27

features of SDM are explicitly maintained through child key and parent key properties in the

custom SDM entity Java class.

This approach solves many problems encountered by the first approach. However, it

accomplishes this with a heavy toll on storage overhead. Since each Java object that

represents an SDM entity or class must contain properties to store metadata and methods to

manipulate those properties, the serialized size of these Java objects are much larger,

especially for simple SDM classes with few attributes. While this might become a problem

for production level databases, it should not pose a problem for this version of WDB since

it’s targeted for small prototype databases used for research and testing purposes.

3.2 WDB Architecture

WDB is built from many different modules made up by Java packages. Each module

performs a specific function in the overall data flow of the WDB database. The

modularization and encapsulation characteristics of WDB’s architecture provide the

flexibility for future expandability. For example, the SleepyCat module made up of data

adapter and database abstraction objects could be replaced with a relational SQL module to

use a relational database for data storage. Figure 2.2 illustrates the overall design of WDB’s

architecture. While the actual implementation resembles the model below, the separate

modules are not always so clearly separated.

28

Figure 3.1 SIM Architecture

Query Parser

To parse the Object Definition and Object Manipulation Languages described in the

previous chapter, we built a WDB parser using the Java parser generator, JavaCC. JavaCC

produces a top-down parser based on extended BNF grammar and regular expression lexical

specifications. The BNF specification is included in the appendix for reference. All ODL

and OML keywords such as INSERT and WHERE, as well as WDB identifiers such as class

and attribute names, are defined as case insensitive tokens in the parser. Only strings

enclosed in double quotes or single quotes will remain case sensitive. In addition,

underscores and hyphens in WDB identifiers are treated identically by converting all dashes

29

to underscores using lexical actions in the parser. Some points of the ODL such as DVA

and EVA assignment statements produced shift-shift ambiguities in the parser since both

statements appear the same until the fifth token. We were able to resolve this issue with the

syntactic and semantic look-ahead feature of JavaCC.

Expression trees are generated using the parse tree preprocessor for JavaCC called JJTree.

JJTree inserts parse tree building actions into the JavaCC source for a specific set of non-

terminals in the language. This implementation only uses JJTree to generate tree nodes for

the filter expressions used in the WHERE clauses. The expression tree produced by the

grammar specifications will ensure the correct order of operations when traversed.

The package “wdb.parser” makes up the parser module. The QueryParser object generated

by JavaCC communicates with the query driver with metadata objects created during the

parsing process. Each metadata object represents an ODL or OML statement and contains

all the information requested in the query. Most metadata objects that represent ODL

statements such as class definitions are often directly stored into the SleepyCat database

without any further processing. This preserves the original contents of the query so that it

can be reconstructed later. The main QueryParser object, along with the token manager and

expression tree objects, make up the parser module of SIM. Please refer to the appendix for

a complete listing of these parser classes.

Metadata Objects

As mentioned before, most metadata objects are used to communicate between the different

modules in WDB. Most of these classes such as RetrieveQuery, InsertQuery, and

ModifyQuery in the “wdb.metadata” package are nothing but public properties and getter

and setter methods used to pass information between the parser and the driver. Hence forth,

they do not persist across consecutive query statements. However, four classes serve a more

vital role in WDB’s architecture and are stored in SleepyCat for persistence: ClassDef,

SubclassDef, IndexDef, and WDBObject.

30

The ClassDef class represents SDM class and captures all the information about the class

such as name, comments, attribute names, types, indexes, etc. However, it also houses many

important methods that operate on all entity instances of that class. One important such

method is the search method. The search method first examines the RETRIEVE query

against the list of defined indexes for that class. If it found a useable index, it will use them

to access the entities in the SleepyCat database. Similarly, the SubclassDef class extends

ClassDef and represents SDM sub class definitions. It adds properties and methods for

handling super class information. These classes also maintain an array of identifiers to all the

entities that are instances of the SDM class they represent. This allows for iterations through

all entities of a particular SDM class for searches. Both of these classes are often stored

directly into the SleepyCat database after their creation by the parser.

Another data definition class, IndexDef, represents WDB index statements. An instance of

the IndexDef stores all information about the index statement including its name, target

class, attributes to index, etc. Each instance of IndexDef is stored in the SleepyCat database

for later retrieval during searches. In addition, just after the IndexDef object is stored,

secondary SleepyCat databases and key generators are also created that correspond to the

attributes to index. This allows WDB to take advantage of the inherent indexing features

present in SleepyCat.

Finally, the WDBObject class represents SDM entities. They use array properties to store

the attribute values as well as methods to set and retrieve the attributes for each SDM entity.

In addition, it also maintains referential integrity of any EVA relationships. Each

WDBObject instance contains a unique identifier that is used to reference other instances in

EVA and hierarchy relationships. The WDBObject class represents all SDM entities, even if

they are for different SDM classes. While the WDBObject class contains information about

what SDM class a given instance belongs to, it does not contain any information about the

structure of the SDM class itself. That information must be obtained from ClassDef or

SubclassDef objects that represents the SDM class.

31

Query Driver

The query driver is the heart of the WDB database system. The driver class, wdb, is not only

the entry point for the database program, it also sets up the SleepyCat database and

initializes the parser for input from standard in. When metadata objects are received from

the parser after a successful parse, the driver is responsible for interpreting the metadata

objects and executing the appropriate actions against the SleepyCat database adapter. In

addition, it is also responsible for building the entity trees used for output to standard out

from entities returned by the RETRIEVE query. In the current implementation, the query

driver merely executes queries and passes on the appropriate metadata object without any

optimization of the original queries other then using indexes where possible. While this is

not a problem for the small databases encountered in this research project, a query optimizer

is essential for efficient use of indexes and RETRIEVE queries. Lastly, the driver also

maintains an array of all objects stored in the SleepyCat database as a master index of all the

SDM classes, entities, and indexes. This array is also stored in SleepyCat with a well-defined

method for retrieval and updating.

Database Adapter

The SleepyCat database adapter class, SleepyCatDataAdapter, is mainly used to abstract the

serialization and de-serialization procedures when storing and retrieving metadata objects

from the SleepyCat database. In addition, each instance of the adapter object also represents

an ACID transaction against the SleepyCat database. Characteristics of ACID are as follows:

• Atomicity: All modifications made though an adapter will either all be executed or

none will be executed.

• Consistency: If any operation violates consistency checks or produces an error while

using the adapter, all previous modifications will be rolled back to their states before

the transaction.

32

• Isolation: Operations against different adapters will be independent from each other.

Although this is not a problem for this version of WDB since it is still a single user,

single threaded application, it allows for simple implementation of multi-threaded

capabilities in the future.

• Durability: Once the adapter is committed after all necessary operations, it ensures

that all changes will not be lost even if software or hardware failures are

encountered.

The database adapter is also responsible for generating keys for all the objects stored in the

SleepyCat database. The keys are just strings that contain the name, such as in the case of

ClassDef or IndexDef objects or the SDM class name and the unique identifier in the case

of WDBObject objects. The database adapter uses these keys to retrieve these objects back

from the SleepyCat database when requested by the query driver.

Database Abstraction Layer

Lastly, the database abstraction layer made up by the SleepyCatDatabase and SleepyCatEnv

classes provide handles for the SleepyCat database and transaction objects to the adapter

object. In addition, it maintains any secondary databases and keys used by indexes as well as

class catalogs to perform serialization tasks.

33

C h a p t e r 4

COMPARISON AND CONCLUSION

By capturing more information about the meaning of data, WDB promises to improve on

some of the weaknesses of the relational data model. This chapter will look at some

comparative example queries in WDB and in SQL and conclude if WDB alleviated some of

the problems with the relational data model.

4.1 Comparing WDB against SQL

WDB holds two major advantages over relational models. Inheritance features available in

WDB avoid multiple tables and complicated foreign keys required in SQL. For instance, in

the example organization schema, the subclass “manager” extends subclass “employee”

which also extends the base class “person.” To build this hierarchical structure in WDB, one

only needs to define these three classes with the appropriate superclasses with the OF

clause. The ODL required to define these classes is shown below. The equivalent SQL DDL

for the Adjacency List Model for storing hierarchical data in relational databases is also

included for comparison. Note the attribute definitions are omitted for length.

Define a basic hierarchical structure with three classes

WDB:

CLASS Person "Persons related to the company"
(…);
SUBCLASS Employee "Current employees of the company" OF Person
(…);
SUBCLASS Manager "Managers of the company" OF Employee
(…);

SQL:

CREATE TABLE Person

34

(id INTEGER PRIMARY KEY, …);
CREATE TABLE Employee
(id INTEGER PRIMARY KEY,
 person_id INTEGER PRIMARY KEY, …);
CREATE TABLE Manager
(id INTEGER PRIMARY KEY,
 employee_id INTEGER PRIMARY KEY, …);

To maintain the hierarchical structure in the flat tables of the relational model, foreign keys

and extra primary keys must be defined in the SQL DDL. These extra requirements make

the SQL schema much more complicated then the WDB schema while not adding any

addition information about the data. In addition, the relationship between these tables is not

evident unless the user creates meaningful foreign key names. Lastly, referential integrity of

the foreign keys must be specified explicitly if the relational DBMS supports such features.

This increases the possibility for update anomalies when foreign keys no longer reference a

valid primary key.

Due to the use of foreign keys in relational databases, inserting data is much more

complicated and less efficient as WDB. Since the relational models use separate tables to

represent an object with inherited attributes, multiple insert statements are required for each

of the inherited tables. The example below shows the insert statements for WDB and SQL.

Insert a new manager “Henry Silverstone”

WDB:

INSERT Manager (person-id := 8, first-name := “Henry”, last-name
:= “Silverstone”, salary :=570201, bonus := 200000, …);

SQL:

INSERT INTO Person (id, first-name, last-name, …) VALUES (8,
‘Henry’, ‘Silverstone’, …);
INSERT INTO Employee (id, person_id, salary, …) VALUES (2, 8,
570201, …);
INSERT INTO Manager (id, employee_id, bonus, …) VALUES (1, 2,
200000, …);

35

As the example shows, not only are three separate SQL insert statements required, the

primary keys for each table must also be correlated between the insert statements. In

addition, if the SQL server instead of the application generates the primary keys, separate

select statements are also required to retrieve the primary keys for the newly inserted tuples.

Another benefit of WDB worthy of noting is that when inserting a sub class entity, both

immediate and inherited attribute values may be assigned with no knowledge of the class

those attribute actually reside. In the case of the SQL insert statements, the user must know

in which table a specific attribute is defined.

Another case where WDB is much more efficient than relational models is promoting an

entity to another sub class. To accomplish the same task in SQL, a select statement is

required to look up the primary key of the existing tuple before inserting the new tuple. The

example shows such a case.

Promoting employee “Bill Dawer” to be a manager

WDB:

INSERT Manager FROM Employee WHERE first_name = “Bill” AND
last_name = “Dawer” (bonus:= 10000);

SQL:

SELECT id FROM Employee LEFT JOIN Person ON Employee.person_id =
Person.id WHERE Person.first_name = “Bill” AND Person.last_name =
“Dawer”;

INSERT INTO Manager (id, employee_id, bonus) VALUES (3,
$ID_FROM_SELECT, 10000);

For retrieving hierarchical data, WDB’s ability to better capture the meaning of the data

avoids lengthy SQL joins required by relational DMBSs. This not only streamlines the

queries but also increases query efficiency. The example queries below illustrate the length of

36

each query. The example SQL query assumes the SQL schema defined in the example

above.

Print all information about the president

WDB:

FROM president RETRIEVE * WHERE TRUE;

SQL:

SELECT * FROM president
LEFT JOIN manager ON president.manager_id = manager.id
LEFT JOIN employee ON manager.employee_id = employee.id
LEFT JOIN person ON employee.person_id = person.id
WHERE TRUE;

Another advantage WDB holds over SQL is its ability to form relationships between entities

while maintaining referential integrity. This is often done in relational models with joins on

foreign keys and additional constraints. Both of these requirements add to the length of

queries and management complexity. The example queries below illustrate this point.

Print all departments, and all the projects the department managers are managing if

the department manager has the last name “Dawer”.

WDB:

FROM department RETRIEVE *, project_title OF projects_managing
OF dept_managers WHERE last_name OF dept_managers = “Dawer”;

SQL:

SELECT department.*, projects.title FROM department
INNER JOIN manager ON department.id = manager.manager_dept
INNER JOIN project ON manager.id = project.project_manager
INNER JOIN employee ON manager.employee_id = employee.id
INNER JOIN person ON employee.person_id = person.id
WHERE person.last_name = “Dawer”;

37

4.2 Conclusion

This paper presents an overview of SDM in Chapter 1. It explains the essence of SDM and

how it captures the meaning of data. In addition, it also explains how WDB uses the features

of SDM such as class definitions and hierarchies, entities, relationships between the entities,

and referential integrity constraints. In addition, the syntax of the object definition and

object manipulation languages used by WDB are also outlined for easy reference. In chapter

2, the use of WDB is illustrated with examples from the organization schema. Chapter 3

provide details on the implementation of WDB in Java along with the design, data

structures, and the architecture within WDB. Lastly, Chapter 4 compares WDB to the SQL

relational database model.

This project shows that WDB could be very useful for any application where complex

relationships and constraints exist between data entities. Other uses for WDB would be in

applications where flexible data models are needed since WDB provides both hierarchical

and relational modeling support.

38

REFERENCES

Boyed Saurabh.
 A Semantic Database Management System: SIM.
 University of Texas at Austin, 2003.

Hammer, Michael and McLeod, Dennis
 The Semantic Data Model: A Modeling Mechanism for Data Base Applications
 ACM Press, 1978

InfoExec Semantic Information Manager (SIM) Object Definition Language (ODL) Programming Guide.
 Unisys, 1998.

InfoExec Semantic Information Manager (SIM) Object Manipulation Language (OML).
 Unisys, 1998.

Kruszelnicki, Jacek
 Persist Data With Java Data Objects
 Java World, 2002

Tolbert, Doug.
 SIM: Origins and Evolution.
 Unisys, 1998.

 39

APPENDIX A: SAMPLE ORGANIZATION SCHEMA

// Organization Schema

//Person

CLASS Person "Persons related to the company"
(
 person-id : INTEGER, REQUIRED;
 first-name : STRING, REQUIRED;
 last-name : STRING, REQUIRED;
 home_address : STRING;
 zipcode : INTEGER;
 home-phone "Home phone number (optional)" : INTEGER;
 us-citizen "U.S. citizenship status" : BOOLEAN, REQUIRED;

 spouse "Person's spouse if married" : Person, INVERSE IS
spouse;
 children "Person's children (optional)" : Person, MV(DISTINCT),
INVERSE IS parents;
 parents "Person's parents (optional)" : Person, MV (DISTINCT,
MAX 2), INVERSE IS children;
);

// Persons with person-id 1 to 5 created

INSERT Person (person-id := 1 , first-name := "Bill" , last-
name := "Dawer" , home_address:= "432 Hill Rd", zipcode :=
78705, home-phone := 7891903 , us-citizen := TRUE);

INSERT Person (person-id := 2 , first-name := "Diane" , last-
name := "Wall" , home_address:= "32 Cannon Dr", zipcode :=
78705, home-phone := 7891903 , us-citizen := TRUE);

INSERT Person (person-id := 3 , first-name := "Jennifer" ,
last-name := "Brown" , home_address:= "35 Palm Lane", zipcode :=
73014, home-phone := 2360884 , us-citizen := TRUE);

INSERT Person (person-id := 4, first-name := "Alice" , last-
name := "Dawer" , home_address:= "432 Hill Rd", zipcode :=
78021, home-phone := 6541658 , us-citizen := FALSE);

INSERT Person (person-id := 5 , first-name := "George" , last-
name := "Layton" , home_address:= "347 Nueces St", zipcode :=
78705, home-phone := 8798798 , us-citizen := TRUE);

 40

INSERT Person (person-id := 9 , first-name := "Mike" , last-
name := "Dawer" , home_address:= "432 Hill Rd", zipcode :=
78705, home-phone := 7891903 , us-citizen := TRUE);

//Finally person-id 1 to 9 People

//Employee

SUBCLASS Employee "Current employees of the company" OF Person

(
 employee-id "Unique employee identification" : INTEGER,
REQUIRED;
 salary "Current yearly salary" : INTEGER, REQUIRED;
 salary-exception "TRUE if salary can exceed maximum" : BOOLEAN;

 employee-manager "Employee's current manager" : Manager,
INVERSE IS employees-managing;
);

// Person with person-id 1, 2, and 5 made employee

INSERT Employee FROM Person WHERE first-name = "Bill" AND last-
name = "Dawer" (employee-id:= 101,salary:= 70200, salary-
exception := TRUE);

INSERT Employee FROM Person WHERE person-id = 2 (employee-id:=
102,salary:= 80210, salary-exception := FALSE);

INSERT Employee FROM Person WHERE person-id = 5 (employee-id:=
105,salary:= 70201, salary-exception := FALSE);

// Persons with person-id 6 to 7 created and made Employee

INSERT Employee (person-id := 6 , first-name := "Susan" , last-
name := "Petro" , home_address:= "323 Country Lane", zipcode :=
73421, home-phone := 6541238 , us-citizen := TRUE , employee-
id:= 106,salary:= 70210);

INSERT Employee (person-id := 7 , first-name := "Steven" ,
last-name := "Williams" , home_address:= "3 Seton St", zipcode
:= 78705, home-phone := 8798712 , us-citizen := FALSE ,
employee-id:= 107,salary:= 70210);

// Finally person-id 1, 2, 3, 5, 6 , 7 and 8 are Employee

// Project-Employee

 41

SUBCLASS Project-Employee "Employees who are project team
members" OF Employee
(
 current-projects "currentproject of employee" : Current-
Project, MV (DISTINCT, MAX 6), INVERSE IS project-members;
);

// Person with Person-id 1, 2, 5, 6 and 7 made Project-Employee

INSERT Project-Employee FROM Employee WHERE employee-id = 101 ()
;

INSERT Project-Employee FROM Employee WHERE employee-id = 102 ()
;

INSERT Project-Employee FROM Person WHERE person-id = 3
(employee-id:= 103,salary:= 80210) ;

INSERT Project-Employee FROM Employee WHERE employee-id = 106 ()
;

INSERT Project-Employee FROM Employee WHERE employee-id = 107 ()
;

// Finally person-id 1, 2, 3, 6 and 7 are Project-Employee

//Manager

SUBCLASS Manager "Managers of the company" OF Employee
(
 bonus "Yearly bonus, if any" : INTEGER;
 employees-managing "Employees reporting to manager" : Employee,
MV, INVERSE IS employee-manager;

 projects-managing "Projects responsible for" : Project, MV, INVERSE IS project-manager;
 manager-dept "Department to which manager belong" : Department,
INVERSE IS dept-managers;
);

// Persons with person-id 8 created and made Employee and Manager

INSERT Manager (person-id := 8 , first-name := "Henry" , last-
name := "Silverstone" , home_address:= "100 Gates St", zipcode
:= 70007, home-phone := 4565404 , us-citizen := TRUE ,employee-
id:= 108,salary:= 570201 , bonus:= 200000);

// Persons with person-id 1 made Manager

INSERT Manager FROM Employee WHERE employee-id = 101 (bonus:=
10000);

 42

// Finally person-id 1 , 7 and 8 are Project-Employee

// Interim-Manager

SUBCLASS Interim-Manager "Employees temporarily acting as a
project employee and a manager" OF Manager AND Project-
Employee();

// Person with Person-id 1 and 7 made Interim-Manager.
// Note 7 will be automatically made manager

INSERT Interim-Manager FROM Manager WHERE employee-id = 101 ();

INSERT Interim-Manager FROM Employee WHERE employee-id = 107 ();

// Finally person-id 1 and 7

// President

SUBCLASS President "Current president of the company" OF
Manager();

// Persons with person-id 8 made President

INSERT President FROM Person WHERE first-name = "Henry" AND
last-name = "Silverstone" ();

// Finally person-id 8

// Previous-Employee

SUBCLASS Previous-Employee "Past employees of the company" OF
Person
(
 IsFired : BOOLEAN ;
 salary "Salary as of termination" : INTEGER, REQUIRED;
);

// Persons with person-id 4 created and made Previous-Employee

INSERT Previous-Employee FROM Person WHERE person-id = 4 (
salary:= 50500) ;

 43

// Project

CLASS Project "Current and completed Projects"
(
 project-no "Unique project identification" : INTEGER, REQUIRED;
 project-title "Code name for project" : STRING [20], REQUIRED;
 project-manager "Current project manager" : Manager, INVERSE IS
projects-managing;
 dept-assigned "Responsible department" : Department, SV,
INVERSE IS project-at;
 sub-projects "Component projects, if any" : Project, MV,
INVERSE IS sub-project-of;
 sub-project-of "Master project, if any" : Project, INVERSE IS
sub-projects;
);

INSERT Project(project-no:= 701 ,project-title := "Mission
Impossible");

INSERT Project(project-no:= 702 ,project-title := "Code Red");

INSERT Project(project-no:= 703 ,project-title := "Desert
Rose");

INSERT Project(project-no:= 704 ,project-title := "Hallo");

INSERT Project(project-no:= 705 ,project-title := "Stick And
Fly");

INSERT Project(project-no:= 706 ,project-title := "Night
Rider");

// Current-Project

SUBCLASS Current-Project "Projects currently in progress" OF
Project
(
 project-active "Whether project has been started" : BOOLEAN,
REQUIRED;
 project-members "Current employees on project" : Project-
Employee, MV (DISTINCT, MAX 20), INVERSE IS current-projects;
);

 44

INSERT Current-Project FROM Project WHERE project-title =
"Mission Impossible"(project-active := TRUE);

INSERT Current-Project FROM Project WHERE project-title =
"Hallo"(project-active := FALSE);

INSERT Current-Project FROM Project WHERE project-title = "Stick
And Fly"(project-active := TRUE);

INSERT Current-Project FROM Project WHERE project-title = "Night
Rider"(project-active := TRUE);

// Previous-Project

SUBCLASS Previous-Project "Completed Projects" OF Project
(
 end-date-month "Date project completed month" : INTEGER;
 end-date-day "Date project completed day" : INTEGER;
 end-date-year "Date project completed year" : INTEGER;
 est-person-hours "Estimated hours to complete" : INTEGER;
);

INSERT Previous-Project FROM Project WHERE project-title = "Code
Red"(est-person-hours := 2000,end-date-month := 1, end-date-day
:= 6 , end-date-year := 1999);

INSERT Previous-Project FROM Project WHERE project-title =
"Desert Rose"(est-person-hours := 1300,end-date-month := 5, end-
date-day := 3 , end-date-year := 1997);

// Department

CLASS Department "Departments within the company"
(
 dept-no "Corporate department number" : INTEGER, REQUIRED;
 dept-name "Corporate department name" : STRING [20], REQUIRED;
 project-at "Projects worked on at this department" : Project ,
INVERSE IS dept-assigned, MV (DISTINCT);
 dept-managers "Managers for this department" : Manager, MV,
INVERSE IS manager-dept;
);

INSERT Department(dept-no:= 501 ,dept-name := "Purchasing");

INSERT Department(dept-no:= 502 ,dept-name := "Sales");

 45

INSERT Department(dept-no:= 503 ,dept-name := "Marketing");

INSERT Department(dept-no:= 504 ,dept-name := "R&D");

INSERT Department(dept-no:= 505 ,dept-name := "Accounting");

// EVA Relationship

MODIFY LIMIT = 1 Person (spouse := Person WITH (first-name =
"Bill" AND last-name = "Dawer")) WHERE first-name = "Alice"
AND last-name = "Dawer";

MODIFY Person (children := INCLUDE Person WITH((first-name =
"Bill" AND last-name = "Dawer") WHERE first-name = "Mike" AND
last-name = "Dawer" ;

MODIFY LIMIT = ALL Employee (employee-manager := Manager
WITH(first-name = "Bill" AND last-name = "Dawer")) WHERE
employee-id = 102 OR employee-id = 106;

MODIFY LIMIT = ALL Employee (employee-manager := Manager
WITH(first-name = "Steven" AND last-name = "Williams")) WHERE
employee-id = 103 OR employee-id = 105;

MODIFY LIMIT = ALL Employee (employee-manager := Manager
WITH(first-name = "Henry" AND last-name = "Silverstone")) WHERE
employee-id = 101 OR employee-id = 107;

MODIFY LIMIT = ALL Employee (employee-manager := Manager
WITH(first-name = "Henry" AND last-name = "Silverstone")) WHERE
employee-id = 101 OR employee-id = 107;

MODIFY LIMIT = ALL Project-Employee(current-projects := INCLUDE
Current-Project WITH (project-title = "Mission Impossible"))
WHERE person-id = 7 OR person-id = 3 OR person-id = 2 OR
employee-id = 106 OR person-id = 1;

MODIFY LIMIT = ALL Project-Employee(current-projects := INCLUDE
Current-Project WITH (project-title = "Stick And Fly")) WHERE
person-id = 3 OR person-id = 7 OR person-id = 106;

MODIFY LIMIT = ALL Project-Employee(current-projects := INCLUDE
Current-Project WITH (project-title = "Night Rider")) WHERE
person-id = 2 OR person-id = 1 OR person-id = 7;

MODIFY Manager (projects-managing := INCLUDE Project WITH(
project-title = "Mission Impossible" OR project-title = "Night

 46

Rider"), manager-dept := Department WITH (dept-name = "Sales"))
WHERE employee-id = 101;

MODIFY Manager (projects-managing := INCLUDE Project WITH(
project-title = "Stick And Fly" OR project-title = "Code Red"
OR project-title = "Desert Rose" OR project-title = "Hallo"),
manager-dept := Department WITH (dept-name = "R&D")) WHERE employee-id = 107;

MODIFY Manager (manager-dept := Department WITH (dept-name =
"Sales")) WHERE employee-id = 108;

MODIFY Department (project-at := INCLUDE Project WITH (project-
title = "Mission Impossible" OR project-title = "Night
Rider")) WHERE dept-name = "Sales";

MODIFY Department (project-at := INCLUDE Project WITH (project-
title = "Stick And Fly" OR project-title = "Code Red" OR
project-title = "Desert Rose" OR project-title = "Hallo"))WHERE
dept-name = "R&D";

MODIFY Project (sub-projects := INCLUDE Project WITH (project-
title = "Stick And Fly" OR project-title = "Desert Rose"))
WHERE project-title = "Code Red";

 47

APPENDIX B: BNF FOR SIM PARSER

NON-TERMINALS

Start ::= QueryText
 | <EOF>
 | <QUIT>
QueryText ::= Class
 | Subclass
 | Insert
 | Retrieve
 | Source
 | Index
 | Modify
Class ::= <CLASS> (getIdentifier | getLString) (

getQString)* <LP> (Attrs)* <RP> <SC>
Subclass ::= <SUBCLASS> (getIdentifier | getLString) (

getQString)* Parents <LP> (Attrs)* <RP>
<SC>

Insert ::= <INSERT> (getIdentifier | getLString) (
<FROM> getIdentifier <WHERE>
getExpression)? <LP> (Assignments (
<COMMA> Assignments)*)? <RP> <SC>

Retrieve ::= <FROM> (getIdentifier | getLString)
<RETRIEVE> AttributePath (<COMMA>
AttributePath)* <WHERE> getExpression
<SC>

Source ::= <SOURCE> (getQString) <SC>
Index ::= <INDEX> (getIdentifier) (getQString)? <ON>

(getIdentifier) <LP> (getIdentifier (
<COMMA> getIdentifier)*) <RP> (
<UNIQUE>)? <SC>

Modify ::= <MODIFY> (<LIMIT> <EQ> (getInteger |
<ALL>))? (getIdentifier | getLString) <LP>
(Assignments (<COMMA> Assignments)*)?
<RP> <WHERE> getExpression <SC>

AttributePath ::= (getIdentifier (<LB> getInteger <RB>)? |
<ASTERISK>) (<OF> getIdentifier (<OF>
getIdentifier)*)?

Assignments ::= DvaAssign

 48

 | EvaAssign
DvaAssign ::= getIdentifier (<LB> getInteger <RB>)? <ASSN>

(getBoolean | getQString | getInteger)
EvaAssign ::= getIdentifier <ASSN> (<INCLUDE> |

<EXCLUDE>)? (getIdentifier | getLString)
<WITH> <LP> getExpression <RP>

Parents ::= <OF> (getIdentifier | getLString) (<AND> (
getIdentifier | getLString))*

Attrs ::= Dva
 | Eva
Dva ::= getIdentifier (getQString)? <COLON> getType (

<LB> getInteger <RB>)? ((<COMMA>)?
DvaOptions)* <SC>

DvaOptions ::= <INITIALVALUE> (getQString | getInteger |
getBoolean)

 | <REQUIRED>
Eva ::= getIdentifier (getQString)? <COLON> (

getIdentifier | getLString) ((<COMMA>)?
EvaOptions)* <SC>

EvaOptions ::= <SV>
 | <MV> (<LP> EvaMultivaluedOptions (

<COMMA> EvaMultivaluedOptions)* <RP>
)?

 | <REQUIRED>
 | <INVERSE> getIdentifier
EvaMultivaluedOptions ::= <DISTINCT>
 | <MAX> getInteger
getExpression ::= OrExpression
OrExpression ::= AndExpression (<OR> OrExpression)?
AndExpression ::= UnaryExpression (<AND> AndExpression)?
UnaryExpression ::= BoolExpression
 | NotExpression
NotExpression ::= <NOT> BoolExpression
BoolExpression ::= <LP> OrExpression <RP>
 | CondExpression
 | TrueExpression
 | FalseExpression
CondExpression ::= getAbsoluteAttributePath getQuantifier (

getBoolean | getQString | getInteger)
getAbsoluteAttributePath ::= (getIdentifier (<LB> getInteger <RB>)?) (

<OF> getIdentifier (<COMMA> <OF>
getIdentifier)*)?

 49

TrueExpression ::= <TRUE>
FalseExpression ::= <FALSE>
getQuantifier ::= <EQ>
 | <NEQ>
 | <GT>
 | <LT>
 | <GTE>
 | <LTE>
getType ::= <INT>
 | <REAL>
 | <CHAR>
 | <BOOLEAN>
 | <STRING>
getIdentifier ::= <IDENTIFIER>
getLString ::= <LSTRING>
getQString ::= <QSTRING>
getInteger ::= <INTEGER>
getBoolean ::= <TRUE>
 | <FALSE>

50

APPENDIX C: JAVA CLASS STRUCTURE

Class Hierarchy

• java.lang.Object

o wdb.metadata.Assignment (implements java.io.Serializable)
 wdb.metadata.DvaAssignment
 wdb.metadata.EvaAssignment

o wdb.metadata.Attribute (implements java.io.Serializable)
 wdb.metadata.DVA
 wdb.metadata.EVA

o wdb.metadata.AttributePath (implements java.io.Serializable)
o wdb.metadata.IndexSelectResult
o wdb.parser.JJTQueryParserState
o wdb.metadata.PrintCell
o wdb.metadata.PrintNode
o wdb.metadata.Query

 wdb.metadata.ClassDef (implements java.io.Serializable)
• wdb.metadata.SubclassDef

 wdb.metadata.IndexDef (implements java.io.Serializable)
 wdb.metadata.RetrieveQuery
 wdb.metadata.SourceQuery (implements java.io.Serializable)
 wdb.metadata.UpdateQuery

• wdb.metadata.InsertQuery
• wdb.metadata.ModifyQuery

o wdb.parser.QueryParser (implements wdb.parser.QueryParserConstants,
wdb.parser.QueryParserTreeConstants)

o wdb.parser.QueryParser.JJCalls
o wdb.parser.QueryParserTokenManager (implements

wdb.parser.QueryParserConstants)
o wdb.parser.SimpleCharStream
o wdb.parser.SimpleNode (implements wdb.parser.Node, java.io.Serializable)

 wdb.parser.And
 wdb.parser.Cond
 wdb.parser.False
 wdb.parser.Not
 wdb.parser.Or
 wdb.parser.Root
 wdb.parser.True

51

o wdb.SleepyCatDataAdapter
o wdb.SleepyCatDataBase
o wdb.SleepyCatDbEnv
o wdb.SleepyCatKeyCreater (implements

com.sleepycat.je.SecondaryKeyCreator)
o java.lang.Throwable (implements java.io.Serializable)

 java.lang.Error
• wdb.parser.QueryParser.LookaheadSuccess
• wdb.parser.TokenMgrError

 java.lang.Exception
• wdb.parser.ParseException

o wdb.parser.Token
o wdb.WDB
o wdb.metadata.WDBObject (implements java.io.Serializable)

Interface Hierarchy

• wdb.parser.Node
• wdb.parser.QueryParserConstants
• wdb.parser.QueryParserTreeConstants

