
Call Graph Correction Using Control Flow Constraints

by

Kevin Resnick

Thesis

Presented to the Faculty of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Bachelor of Science

The University of Texas at Austin

May 2006

Acknowledgments

This thesis represents joint work with Byeongcheol Lee, Mike Bond, and Prof.

Kathryn McKinley. Byeongcheol’s contributions are the design and implementa-

tion of the call graph correction algorithms and the FDOM (frequency dominator)

computation algorithms for general control flow graph. I would like to thank my su-

pervisor Kathryn McKinley for advising this research. This accomplishment would

be not be possible without the valuable advice from Mike.

I would like to thank Prof. Calvin Lin and Prof. Emmett Witchel for re-

viewing this thesis. I thank Xianglong Huang, Robin Garner, David Grove, and

Matthew Arnold for help with Jikes RVM and the benchmarks. I thank Jennifer

Sartor and Curt Reese for their helpful suggestions for improving the paper.

ii

Call Graph Correction Using Control Flow Constraints

Kevin Resnick, B.S.

The University of Texas at Austin, 2006

Supervisor: Prof. Kathryn S. McKinley

Dynamic optimizers for object-oriented languages collect a variety of profile

data to drive optimization decisions. In particular, the dynamic call graph (DCG)

informs key structural optimizations such as which methods to optimize and how

to optimize them. Unfortunately, current low-overhead call-stack hardware and

software sampling methods are subject to sampling bias, which loses accuracy of 40

to 50% when compared with a perfect call graph.

This paper introduces DCG correction, a novel approach that uses static and

dynamic control-flow graphs (CFGs) to improve DCG accuracy. We introduce the

static frequency dominator (FDOM) relation, which extends the dominator relation

on the CFG to capture relative execution frequencies and expose static constraints

on DCG edges, which we use to correct DCG edge frequencies. Using conservation

of flow principles, we further show how to use dynamic CFG basic block profiles to

correct DCG edge frequencies intraprocedurally and interprocedurally.

iii

We implement and evaluate DCG correction in Jikes RVM on the SPEC

JVM98 and DaCapo benchmarks. Default DCG sampling attains an average accu-

racy of 52–59% compared with perfect, whereas FDOM correction improves average

accuracy to 64–68%, while adding 0.2% average overhead. The dynamic correction

raises accuracy to 85% on average, while adding 1.2% average overhead. We then

provide dynamically corrected DCGs to the inliner with mixed results—1% average

degradations and improvements across a variety of configurations. However, prior

work shows that increased DCG accuracy in production VMs has benefits. We be-

lieve that high-accuracy DCGs will become more important in the future as the

complexity and modularity of object-oriented programs increases.

iv

Contents

Acknowledgments ii

Abstract iii

Chapter 1 Introduction 1

Chapter 2 Background and Related Work 5

2.1 Using and Collecting Dynamic Call Graphs 5

2.2 The Dominator Relation and Strong Regions 7

2.3 Constructing the DCG using Control-Flow Information 8

Chapter 3 Call Graph Correction Algorithms 9

3.1 Terminology . 9

3.2 The Frequency Dominator (FDOM) Relation 11

3.3 Static FDOM Correction . 12

3.4 Dynamic Basic Block Profile Constraints 13

3.5 Dynamic Basic Block Profile Correction 16

3.6 Implementing Online DCG Correction 19

Chapter 4 Computing FDOM 21

4.1 General Control Flow Graphs . 21

4.2 Reducible Control Flow Graphs . 24

v

Chapter 5 Methodology 33

Chapter 6 Results 36

6.0.1 Accuracy . 36

6.0.2 Overhead . 38

6.0.3 Performance . 38

Chapter 7 Conclusion 42

Bibliography 43

vi

Chapter 1

Introduction

Dynamic optimizers for object-oriented languages ameliorate the overhead of online

compilation by detecting and optimizing the most frequently executed hot methods.

To detect hot methods and call edges, dynamic optimizers use hardware or software

call-stack sampling to build a dynamic call graph (DCG) and selectively target op-

timizations. A key optimization for these systems is method inlining because well

designed object-oriented programs achieve reusability, reliability, and maintainabil-

ity by decomposing functionality into many small methods, and virtual dispatch

obscures the hot target. Inlining exposes opportunities for other optimizations and

decreases call overhead, but inlining must be applied judiciously because it also in-

creases code size and compilation time. Good decisions depend on the accuracy of

the DCG.

Dynamic optimizers trade accuracy for low overhead by using sampling to

collect the DCG. Hardware-based sampling lowers overhead by examining hardware

performance counters [16] instead of the call stack but gives up portability. Software-

based sampling periodically examines the call stack and updates the DCG [3, 13, 19,

22]. All DCG sampling approaches suffer from sampling error, and approaches that

use a timer to take samples suffer from timing bias [3]. Arnold and Grove [3] were

1

Timer tick

(a)

Stride

(b)

Profiling Window

Figure 1.1: Timer-based sampling. Filled boxes are taken samples; unfilled boxes
are skipped samples. (a) One sample per timer tick. (b) Counter-based Sampling
(CBS) takes multiple samples per timer tick and strides between samples.

the first to measure and note that the DCG is not very accurate. They introduce

counter-based sampling (CBS), which takes multiple samples per timer tick and

strides over some samples to reduce sampling error and timing bias. The overhead

of CBS is directly proportional to the number of samples, and they recommend

configurations that achieve an average of 58% accuracy of a perfect call graph with

0.1% additional overhead in Jikes RVM and J9.

This paper presents new DCG correction algorithms to improve DCG ac-

curacy with extremely low overhead (1% on average). The key insight is that a

program’s static and dynamic control-flow graph (CFG) constrains possible DCG

frequency values. For example, two calls must execute the same number of times if

their basic blocks execute the same number of times. To leverage this insight, we

introduce the static frequency dominator (FDOM) relation, which extends the dom-

inator and strong region relations as follows: given statements x and y, x FDOM y

if and only if x executes at least as many times as y. DCG correction applies FDOM

constraints to the sampled DCG to improve its accuracy. For example, given two

call sites cs1 and cs2, if cs1 FDOM cs2 and in the sampled DCG, |cs1| < |cs2|, then

DCG correction sets |cs1| to |cs2|. Because these relationships are static, the correc-

tion algorithm computes them once and then periodically combines them with the

DCG.

DCG correction uses dynamic basic block profiles to improve DCG accuracy.

2

Most dynamic optimizers collect high-accuracy control-flow profiles such as basic

block and edge profiles to make better optimization decisions [1, 2, 4, 6, 9, 13, 18, 19].

We show how to combine these constraints and method counter profiling to further

improve the accuracy of the DCG. This correction requires a single pass over the

basic block profile, which we perform periodically.

We evaluate DCG correction in the Jikes RVM on the SPEC JVM98 and

DaCapo benchmarks. We compare our approach to the CBS sampling configurations

recommended by Arnold and Grove [3] that are now standard in Jikes RVM. For

our benchmarks, CBS attains 52 to 60% average accuracy compared to a perfect

call graph. FDOM constraints improve DCG accuracy to 64% to 68% on average,

while adding less than 0.3% average overhead. Static and dynamic control-flow

information together raise DCG accuracy to 85% on average, while adding just 1%

overhead.

We evaluate the performance impact of corrected DCGs using inlining in

Jikes RVM with its adaptive hotspot compiler that periodically recompiles and in-

lines hot methods. We add to this system DCG correction immediately before

the system recompiles. We measure (1) application only, and (2) application plus

compile times and find that DCG correction does change optimization decisions

and performance but that average performance does not change. However, we find

modest 3% average improvements when we provide an initial profile with a perfect

call graph, and prior work shows that an accurate DCG can improve performance

in other virtual machines [3]. These and other results [10] suggest that there are

inlining policies that could be tuned to benefit from DCG correction. The main

contributions of this paper are:

• Call graph correction algorithms using control-flow graph consistency con-

straints

• The frequency dominator relation and its computation

3

• Implementation and evaluation of call graph correction schemes

• A technique that yields highly accurate call graphs with very little overhead

that can easily be added to many virtual machines

4

Chapter 2

Background and Related Work

This section presents background material and compares dynamic call graph (DCG)

correction to previous work. We first discuss how dynamic optimizers collect a high-

accuracy DCG that represents the relative frequencies of direct and virtual method

calls. We then compare the frequency dominator relation to previous work. Finally

we compare DCG correction to previous work that uses control-flow information to

generate the DCG.

2.1 Using and Collecting Dynamic Call Graphs

Dynamic optimizers must balance increases in compilation time and code space costs

with application improvement. They use call graph and control-flow information

to help select optimization candidates, tailor optimizations to a specific run, and

balance compile and application time. For example, while static inlining makes

inlining decisions based on trivial criteria in dynamic optimizers (e.g., always inline

a direct method call that is smaller than the calling sequence), dynamic inlining

decisions are based on the DCG and method sizes.

Dynamic optimizers can profile every call in order to collect a perfect DCG,

5

Timer tick

(a)

Stride

(b)

Profiling Window

Figure 2.1: Timer-based sampling. Filled boxes are taken samples; unfilled boxes
are skipped samples. (a) One sample per timer tick. (b) Counter-based Sampling
(CBS) takes multiple samples per timer tick and strides between samples.

but this overhead is too high [3, 14]. Some dynamic optimizers profile calls fully for

some period of time and then turn off profiling to keep overhead down. For example,

HotSpot adds call graph instrumentation only for unoptimized code [19]. Suganama

et al. use code patching to insert call instrumentation, collect call samples for a

period of time, and then remove the instrumentation [22]. These one-time profiling

approaches keep overhead down but may lose accuracy if behavior changes. Jikes

RVM uses a similar approach for computing the control-flow edge profiles only for

unoptimized code. DCG correction can improve the accuracy of an out-of-date DCG

using up-to-date control-flow information, although this paper does not specifically

evaluate DCG correction for this purpose.

Many current dynamic optimizers use software sampling to profile calls and

identify hot methods while keeping overhead low [3, 5, 13, 25]. Software-based

approaches examine the call stack periodically and update the DCG with the call(s)

on the top of the stack. For example, Jikes RVM and J9 use a periodic timer that

sets a flag that causes the next yield-point in the code to examine the call stack and

update the DCG [5, 13]. Figure 2.1(a) illustrates basic timer-based sampling. Arnold

and Grove show that this approach suffers from insufficient samples and timing bias:

some yield-points are more likely to be sampled than others, which skews the results

and possibly leads to poor inlining decisions. They present counter-based sampling

(CBS), which takes multiple samples per timer tick and strides to skip some samples

6

in the profiling window and thus reduces timing bias. Figure 1.1(b) shows CBS

configured to take 3 samples for each timer tick and to stride by 3 (take every

third sample). By widening the profiling windows, CBS improves DCG accuracy,

but the large profiling windows also increase profiling overhead. For example, DCG

correction achieves 85% accuracy with 1% overhead whereas CBS’s overhead is 6

to 20% in J9 to achieve the same accuracy. In Jikes RVM, achieving 75% accuracy

comes at an overhead of 14% or more (85% accuracy hits some pathological case,

costing 1000% overhead).

Other dynamic optimizers periodically examine hardware performance coun-

ters such as those in the Itanium [16] to update the DCG. All sampling approaches

suffer from sampling error, and timer-based sampling approaches suffer from tim-

ing bias as well. DCG correction can improve the accuracy without introducing

significant overhead of any DCG collected by sampling.

2.2 The Dominator Relation and Strong Regions

This paper introduces the frequency dominator (FDOM) relation, which extends

the dominator and strong regions relations [7]. Prosser first introduced dominators,

which have a rich history [11, 21, 23, 24]. The set of dominators and post-dominators

of x is the set of y that will execute at least once if x does. The set which frequency

dominates x, on the other hand, is the subset which executes at least as many times

as x. While strong regions find vertices x and y that must execute the same number

of times, FDOM goes further and also finds vertices x and y where y must execute

at least as many times as x.

7

2.3 Constructing the DCG using Control-Flow Infor-

mation

This section compares DCG correction to previous work that uses control-flow in-

formation to construct the DCG. Hashemi et al. use static heuristics to construct an

estimated call frequency profile [15]. Wu and Larus construct an estimated edge pro-

file, which they use to construct an estimated call frequency profile [26]. These ap-

proaches rely solely on control-flow information to estimate call frequencies, whereas

DCG correction starts with an inaccurate DCG and applies control-flow constraints

to improve its accuracy. Also, these approaches use static heuristics to estimate

frequencies, while DCG correction uses static constraints and dynamic profile infor-

mation. Hashemi et al. and Wu and Larus report high accuracy but use an accuracy

metric that considers only the relative rank of call sites, while our overlap accuracy

metric uses call edge frequencies. They construct profiles for C programs, while we

target Java, which has richer DCGs and mulitple call targets for a call site because

of virtual dispatch.

8

Chapter 3

Call Graph Correction

Algorithms

This section describes DCG correction algorithms. We first present formal defi-

nitions for a control flow graph (CFG) and the dynamic call graph (DCG). We

introduce the frequency dominator (FDOM) relation that captures the relative fre-

quencies of program statements based on control-flow graph constraints. We show

how to apply these static constraints to improve the accuracy of the DCG, and how

to combine them with dynamic CFG frequencies to further improve the DCG. In

particular, we show how DCG correction updates the relative frequencies of call sites

(which we refer to as the call sites’ OUTFLOW) in the DCG to reflect the relative

execution frequencies of basic blocks from the CFG.

3.1 Terminology

A control-flow graph (CFG) represents the static intraprocedural control flow in a

method, and consists of basic blocks and edges between them. Figure 3.1 shows an

example control-flow graph CFGp that consists of basic blocks ENTRY, a, b, c, d, e,

9

e2

e3

e4

e5

csa

csc

EXIT

e d

e1

ENTRY

a

b

c

ENTRY

ENTRY

..
...
.

..
.

..
.

..
.

..
.

CFG
CFG

CFG

CFG

CFGt

p

q

r

s

Figure 3.1: Example dynamic call graph (DCG) and control flow graphs (CFGs).

and EXIT, as well as edges between them. A basic block profile gives the dynamic

execution frequency of each basic block in the program, from some execution.

A call edge represents a method call, and consists of a call site and a callee.

An example call edge in Figure 3.1 is e5, the call from csc to CFG t. The DCG of

a program includes the dynamic frequency of each call edge, from some execution.

For a call site cs, OutEdges(cs) is the set of call edges that start at call site cs.

OutEdges(csa) = {e3, e4} in Figure 3.1. For a method m, InEdges(m) is the set of

call edges that end at m. InEdges(CFG t) = {e4, e5} in Figure 3.1.

We define the INFLOW of a method m as the total flow (execution fre-

quency) coming into m:

INFLOW(m) ≡
∑

e∈InEdges(m)

f(e)

where f(e) is the execution frequency of call edge e. INFLOW(m) in a perfectly

accurate DCG is thus equal to the number of times m executes.

10

We define the OUTFLOW of a call site cs as the total flow going out of cs:

OUTFLOW(cs) ≡
∑

e∈OutEdges(cs)

f(e)

OUTFLOW(cs) in a perfectly accurate DCG is thus equal to the number of times

cs executes.

Because the collected DCG is not accurate due to sampling error and timing

bias, the DCG reports inaccurate OUTFLOW and INFLOW values. DCG correc-

tion’s goal is to correct the OUTFLOW of call sites using constraints provided by

static and dynamic control-flow information (doing so indirectly corrects method

INFLOW as well).

DCG correction does not correct the relative execution frequencies of multiple

call edges coming out of the same call site. Instead, it uses the existing relative call

edge frequencies from the uncorrected DCG, and scales them to update call sites’

OUTFLOW in the corrected DFG. So for example in Figure 3.1, if sampling data

yields flow such that f(e5) > f(e3) + f(e4), DCG correction increases the total flow

of csa, and scales it by their current relative frequencies.

3.2 The Frequency Dominator (FDOM) Relation

This section introduces the frequency dominator (FDOM) relation, a major contri-

bution of this paper. FDOM is a static property of CFGs that represents constraints

on program statements’ relative execution frequencies. We show two constraints

(theorems) it provides from the CFG on the DFG, and we prove these relations in

the appendix.

DEFINITION 1. Frequency Dominator (FDOM). Given statements s and t in the

11

same method, s FDOM t if and only if for every possible path through the method, s

must execute at least as many times as t. We also define FDOM(t) ≡ {s | s FDOM

t}.

Like the dominator relation, FDOM is reflexive and transitive.

THEOREM 1. FDOM OUTFLOW Constraint: Given method m and two

call sites cs1 and cs2 in m, if cs1 FDOM cs2,

OUTFLOW(cs1) ≥ OUTFLOW(cs2) (3.1)

Intuitively, the OUTFLOW constraint tells us that flow on two call edges is related

if they are related by FDOM. For example, in Figure 3.1, csa FDOM csc and thus

each time csc executes, csa must have executed.

THEOREM 2. FDOM INFLOW Constraint: Given method m, if cs FDOM

ENTRY (m’s entry basic block),

INFLOW(m) ≤ OUTFLOW(cs) (3.2)

Intuitively, the INFLOW constraint specifies that a call site must execute at least

as many times as a method that always executes the call site.

3.3 Static FDOM Correction

This section shows how to use the INFLOW and OUTFLOW constraints to correct

DCG frequencies. (The next section shows how to use dynamic CFG basic block

profiles to further correct INFLOW and OUTFLOW.)

12

Figure 3.2 applies the FDOM OUTFLOW constraint to a sampled DCG. The

algorithm FDOMOutflowConstraint compares the sampled OUTFLOW of pairs of

call sites that satisfy the FDOM relation. If their OUTFLOW s violate the FDOM

OUTFLOW constraint, FDOMOutflowConstraint sets both OUTFLOW s to the

maximum of their two OUTFLOW s. After processing a method, FDOMOutflow-

Constraint scales the OUTFLOW s of all the method’s call sites so the sum remains

the same as before.

Similarly, Figure 3.3 applies the FDOM INFLOW constraint to a sampled

DCG. For every call site cs that must execute each time the method executes (cs

FDOM ENTRY), FDOMInflowConstraint sets OUTFLOW(cs) to INFLOW(m) if

OUTFLOW(cs) < INFLOW(m).

3.4 Dynamic Basic Block Profile Constraints

This section describes constraints on DCG frequencies provided by basic block pro-

files, and the following section shows how to correct the DCG with them. The

appendix proves these relations.

The Dynamic OUTFLOW constraint says that the ratio between the execu-

tion frequencies of two call sites specified by the basic block profile can be applied

to the OUTFLOW of these two call sites:

THEOREM 3. Dynamic OUTFLOW Constraint Given two call sites cs1 and

cs2, and execution frequencies fbprof(cs1) and fbprof(cs2) provided by a basic block

profile,

OUTFLOW(cs1)

OUTFLOW(cs2)
=

fbprof(cs1)

fbprof(cs2)
(3.3)

13

procedure FDOMOutflowCorrection
input:
CALLSITES: a set of call sites
FDOM : a frequency dominator relationship between call sites
fsample(e): a function that returns the frequency of call edge e from sampling
fsample(cs): a function that returns the frequency sum of call edges in OutEdge(cs)
from sampling
output:
fcorrected(e): corrected frequency of call edge e

1: {STEP1: Initialize outflow for each call site and its sum.}
2: sumold ← 0
3: for all cs ∈ CALLSITES do
4: Outflow(cs)← fsample(cs)
5: sumold ← sumold + Outflow(cs)
6: end for
7: {STEP2: satisfy FDOM Outflow constraint.}
8: sumnew ← sumold

9: for all csy ∈ CALLSITES do
10: for all csx ∈ FDOM(csy) do
11: {Force OUTFLOW (csx) ≥ OUTFLOW (csy)}
12: outflowold ← Outflow(csx)
13: Outflow(csx)←Max(Outflow(csx), Outflow(csy))
14: diff = Outflow(csx)− outflowold

15: sumnew ← sumnew + diff
16: end for
17: end for
18: {STEP3: Use new outflow to derive the corrected frequency.}
19: scale← sumold/sumnew

20: for all cs ∈ CALLSITES do
21: for all e ∈ OutEdges(cs) do
22: fraction = fsample(e)/fsample(cs)
23: {Preserve the call target fraction and the frequency sum.}
24: fcorrected(e)← Outflow(cs)× scale× fraction
25: end for
26: end for

Figure 3.2: DCG Correction with FDOM OUTFLOW Constraints

14

procedure FDOMInflowCorrection
input:
p: a procedure to apply FDOM inflow constraint
FDOM(ENTRY): a set of call sites that frequency-dominates the entry of the
procedure P
fsample(e): a function that returns the frequency of call edge e from sampling
fsample(cs): a function that returns the frequency sum of call edges in OutEdge(cs)
from sampling
output:
fcorrected(e): corrected frequency of call edge e

1: {STEP1: Initialize outflow for each call site and its sum.}
2: inflow ← 0
3: for all e ∈ InEdges(p) do
4: inflow ← inflow + fsample(e)
5: end for
6: {STEP2: satisfy FDOM inflow constraint.}
7: for all csx ∈ FDOM(ENTRY) do
8: {Force OUTFLOW (csx) ≥ INFLOW (p)}
9: outflowold ← Outflow(csx)

10: Outflow(csx)←Max(Outflow(csx), inflow))
11: end for
12: {STEP3: Use new outflow to derive the corrected frequency.}
13: for all cs ∈ FDOM(ENTRY) do
14: for all e ∈ OutEdges(cs) do
15: fraction = fsample(e)/fsample(cs)
16: {Preserve the call target fraction}
17: fcorrected(e)← Outflow(cs)× fraction
18: end for
19: end for

Figure 3.3: DCG Correction with FDOM INFLOW Constraints

15

The Dynamic OUTFLOW constraint can be applied to two call sites in different

methods if basic block frequencies from different methods are accurate relative to

each other (i.e., if the basic block profiles have interprocedural accuracy). In our im-

plementation, basic block profiles do not have interprocedural accuracy. Thus, we

do not apply the Dynamic OUTFLOW constraint to call sites in different methods.

If basic block profiles do not have interprocedural accuracy, then the Dynamic OUT-

FLOW constraint provides no help for correcting the OUTFLOW of call sites in

methods with a single basic block. We experiment with using low-overhead method

invocation counters to give basic block profiles interprocedural accuracy, and in this

case we apply Dynamic OUTFLOW to call sites in different methods (Section 3.6).

The Dynamic INFLOW constraint says that the call edge flow (frequency)

coming into a method with a single basic block constrains the flow leaving any call

site in the method:

THEOREM 4. Dynamic INFLOW Constraint: Given a method m with a

single basic block and a call site cs in m,

INFLOW(m) = OUTFLOW(cs) (3.4)

The Dynamic INFLOW constraint is useful for methods with a single basic block

because the Dynamic OUTFLOW constraint cannot constrain the OUTFLOW of

call sites in the single basic block (when basic block profiles do not have interproce-

dural accuracy). The Dynamic INFLOW constraint uses the total flow (frequency)

coming into the method to constrain call sites’ OUTFLOW.

3.5 Dynamic Basic Block Profile Correction

16

procedure DynamicOutflowCorrection
input:
CALLSITES: a set of call sites
fbprof (cs): a function that returns the frequency of the call site cs from basic block
profiles
fsample(e): a function that returns the frequency of call edge e from sampling
output:
fcorrected(e): a function that returns the corrected frequency for the call edge e

1: {STEP1: Iterate call sites to find scale factor from basic block profile count to
the sample count.}

2: sumsample ←
∑

cs∈CALLSITES fsample(cs)
3: sumprof ←

∑
cs∈CALLSITES fprof (cs)

4: scale← sumsample/sumbprof

5: {STEP2: assign corrected call edge frequency}
6: for all cs ∈ CALLSITES do
7: for all e ∈ OutEdges(cs) do
8: fraction = fsample(e)/fsample(cs)
9: {Preserve the call target fraction and the frequency sum.}

10: fcorrected ← fbprof (cs)× scale× fraction
11: end for
12: end for

Figure 3.4: DCG Correction with Dynamic OUTFLOW Constraints

17

procedure DynamicInflowCorrection
input:
p: a single basic block procedure
fsample(e): a function that returns the frequency of call edge e from sampling
fsample(cs): a function that returns the frequency sum of call edges in OutEdge(cs)
from sampling
output:
fcorrected(e): corrected frequency of call edge e

1: CALLSITES ← getCallSiteInsideProcedure(p)
2: {STEP1:Compute maxflow for the procedure p.}
3: inflow ←

∑
e∈InEdges(p) fsample(e)

4: maxoutflow ← maxcs∈CALLSITES fsample(cs)
5: maxflow ← max(inflow, maxoutflow)
6: {STEP2: assign corrected frequency}
7: for all cs ∈ CALLSITES do
8: for all e ∈ OutEdges(cs) do
9: fraction = fsample(e)/fsample(cs)

10: {constraint: INFLOW(p) = OUTFLOW(cs).}
11: fcorrected(e)← maxflow × fraction
12: end for
13: end for

Figure 3.5: DCG Correction with Dynamic INFLOW Constraints

18

Correction algorithm Correction range Algorithms

Static FDOM CF Correction Call sites within a method to be optimized Figures 3.2 and

Dynamic Interprocedural CF Correction Call sites within a method to be optimized Figures 3.4 and

Dynamic Intraprocedural CF Correction All call sites in the DCG Figures 3.4 and

Table 3.1: Call Graph Correction Implementations

Figure 3.4 presents the algorithm for applying the Dynamic OUTFLOW constraint.

DynamicOutflowCorrection sets the OUTFLOW of each call site cs to fbprof(cs), its

frequency from the basic block profile. The algorithm then scales all the OUTFLOW

values so that the method’s total OUTFLOW is the same as before. This scaling

helps to maintain the frequencies due to sampling across disparate parts of the DCG.

Figure 3.5 presents the algorithm for applying the Dynamic INFLOW con-

straint to the DCG. For each method with a single basic block, DynamicInflowCor-

rection sets the OUTFLOW of each call site in the method to the INFLOW of the

method.

3.6 Implementing Online DCG Correction

Dynamic compilation systems perform profiling while they execute and optimize the

application, and therefore DCG correction needs to be done at the same time with

minimal overhead.

We minimize the call graph correction overhead by limiting the frequency

and scope of DCG correction. We limit DCG correction’s frequency by delaying

DCG correction until the optimizing compiler requests DCG information. The cor-

rection overhead is thus proportional to the number of methods optimized during

an execution. Correction overhead is thus naturally minimized as a result of the

dynamic optimizers’ selective choices about when and which methods to recompile.

We limit the scope of DCG corretion by localizing the range of correction.

19

When the compiler optimizes a method m, it does not require the entire DCG, but

instead considers a localized portion of the DCG relative to m. Because we preserve

the call edge frequency sum in the OUTFLOW correction algorithm, we can correct

m and all the methods it invokes without compromising the correctness of the other

portions of the DCG. Because we preserve the DCG frequency sum, the normalized

frequency of a call site in a method remains the same, independent of whether call

edge frequencies in other methods are corrected or not.

Table 3.1 summarizes the correction algorithms and the correction range. All

the correction algorithms take as input the set of call sites to be corrected. Clearly,

for FDOM correction, the basic unit of correction is the call sites within a procedure

boundary.

For dynamic basic block profile correction, there are two options. The first

one limits the call site set to be within a procedural boundary, and the second

one corrects all the reachable methods. Since many dynamic compilation systems

support only high precision intraprocedural basic profiles, the first configuration

indicates how much DCG correction would benefit these systems.

Because our system does not collect interprocedural basic block profiles, we

implement interprocedural correction by instrumenting each method with a method

counter. We multiply the counter value by the normalized intraprocedural basic

block frequency. We find this mechanism is a good approximation to interprocedural

basic block profiles.

20

Chapter 4

Computing FDOM

This section presents our algorithm for computing the frequency dominator (FDOM)

relation for statements in a method. We first show a correlation between simple

cycles and FDOM that applies to both irreducible and reducible graphs. We then

a present our algorithm for computing FDOM, which applies to reducible graphs

only. Throughout this section, we use s in place of ENTRY and e in place of EXIT

for brevity. Both algorithms assume the existence of a back edge from e to s. This

edge simplifies the analysis but does not affect the FDOM relation, since following

this edge is equivalent to executing the method again.

4.1 General Control Flow Graphs

In this section, we show that the FDOM relation relates to simple cycles for general

CFGs (both irreducible and reducible). This relation could be used to compute

FDOM for irreducible CFGs. However, we only present an algorithm that computes

FDOM for reducible CFGs, which we present in the next section. Lemma 1 shows

that FDOM can be computed by considering cycles in the CFG.

LEMMA 1. Given vertices x and y in V ,

21

x FDOM y

if and only if

x is contained in every cycle containing y

Proof. Show both forward and backward directions.

(⇒) (by contradiction) Suppose there is a cycle that contains y but not

x. Let this cycle be cy = 〈a, . . . , y, . . . , a〉. From the definition of CFG, there

is one path from the CFG entry, s, to a and another path from a to the CFG

exit, e. By concatenating these three paths, we can build a path from s to e,

c′y = 〈s, . . . , a, . . . , y, . . . , a, . . . , e〉. If x is not in c′y then y is already executed more

times than x, a contradiction. So let x in some execution path that includes c′y be

executed n times, then we can repeat cy n + 1 times, resulting in y being executed

more than x, a contradiction.

(⇐) (by contrapositive) Suppose there is a path p from s to e where the

number of executions of y exceeds that of x. For the number of y to exceed x, p

must contain at least one y. If the number of y in the path is n, then path p should

be of the form, p = 〈s, . . . , y1, . . . , y2, . . . , yn, . . . , e〉. The path, p, can be divided

into (n+1) subpaths:〈s, . . . , y1〉, 〈y1, . . . , y2〉, ..., 〈yn, . . . , e〉. Because the number of

x is less than the number of y in p, the number of x in all of the subpaths is less than

or equal to (n − 1). From the pigeonhole principle, there exist at least two x-free

subpaths. If one of the two x-free subpaths is 〈yi, . . . , yi+1〉, this x-free subpath

contradicts our assumption that there exists no cycle containing y and not x. If two

subpaths are 〈s, . . . , y1〉 and 〈yn, . . . , e〉, another x-free cycle 〈yn, . . . , e, s, . . . , y1〉 can

be constructed since we have a backedge from e to s, again a contradiction.

Lemma 1 states that FDOM can be computed by considering every cycle in the CFG.

However, it is impractical to check if x is contained in every cycle that contains y

because the number of cycles may be unbounded. The number of simple cycles in a

method is bounded, and Lemma 2 shows that simple cycles are sufficient.

22

LEMMA 2. Given vertices x and y in V ,

x is in every cycle containing y

if and only if

x is in every simple cycle containing y

Proof. Forward direction is trivial because every simple cycle is a cycle. To show

the backward direction:

(by contradiction) Suppose that x is in every simple cycle containing y, but

let there exist x-free cycle c that contains y, c = 〈a, . . . , y, . . . , a〉 or c = 〈y, . . . , y〉.

By our assumption, c cannot be simple, so there must exist some element in c

other than the beginning or end. There exists a cycle, therefore, in c that is from

〈w, . . . , w〉 that is simple, which we will call c′. Since by our assumption, x is in

every simple cycle containing y, if there exists a y in c′, then there also exists an

x, and since c′ is simple, there can exist at most one of each. Therefore if c is a

valid cycle including c′, then another valid cycle is c with c′ replaced with the single

element w. Further, this new c still has the property that there exists an x-free

cycle that contains y. Since c is of finite length, this process can be continued until

there are no simple cycles left in c. Note that c still contains an x-free path that

contains y, but now c is simple too, a contradiction. This proof holds for the entire

program because there exists a back edge, by assumption, from e to s, and hence it

is a cycle.

Theorem 5 provides a method for computing FDOM, and it is easily proved from

the lemmas.

THEOREM 5. Given vertices x and y in V ,

x FDOM y

23

if only if

x is in every simple cycle containing y.

Proof. From Lemma 1 and Lemma 2.

4.2 Reducible Control Flow Graphs

This section presents our near-linear-time algorithm for computing the FDOM re-

lation for reducible CFGs. The algorithm uses CFG properties from previous work

to compute the FDOM relation. We first present background information on these

properties. We then prove that FDOM can be defined in terms of these properties.

Finally, we present an algorithm that first computes these properties and then uses

the resulting data structures to compute the FDOM relation.

We first describe CFG properties from previous work. For each loop header

h ∈ V , the following set is defined by Ball [7]:

backsrcs∗(h) = {v|v → h is a backedge.}

natloop∗(h) = {h|there is an h-free path from

v to a basic block in backsrcs(h)}

exits∗(h) = {v|∃v → w such that v ∈ natloop(h)

and w /∈ natloop(h)}

We extend these three definitions to include any basic block y ∈ V .

24

loophead(y) = loop entry of innermost loop that contains y

backsrcs(y) = backsrcs∗(loophead(y))

natloop(y) = natloop∗(loophead(y))

exits(y) = exits∗(loophead(y))

Ball defines “w pd v with respect to a set of vertices V ” to capture post dominance

within a natural loop [7]. For our algorithm, we only use two sets of vertices,

back edges and loop exits for a given natural loop. Thus we use PDBE y to mean

backsrcs(y) and PDLE y to mean exits(y). We combine these terms and make a

new term, PDL y ≡ PDBE y ∪ PDLE y.

Theorem 6 defines FDOM in terms of other CFG properties. Ball [7] and

Johnson et al. [17] use sufficient and necessary conditions for FDOM in Lemma 1

to characterize control regions [12]. The algorithm in this section is motivated by

Ball’s paper [7].

THEOREM 6. Given two vertices x and y in V ,

x FDOM y

if and only if

x ∈ natloop(y) and (x DOM y or x PDL y)

Proof. (⇒) If x is not in natloop(y), then there exists an x-free cycle that contains

y, a contradiction due to Lemma 1. So suppose that x DOM y or x PDL y is

not true. If x DOM y is not true, then there exists a path from loophead(y) to

y that does not include x. If x PDL y is not true, then there exists a path from

y to either a back edge or an exit of natloop(y). Hence there exists either a path

〈loophead(y), . . . , y, . . . , exit(y)〉, which means there exists a path from s to e that

25

includes y and not x, or there exists a cycle 〈loophead(y), . . . , y, . . . , backsrcs(y)〉,

which is a cycle that includes y and not x, also a contradiction. Hence x DOM y

or x PDL y must also be true.

(⇐) Show that every cycle that starts and ends at y, contains x. Let hy be

loophead(y), and every path from y to y is one of this form, cy = 〈y, . . . , z, . . . , hy, . . . , y〉,

where z is in backsrcs(y) ∪ exits(y). Suppose that x ∈ natloop(y), and x DOM y,

then every path from hy to y must contain x. If x PDL y, then this implies that

〈y, . . . , z〉 ⊂ cy always contain x. Therefore cy contains x if either of the two condi-

tions is satisfied.

FDOM(y) is the set of all x s.t. x FDOM y, and from Theorem 6, the

following equations hold:

FDOM(y) = natloop(y) ∩ (DOM(y) ∪ PDL(y))

= FDOMD(y) ∪ FDOMP (y)

FDOMD(y) = natloop(y) ∩DOM(y)

FDOMP (y) = natloop(y) ∩ PDL(y)

We create an algorithm that can compute FDOMD(y) and FDOMP (y) in near-linear

time.

Pingali and Bilardi give the paradox of linear computation time for super-

linear-sized relations such as control dependence and post-dominance [20]. This

paradox is resolved by the fact that these relations are transitive, and these relations

can be factored into the transitive reduction form. The preprocessing time is used

to construct some data structure that describes this reduction form, and a query

is performed on this data structure. For instance, the post-dominance relation is

transitive, and its transitive reduction form is a post-dominator tree, which can be

26

procedure setupFDOM (G:CFG)

1: Compute LoopStructureTree(G)
2: Compute DominatorTree(G)
3: Transform(G)
4: Compute PostdominatorTree(G)

procedure Transform(G:CFG)

1: for all L ∈ natloops(G) do
2: Create tempnodeL

3: {Redirect each exit edge to go through the temp node.}
4: for all edges b→ k such that b ∈ L, k /∈ L, b and k 6= tempnodeL do
5: remove b→ k
6: add b→ tempnodeL

7: add tempnodeL → k
8: end for
9: {Redirect each back edge to go through the temp node.}

10: for all edges b→ k such that b ∈ L, k = loophead(L), b 6= tempnodeL do
11: remove b→ k
12: add b→ tempnodeL

13: add tempnodeL → k
14: end for
15: end for

Figure 4.1: FDOM setup algorithm

computed in O(|E|) time.1 We describe an algorithm to compute FDOM in O(|E|)

if a dominator tree and a loop structure tree is precomputed. We face this same

issue, and will construct a data structure containing super-linear information in

super-linear time.

There are a few observations from the transformation in Figure 4.1. First, for

each loop l there exists a unique tempnodel. Second, due to the forall statement, the

source vertex of every loop exit or back edge in l now points to tempnodel. Further,

tempnodel is the only source vertex of a back edge or loop exit in l. Finally, because

of it being the only source vertex for an exit, tempnodel post-dominates every node

in natloop(l) in the transformed graph.

1Cooper et al. describe the history of algorithms for dominance relation in detail [11].

27

procedure retrieveFDOM (y:Vertex):Set

1: s←{y}
2: {Compute FDOMD(y)}
3: current ← dominatorParent(y)
4: while current 6= null AND current 6= loophead(y) do
5: s← s∪{current}
6: current← dominatorParent(current)
7: end while
8: {Compute FDOMP (y)}
9: current← postdominatorParent(y)

10: while current 6= null AND current 6= tempnode(y) do
11: s← s∪{current}
12: current← postdominatorParent(current)
13: end while
14: return s

Figure 4.2: FDOM retrieval algorithm

Theorem 7 shows that we can compute PDL(y) inside a loop by applying the

post-dominator algorithm on the transformed graph G’.

THEOREM 7. Given two vertices x and y in a CFG G, l = natloop(y), x ∈ l,

and G’ = T(G), T as defined above,

x PDL y in G

if and only if

x PDOM y in G’

Proof. (⇒) Assume x PDL y in G is true.

⇒In G, there is no x-free path from y to any z in backsrcs(y) ∪ exit(y).

⇒In G’, there is no x-free path from y to tempnodel.

⇒In G’, since tempnodel postdominates every node in l, there is no x-free path from

y to EXIT

⇒xPDOMy in G’

(⇐)(by contrapositive) Assume x PDL y in G is false.

28

x not PDL y

⇒ In G, there is an x-free path from y to some z in backsrcs(y) ∪ exits(y).

⇒ In G’, there is an x-free path from y to tempnodel.

⇒ Since tempnodel post-dominates every node in l, in G’, there is an x-free path

from y to EXIT .

⇒ In G’, x PDOM y is not true.

Figure 4.1 shows a fast algorithm that computes FDOM(y) in near-linear

time based on these proofs. For a high-level description, we compute the dominator

tree and the loop structure tree for the CFG, then we apply a transformation to the

CFG and compute the post-dominator tree on the new graph. The transformation

creates a single node per loop that the loop exits and back edges all go through. This

is all the computation that is necessary to compute FDOM, and hence is near-linear

time. This computation is bounded by the time complexity of constructing the loop

structure tree, or O(|V |+ |E|α(|E|, |V |)) [7]. If the loop structure tree has already

been computed, as it is in many compilers, then this algorithm is O(|E|).

To retrieve the FDOM information for a given node y, we simply iterate

up the dominator tree from y until we hit y’s loop header. We then iterate up

the post-dominator tree on the transformed graph until we hit y’s tempnode. We

are guaranteed that from y to loophead(y) in the dominator tree and from y to

tempnode(y) in the postdominator tree, we will not leave natloop(y). Further, once

we go beyond these nodes, we will no longer be in natloop(y). Hence we are only

considering the set x s.t. x ∈ natloop(y) (see Figure 4.2).

FDOM Algorithm History

We investigated several FDOM algorithms before arriving at the one above. This

section discusses these algorithms and the insights we developed. The one presented

earlier is our final and simplest version of the algorithm.

29

The original algorithm still computed the dominator and post-dominator por-

tion of the control flow graph separately. But the way it did so was more complicated.

Instead of simply computing the dominator tree and then walking up it, the origi-

nal algorithm had the information flow down the dominator tree. Also, instead of

transforming the graph as described above and computing the post-dominator over

the entire graph at once, it condensed each loop and computed the post-dominator

information on each individual loop.

To have the dominator information flow down the dominator tree, we em-

ployed a persistent stack. A persistent stack is one in which every version of the

stack is available at any time. This data structure can be implemented by modifying

a singly linked list with its pointers reversed, so it is pointing towards the ”head”.

To push, simply create a new node and point it to the top of the stack. To pop,

move the given ”top” pointer to top’s next pointer. If there exists multiple ”top”

pointers, and the data in the stack does not change, then there essentially exists

multiple stacks all sharing data.

By using persistent stacks, we can share information and hence prevent pro-

ducing the O(n2) relation. Each element on the stack is another singly linked list.

At a given node in the dominator tree Y, each level of the stack represents the lowest

loop nest depth which must be traveled through on a path from X to Y. Hence the

top-most list on the stack represents all the nodes which FDOMD Y, as at any

point Y the stack has as many elements as the loop nest depth of Y.

Now the problem is how to create the above data structure at every point.

Going from the root of the dominator tree down, each child will have its own ”top”

pointer. In addition, each node will have a length of the top list of the stack. At each

node Y, there are three possibilities for the stack from Y’s immediate dominator (Y’s

parent). The stack size is less than, equal to, or greater than the loop nest depth of

Y. If it is less than, it can only be less than by one (because the control flow graph

30

is reducible, we know Y must be a loop header), so we will create a new linked list

and push it onto the stack. If it is equal to the loop nest depth, then we will use the

linked list on top of the stack. If it is greater than, we need to combine the topmost

lists until the stack is the right size. By pointing the tail of the topmost list to

the head of the second topmost list, and repeating, this can easily be accomplished.

Since each node has a list length, the chaining together will not change the list it

has. We then add the node itself to the head of the front of the linked list.

There is one additional complication to the above algorithm. If Y is a loop

header, then the stack size needs to be one less than its loop nest depth. This

requirement is due to there being some point immediately prior to Y which went

one level below Y’s loop nest depth. The above algorithm works with this small

change.

Now at every node there exists a stack of linked lists, the topmost of which

is the set that FDOMD Y. To retrieve this set, simply iterate over the linked list,

keeping in mind the length stored at the node.

As to the FDOMP aspect of the algorithm, we used an idea from Ball [7].

For computing Strong Regions, Ball reduced each loop subgraph to a single point

from the point of view of other loops. So at the end of the transformation, there is a

set of loops which contain no inner loops. On each element of this set we apply the

transformation to turn it into a DAG as in our current implementation, by having

all loop exits and backedges point to a temporary node. We then compute the post-

dominator. In a given DAG there may be a node which represents a more deeply

nested loop. If one of these nodes, Y, post-dominates X in a DAG, then all nodes

which post-dominate the loop header of Y in Y’s DAG must also post-dominate X.

In time we realized a few key aspects to help simplify the algorithm. First,

there is no need to reduce the control flow graph into several independent DAGs.

Instead, we apply the transformation to get a single point of exit for each loop in

31

our current control flow graph. Further, we found that instead of traversing down

the dominator tree, traversing up was more natural, and already in the proper

form. Hence we were able to reduce this initial algorithm to simply computing the

dominator tree, transforming the graph, and then computing post-dominator.

Although as of now unproven, we believe there exists a simple fast algorithm

to compute FDOM on a non-reducible control flow graph which is similar to the

one described earlier in this paper. In our previous transformation make a single

point of exit of a loop and then compute post-dominator. Let there be another

transformation which makes a single point of entry to every loop and compute the

dominator. It is unclear whether both transformations can be applied to the same

graph, or if each must work on a copy of the original.

32

Chapter 5

Methodology

This section describes our benchmarks, platform, implementation, and VM compiler

configurations. We describe our methodologies for accuracy measurements against

the perfect dynamic call graph (DCG), overhead measurements, and performance

measurements.

We implemented and evaluated DCG correction algorithms in Jikes RVM

(CVS HEAD 2005/08/13 21:10:06 UTC) a Java-in-Java VM in its production con-

figuration [2]. This configuration pre-compiles the VM methods (e.g., compiler and

garbage collector) and any libraries it calls into the boot image. Jikes RVM contains

two compilers: the baseline compiler and optimizing compiler with three optimiza-

tion levels. (There is no interpreter in this system.) When a method is first executed,

the baseline compiler generates assembly code (x86 in our experiments). A call-stack

sampling mechanism identifies frequently executed (hot) methods. Based on these

method sample counts, the adaptive compilation system then recompiles methods at

progressively higher levels of optimization. Because it is sample based, the adaptive

compiler is non-deterministic.

We use the SPEC JVM98 benchmarks and the DaCapo benchmarks [8]. We

omit the DaCapo benchmarks xalan, and hsqldb because we could not get xalan to

33

run correctly with Jikes RVM, and hsqldb showed very large run-to-run variation in

its execution due to Jikes RVM’s thread scheduling implementation. We omit the

DaCapo benchmark antlr from the inlining performance experiments because we

could not get it to run correctly for 25 iterations.

We perform our experiments on a 3.2 GHz Pentium 4 with hyper-threading

enabled. It has a 64-byte L1 and L2 cache line size, an 8KB 4-way set associative

L1 data cache, a 12Kµops L1 instruction trace cache, a 512KB unified 8-way set

associative L2 on-chip cache, and 1GB main memory, and runs Linux 2.6.0.

Accuracy Methodology. To measure the accuracy of our technique against the

perfect DCG for each application, we first generate a perfect DCG by modifying Jikes

RVM call graph sampling to sample every method call (instead of skipping). We

also turn off the optimizing compiler to eliminate non-determinism due to sampling

and since call graph accuracy is not influenced by code quality. By the end of the

application’s execution, the sampler will have collected the perfect call graph. We

restrict the call graph to the application methods by excluding all call edges with

both the source and target in the boot image, and calls from the boot image to the

application. We include calls edges into the boot image, since these represent calls

to libraries that the compiler may want to inline into the application.

To measure and compare call graph accuracy, we compare the final perfect

DCG to the final corrected DCG generated by our approach. Because DCG clients

use incomplete graphs to make optimization decisions, we could have compared the

accuracy of the instantaneous perfect and corrected DCGs as a function of time.

We follow prior work in comparing the final graphs [3] rather than a time series,

and believe these results are representative of the instantaneous DCGs.

We measure accuracy against two (final) perfect DCGs: (1) without inlining

and (2) with trivial inlining. The first configuration has the largest DCG, but the

second is more representative of the base call graph presented to the optimizing

34

compiler. Trivial inlining in Jikes RVM inlines a call site if the size of the callee is

smaller than the calling sequence. The inliner will therefore never need to use the

frequency information for these call sites.

Overhead Methodology. To measure the overhead of DCG correction without

including its influence on optimization decisions, we configure the adaptive compiler

to perform only trivial inlining. This configuration does not use the DCG to make

inlining decisions, so correction does not affect inlining decisions.

Performance Methodology. We use the following configuration to measure the

performance of using corrected DCGs to drive inlining. We correct the DCG on

the fly by performance correction as the VM optimizes the application, providing a

realistic measure of DCG correction’s ability to affect inlining decisions. We measure

steady-state performance by executing 25 iterations of the application in one run of

the VM, and we take the median time of iterations 13 through 25, which we find

decreases variation due to the non-determinism of the adaptive compiler.

35

Chapter 6

Results

This section evaluates the accuracy, overhead, and performance effects of the DCG

correction algorithms.

6.0.1 Accuracy

We use the overlap accuracy metric from prior work to compare the accuracy of

DCGs [3].

overlap(DCG1, DCG2) =

∑
e∈CallEdges min(weight(e,DCG1), weight(e, DCG2))

where Call Edges is the intersection of the two call edge sets in DCG1 and DCG2

respectively, and weight(e, DCGx) is the normalized frequency for a call edge e in

DCGx. We use this function to compare the perfect DCG to the other DCGs.

We compute an upper bound for our correction schemes based on the call

edges in the sampled DCG. For this accuracy upper bound, we consider DCGsample,

a sampled DCG, and DCGperfect. Given DCGperfect and DCGsample, we define

DCGbound by taking the call nodes and edges from the DCGsample and by taking the

edge frequencies from DCGperfect. Then, the frequencies of call edges in DCGbound

36

are completely unbiased, but DCGbound only contains the methods and calls edges in

the sampled graph. Therefore, DCGbound is the best that we can hope for correction

to achieve.

Figures 6.1 and 6.2 compare DCG accuracy for the no-inlining and trivially-

inlining configurations. For the individual benchmarks, we report average profile

accuracy over 25 trials (shown as dots). The perfect DCG is 100% (not shown).

Since the DCGs are similar between the two figures, the accuracies are as expected

also similar. The graphs compare the perfect DCG to the base system without

correction (Base), Static FDOM CF Correction (only), Dynamic Intraprocedural

CF Correction (only), Dynamic Interprocedural CF Correction, and the Correction

Upper Bound (DCGbound).

The DCG with no correction (Base) uses the recommended sampling and

striding settings from Arnold and Grove [3] that take more samples to increase

DCG accuracy, but keep average overhead under a few percent. This configuration

has an average accuracy of 52% (no inlining) and 60% (static inlining), and drops

as low as 20%.

Static and dynamic DCG correction together significantly improve accuracy

to an average of 85%. The second bar, Static FDOM CF Correction, teases apart the

contribution just from static FDOM, which improves over sampling by 7 to 10% on

average. Intraprocedural correction performs about the same, but interprocedural

correction applies global dynamic constraints and shows much better accuracy than

the local methods. In addition, interprocedural correction comes within 10% of

the bound, which loses only on average 5% to missing call edges. Interprocedural

correction is 10% less than the upper bound because (1) DCG correction does not

correct the relative frequencies of call edges coming out of the same call site, and

(2) the basic block profiles are slightly inaccurate because they measure only initial

execution behavior [9].

37

6.0.2 Overhead

Figure 6.3 presents the execution times for various DCG correction configurations

using the adaptive compiler in which the corrected DCGs are never used, but are

computed each time the optimizing compiler recompiles a method. Correction could

occur on every sample, but this approach aggregates the work and eliminates repeat-

edly correcting the same edges. We take the median out of 25 trials (shown as dots)

to eliminate high variability of the adaptive runs. Static FDOM Correction and Dy-

namic Intraprocedural CF Correction add no detectable overhead. The overhead of

the interprocedural correction is on average 1% and at most 6% on mpegaudio and

jython. Further examination of these benchmarks show that this overhead stems

from method counter instrumentation (Section 3.6). We plan to reduce overhead by

eliminating method counter instrumentation from methods compiled at the highest

optimization level since method counts are no longer useful for such methods.

6.0.3 Performance

We evaluate the costs and benefits of using DCG correction to drive optimization

in Jikes RVM. Figure 6.4 shows steady-state performance (median of iterations 13

through 25) with several DCG correction configurations. We repeat each experi-

ment 10 times (shown as dots) and take the median. The graphs are normalized to

the exection time without correction. Static FDOM CF Correction shows the im-

provement from static FDOM correction, which is about 0.5% on average. Dynamic

Intraprocedural CF Correction improves performance by almost 1% on average. Dy-

namic Interprocedural CF Correction uses method invocation counters (Section 3.6)

to get basic block profiles with interprocedural accuracy. While the method counters

provide higher accuracy, they hurt performance considerably (by 4% on average) in

steady state, particularly for compress and fop. In the future, we plan to not add

method counters to methods optimized at the highest optimization level, when they

38

are not needed anymore but hurt performance the most.

We also evaluate the performance of Perfect DCG, which feeds a perfect DCG

to the inliner at the beginning of execution, rather than computing and correcting

it on the fly as in the other configurations. The perfect DCG improves performance

by only about 0.5% on average, suggesting that Jikes RVM’s inliner cannot benefit

significantly from high-accuracy DCGs. Previous work confirms that higher accu-

racy does not help Jikes RVM’s inliner much but that other VMs can benefit by up

to 9% from higher accuracy [3].

39

com
press

jess
raytrace

db javac

m
pegaudio

m
trt

jack
antlr

bloat

fop
ipsixql

jython

pm
d

ps A
vg

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
(%

) Base

Static FDOM CF Correction

Dynamic Intraprocedural

 CF Correction

Dynamic Interprocedural

 CF Correction

Correction Upper Bound

Figure 6.1: Accuracy of DCG correction on the complete DCG.

com
press

jess
raytrace

db javac

m
pegaudio

m
trt

jack
antlr

bloat

fop
ipsixql

jython

pm
d

ps A
vg

0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
(%

) Base

Static FDOM CF Correction

Dynamic Intraprocedural

 CF Correction

Dynamic Interprocedural

 CF Correction

Correction Upper Bound

Figure 6.2: Accuracy of DCG correction on the DCG with trivially inlined call sites.

40

com
press

jess
raytrace

db javac

m
pegaudio

m
trt

jack
antlr

bloat

fop
ipsixql

jython

pm
d

ps A
vg

0.90

0.95

1.00

1.05

1.10

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

Static FDOM CF Correction

Dynamic Intraprocedural

 CF Correction

Dynamic Interprocedural

 CF Correction

Figure 6.3: The runtime overhead of call graph correction.

com
press

jess
raytrace

db javac

m
pegaudio

m
trt

jack
bloat

fop
ipsixql

jython

pm
d

ps A
vg

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

N
o

m
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

Static FDOM CF Correction

Dynamic Intraprocedural

 CF Correction

Dynamic Interprocedural

 CF Correction

Perfect DCG

Figure 6.4: The steady state performance of correcting inlining decision using adap-
tive methodology.

41

Chapter 7

Conclusion

This paper introduces dynamic call graph (DCG) correction, a novel approach for

increasing DCG accuracy with existing static and dynamic control-flow information.

We introduce the frequency dominator (FDOM) relation to constrain and correct

DCG frequencies, and also use intraprocedural and interprocedural basic block pro-

files to correct the DCG. By adding just 1% overhead on average, DCG correction

increases average DCG accuracy from 52-60% to 85%. Although we obtain only a

modest performance boost from using corrected DCGs to drive inlining, prior work

shows other VMs benefit from higher accuracy DCGs, and we believe DCG correc-

tion will be increasingly useful in the future as object-oriented programs become

more complex and more modular.

42

Bibliography

[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A.

Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl.

Continuous Profiling: Where Have All the Cycles Gone? In Symposium on

Operating Systems Principles, pages 1–14, 1997.

[2] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimiza-

tion in the Jalapeño JVM. In ACM Conference on Object Oriented Program-

ming, Systems, Languages, and Applications, pages 47–65, Minneapolis, MN,

October 2000.

[3] M. Arnold and D. Grove. Collecting and exploiting high-accuracy call graph

profiles in virtural machines. In Symposium on Code Generation and Optimiza-

tion, pages 51–62, Mar. 2005.

[4] M. Arnold and B. G. Ryder. A Framework for Reducing the Cost of Instru-

mented Code. In Conference on Programming Language Design and Implemen-

tation, pages 168–179, Snowbird, UT, 2001.

[5] M. Arnold and P. F. Sweeney. Approximating the calling context tree via

sampling. Technical Report RC 21789, IBM T.J. Watson Research Center,

July 2000.

[6] V. Bala, E. Duesterwald, and . Banerjia. Dynamo: A Transparent Dynamic Op-

43

timization System. In ACM Workshop on Dynamic and Adaptive Compilation

and Optimization, pages 1–12, Boston, MA, July 2000.

[7] T. Ball. What’s in a region?: or computing control dependence regions in near-

linear time for reducible control flow. ACM Letters on Programming Languages

and Systems, 2(1-4):1–16, 1993.

[8] S. M. Blackburn, K. S. McKinley, J. E. B. Moss, S. Augart, P. Cheng, A. Di-

wan, S. Guyer, M. Hirzel, C. Hoffman, A. Hosking, X. H. M. Jump, A. Khan,

P. McGachey, D. Stefanović, and B. Wiedermann. The dacapo benchmarks.

Technical report, 2006. http://ali-www.cs.umass.edu/DaCapo/Benchmarks.

[9] M. D. Bond and K. S. McKinley. Continuous path and edge profiling. In

IEEE/ACM International Symposium on Microarchitecture, pages 130–140,

Barcelona, Spain, 2005.

[10] J. Cavazos and M. F. P. O’Boyle. Automatic tuning of inlining heuristics. In

ACM/IEEE Conference on Supercomputing, page 14, Washington, DC, 2005.

[11] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algo-

rithm. Software Practice & Experience, 4:1–10, 2001.

[12] J. F., K. J. Ottenstein, and J. D. Warren. The program dependence graph and

its use in optimization. ACM Transactions on Programming Languages and

Systems, 9(3):319–349, 1987.

[13] N. Grcevski, A. Kielstra, K. Stoodley, M. G. Stoodley, and V. Sundaresan. Java

just-in-time compiler and virtual machine improvements for server and middle-

ware applications. In Virtual Machine Research and Technology Symposium,

pages 151–162, 2004.

[14] D. Grove, J. Dean, C. Garrett, and C. Chambers. Profile-guided receiver class

44

prediction. In ACM Conference on Object Oriented Programming, Systems,

Languages, and Applications, pages 108–123, New York, NY, USA, 1995.

[15] A. Hashemi, D. Kaeli, and B. Calder. Procedure mapping using static call

graph estimation. In Workshop on Interaction between Compiler and Computer

Architecture, san Antonio, TX, 1997.

[16] Intel Corporation. Intel itanium 2 processor. http://www.intel.com/-

/products//processor//itanium2/index.htm.

[17] R. Johnson, D. Pearson, and K. Pingali. The program structure tree: computing

control regions in linear time. In ACM Conference on Programming Language

Design and Implementation, pages 171–185, 1994.

[18] M. C. Merten, A. R. Trick, E. M. Nystrom, R. D. Barnes, and W. mei W. Hmu.

A Hardware Mechanism for Dynamic Extraction and Relayout of Program Hot

Spots. In International Symposium on Computer Architecture, pages 59–70,

2000.

[19] M. Paleczny, C. Vick, and C. Click. The java hotspot server compiler. In Usenix

Java Virtual Machine Research and Technology Symposium (JVM’01), pages

1–12, April 2001.

[20] K. Pingali and G. Bilardi. Optimal control dependence computation and the

roman chariots problem. ACM Transactions on Programming Languages and

Systems, 19(3):462–491, 1997.

[21] R. Prosser. Applications of boolean matrices to the analysis of flow diagrams. In

Eastern Joint Computer Conference, pages 133–138, NY, 1959. Spartan Books.

[22] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A Dy-

namic Optimization Framework for a Java Just-in-Time Compiler. In ACM

45

Conference on Object Oriented Programming, Systems, Languages, and Appli-

cations, pages 180–195, 2001.

[23] R. E. Tarjan. Finding dominators in directed graphs. SIAM Journal of Com-

puting, 3(1):62–89, 1974.

[24] R. E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM,

28(3):594–614, 1981.

[25] J. Whaley. A portable sampling-based profiler for Java virtual machines. In

ACM Conference on Java Grande, pages 78–87, 2000.

[26] Y. Wu and J. R. Larus. Static branch frequency and program profile analysis. In

ACM/IEEE International Symposium on Microarchitecture, pages 1–11, 1994.

46

