
The Immersion Interface Concept

Dustin Silverman

dustbin@cs.utexas.edu

University of Texas

Donald S. Fussell

Department of Computer Sciences

The University of Texas at Austin

Abstract

This paper presents a concept for organizing and interfacing with 3D windowing

systems. Its intention is to provide a means of replacing the 2D desktop metaphor. The

replacement metaphor is that of an office, a concept that more directly maps to 3D space.

1 Introduction

The WIMP interface concept and the desktop metaphor concept were originally

developed at Xerox PARC in 1973, approximately thirty-three years ago as of the time of

this writing. There have been obvious improvements in the concept over time, though

overall it has changed very little. The result of this is that certain restrictions in the

concept are now more obvious due to how much both hardware and software have

changed.

One of the most basic restrictions is the restraining of the usable space to the

resolution of the monitor, which often results in a cluttered virtual workspace filled with

overlapping windows [4]. There have been various attempts to solve this restriction, the

most common of which is adding the ability to switch between several desktop spaces

[2]. However this does not solve the related difficulty of having multiple open windows

visible at the same time. These restrictions are less of a difficulty on larger monitor and

multi monitor systems [4], though these solutions are expensive and consume physical

space.

Given the prevalence of graphics cards in recent computers, it is now practical to

have a 3D windowing system, an engine that allows for 3D graphics to be used in

rendering applications and the environment in which they are placed, in a widely

distributed operating system. The result of this as it applies to academia is that 3D

windowing systems are now a viable area to research for solutions to the restrictions that

exist in the current desktop metaphor. Also it should be noted that, while several

companies have begun to create 3D windowing systems, none have presented a new

concept for organizing and interacting with applications in 3D space. Instead they have

retained the desktop concept [6]. While 3D windowing systems implementing the

desktop concept can have a few new interesting visual effects and additional capabilities,

they cannot take full advantage of the possibilities provided by 3D windowing systems,

as they are in effect still 2D systems with 3D windows [5] or, as it is sometimes called,

2½D systems [3].

With these things as incentive, we decided to investigate the usability of the three

dimensional metaphor of an office as a replacement for the desktop metaphor as the

layout concept. We have named this system Immersion, as it places the user within a 3D

space that virtually surrounds them. Additionally a concept for replacing the HUD-like

portions of the desktop interface, the portions conceptually attached to the monitor such

as the start menu and task bar, is explained. It is a tree structure consisting of what we

refer to as workspace nodes, where each node is similar to a folder in that it contains files

and links to applications, but additionally each contains active applications. The layout

of each node uses the Immersion concept, with its office metaphor. In this paper we will

outline these systems and how we have implemented them for the purpose of future

testing and refining of the ideas.

2 Immersion

 In the Immersion concept, the active applications are placed surrounding the user

in a 3D virtual space, with the monitor or monitors acting as viewing portals providing

the user with a means of looking into the virtual space. Applications can be dragged

vertically, dragged horizontally in an orbit, and moved closer to or further from the user.

The user’s view may be rotated about the vertical axis using an additional input device or

onscreen interface.

Optionally, but within the scope of the Immersion concept, the user’s view may

be controlled in the other five degrees of freedom available in 3D space. Of the other

degrees of freedom, two could easily be used. They are: pitch, which is rotation about a

horizontal axis perpendicular to the user’s primary view direction, and movement along

the vertical axis. Which of these additional options are used depends primarily on the

design of the view control input device.

Figure 1: Left: the layout of the Immersion concept.

Right: an example of moving an application in an orbit.

The above descriptions give all the information that is necessary to implement

something that fulfills the Immersion concept. However with only the basic ideas

implemented, the concept barely begins to take advantage of the potential offered by a

3D windowing system. To continue exploring the potential, several other unique ideas

will be presented and explored further in the next few sections. The hope is that in the

same way that a start menu is not an integral part of the desktop concept, but is

commonly used by many systems, these additional ideas, while not integral to the

Immersion concept, will be found to be useful and be commonly adopted.

The Immersion concept is relatively unique among what has been developed for

3D windowing systems. Most single user window management concepts have instead

focused on using 3D windows that work with the 2D desktop concept [3][5][6]. Most

systems which intend to provide multiple users with a common workspace allow

windows to be placed anywhere in a virtual environment, leaving it up to the users to

decide how to arrange windows [7]. Such systems, in placing the burden on the user,

require that the interaction system be more general, resulting in a need for a more

complex control scheme than is wanted in common user interaction.

For the purpose of testing the concepts outlined, we chose to implement the

Immersion system using the Looking Glass 3D windowing system. Additionally we

chose to use as a means of interface a chair with a monitor or monitors mounted on it and

a rotation sensor attached to the base so that the virtual space could be more directly

correlated to the real world. This is explained further in section four. Another feature

present in the test implementation of Immersion is a system of nodes that act as in a

manner that will be referred to as workspaces. This will be explained further in the next

section.

3 Workspaces

Workspaces are analogous to folders in that they are visual representations of

system resources. They go beyond folders in that they can hold both the means of

initiating an application, such as a file or a shortcut to an application, and an active

application. This is conceptually useful in that it can provide a similar functionality to

having multiple desktops, but with the added advantage of being able to be organized in a

manner similar to folders.

A potential difficulty with this system is keeping track of where running

applications are located. As an intuitive, at least partial, solution to this, paths to other

nodes will be color-coded. To nodes containing active applications there will be blue

paths. To nodes containing no active applications, but with paths from them to nodes

containing active applications or nodes of this type, there will be green paths. To nodes

containing no active applications and with no paths to the two previously described types

of nodes there will be red paths [Figure 2]. Paths to nodes closer to the root of the tree

will be darker. Paths to nodes further from the root of the tree will be lighter. This may

be all that is needed for the users to have an intuitive understanding as to where active

applications are located, however it may also not be enough information. Determining

this is a subject for further research involving user testing.

Figure 2: Shown here is a sketch of an example workspace tree with the circles representing

nodes, the box representing the user’s location at a node and the black lines representing active

applications.

 The prototype workspace system will be fairly limited, with additional features

added as needed. The goal functionality for workspaces is to represent a particular

folder’s contents in some customizable iconic form and provide a location around which

open applications will be displayed. The goal interface system for workspaces will allow

the user to attach applications either to a workspace node or to the user, thereby allowing

users to keep applications that are needed for multiple tasks always with them.

Additionally the goal interface will provide a means of viewing the node system.

 We envision workspaces as a means of organizing files that are accessed and

created by the user. To that end each workspace will follow a template defined by the

user or by an installed application that relates to what is in that workspace. Templates

could be for associated file types such as music files, office documents or images.

Templates could also be for individual projects such as programming projects or business

projects.

 In an example scenario for the first case, a user creates a new workspace node for

a collection of pictures. The layout and visual style is then based on the existing template

for collections of images. A likely visual style would be to have all the images

immediately visible in a thumbnail form and tiled around the user for easy viewing. The

workspace would include links to relevant applications, such as image manipulation

software. The template may define that file types other than images not be visually

represented, as they are not relevant to the workspace node.

 In an example scenario for the second case, a user creates a new project in an

IDE. The user’s project is then created in a new workspace node that is accessible by a

path from the IDE’s workspace node. Layout and visual style for the new node come

from the IDE’s template for project workspace nodes. Additional applications that are

commonly used in association with projects would be accessible by links included in the

template. Relevant documentation and tutorials would be accessible by links included in

the template. The user could add additional subprojects that would be workspace nodes

accessible by paths from the project node.

4 The Chair

 In conceptualizing Immersion it was decided that a second human interface

device was needed to provide a means of rotating the user’s view. The simplest solution

to this was to add a second mouse with horizontal rotation mapped to the x-axis. There

are other fairly traditional solutions to this problem that could be considered such as a

rotating knob, a thumb stick attached to the keyboard or, if the user wanted only one

input device, an on-screen area could be set aside for use as a kind of control dial. In the

spirit of considering non-traditional solutions that could more elegantly solve the

problem, we considered the user’s chair.

To understand why we might consider using a chair as the view controller,

consider the metaphor of the office in which the rotation of the view to other portions of

the desk is accomplished by the rotation of the user’s chair. Then take that idea and

consider if a screen were directly mounted to the user’s chair and a rotation sensor to the

base of it. It would then be possible for the user to rotate the chair to change their view in

the virtual world as they would in an office in the real world.

The chair is a standard office chair with a wheeled structure attached in front that

supports the monitors and the keyboard and a mouse attached to the bottom that reads the

amount of rotation of the chair [Figure 3]. The mouse is attached to the seat portion and

a patterned surface is attached to the base when the chair is rotated the mouse is moved

over the surface. The mouse as a rotation sensor system is not ideal, but in place of a true

rotation sensor it works as required for our purposes.

Figure 3: Side view of chair and framework: in red keyboard, mouse, monitor and computer; in

green mouse used as rotation sensor; in blue wheeled framework; and in black rotating chair.

The ideal controller for the Immersion concept would be an augmented reality

head mounted display that contains rotation sensors and motion sensors. Given a system

of this kind, the user’s view into the virtual space would be directly mapped to the real

world. If the user moved their head forward in the real world, a corresponding movement

would happen in the virtual and etcetera. As a result the control provided by the chair

would inherently exist, as rotation of the chair would result in rotation of the user’s head,

which would be sensed by the display’s rotation sensors. However, short of an

augmented reality system, the chair’s ability to provide the user with a more direct link

between reality and a virtual space than a hand manipulated input will help to make

human interface more intuitive.

The current drawback of the chair system is that it can only provide one degree of

motion input (rotation about the vertical axis.) With hand manipulated input devices such

as a second mouse or a thumbstick, two degrees of motion input are provided. The

resulting restriction of freedom of movement in the virtual space is not very noticeable,

but a solution to the problem should be considered for future research.

*note as of the time of this writing the chair interface system has not been built due to

mechanical engineering issues*

5 Looking Glass

Looking Glass is a 3D windowing system for Linux built in java. It is capable of

displaying existing X11 applications by rendering the X11 content and then applying it as

a texture to a 3D window. The existing capabilities of this system gave us a good starting

point for building an implementation of the Immersion concept, as our test system is able

to run most applications created to run in X11. However, Looking Glass’ interface

concept is the desktop metaphor, and much of the code structure is built with this in

mind, therefore extensive modification of the code was necessary to implement the

Immersion concept.

Another difficulty encountered in implementing Immersion in Looking Glass

came from a limitation in the input event system in java. Specifically, in java the built

input events system is for only one mouse and one keyboard, and it requires any

additional mice or keyboards to be implemented by the user outside of the existing java

input device framework. Therefore, to receive input from a second mouse requires the

addition of a new input handling thread, which for the Immersion Looking Glass

implementation reads directly from a mouse stream. The components needing the second

mouse’s input then register with this thread and receive events when the second mouse

moves or has a button clicked. With some additional work, this system was made

compatible with existing mouse movement interpreting systems within Looking Glass so

that the movement animation systems could be used.

Overall the decision to use Looking Glass has proven to be a good choice as we

have benefited from being able to create the test version of the Immersion concept in a

real operating system. Before finally finding and deciding on Looking Glass, we had

considered creating a demonstration windowing system as an application built on a 3D

engine such as OGRE. We had also considered some other windowing systems, but we

found that at the time no other system provided as close an integration with an existing

framework or as truly 3D a windowing system as that of Looking Glass.

6 User Testing

 The test implementation of Immersion that has been described here will

eventually be used for user testing to determine the intuitiveness of the concept and how

users respond to the various new ideas. Also in some areas of the concept there are

several options to choose from in deciding how to implement, but no clear best option. In

these cases the optimal way for us to choose the best option is to do user testing.

 A feature that has several choices with no clear best option is the mapping of the

y-axis of the second input device. The options are rotation on a horizontal axis

perpendicular to the primary view direction, movement along the vertical axis, or no

mapping at all. A case could be made for the rotation on a horizontal axis option because

it will resemble the user rotating their head to look up or down. On the other hand the

movement along the horizontal axis option would be useful, as it provides the user with

essentially unlimited space in which to place applications and icons. The third option of

having no change based on movement on the y-axis makes sense if a chair is being used

as a means of control, as there is no means of physically moving on the y-axis with the

chair.

 Another area that would benefit from user testing is the navigation system for the

workspace nodes. One option would be an extension of any folder-viewing concept, as

the workspace system itself is an extension of the folder organized file system concept.

Potentially it could also be a zoomed out three quarter view of the nodes themselves.

Another possible option would be not to have any external view of the nodes, but instead

have links within the nodes that are color coded to indicate whether the linked node

contains active applications or nodes with active applications.

7 Conclusion

 We have described how Immersion and associated concepts can provide solutions

to the problems outlined in the introduction. The most important is that the space in

which applications are placed is no longer limited by the resolution of the monitor. The

problem of organizing applications and files into relevant groups is solved by the addition

of workspace nodes. The ability to use a chair’s rotation to provide input on how one

looks into the virtual space provides a more direct interaction between the physical and

the virtual, another step in the direction of augmented reality systems.

 Now that the Immersion system and associated concepts have been described and

a test system implemented, the next step will be refinement through user testing. In

addition to deciding how to best implement the portions of the design as described in

section six, this should include testing for the purpose of smoothing away rough edges

and finding and fixing things that are not intuitive to the average user.

[1] Bowman, D., Kruijff, E., LaViola, J. & Poupyrev, I. (2001). An Introduction to 3D

User Interface Design. Presence, 10(1), 96-108

[2] Ringel, M. When one isn’t enough: an analysis of virtual desktop usage strategies and

their implications for design. CHI Extended Abstracts 2003, ACM Press, 762-763.

[3] Leach, G., Al-Qaimari, G., Grieve, M., Jinks, N., & Makay, C. (1997). Elements of a

three-dimensional graphical user interface. Retrieved May 1, 2006, from

http://goanna.cs.rmit.edu.au/~gl/research/HCC/interact97.html

[4] Hutchings, D. R., Smith, G., Meyers, B., Czerwinski, M., & Robertson, G. Display

space usage and window management operation comparisons between single monitor and

multiple monitor users. Advanced Visual Interfaces 2004, ACM Press, 32 – 39.

[5] Chapuis, O. & Roussel, N. Metisse is not a 3D desktop! TR 1407, LRI, Université

Paris-Sud, 2005.

[6] Kawahara, H., Byrne, P., Johnson, D. & Gadepalli, K. Project Looking Glass: A

Comprehensive Overview of the Technology Rev. 0.2 March 14, 2006. Retrieved May 1,

2006, from https://www.dev.java.net/files/documents/1834/30923/LG3D-Overview.pdf

[7] Smith, D., Raab, A., Reed, D., & Kay, A. Croquet: A menagerie of new user

interfaces. In Proceedings of C5 2004, pages 4–11. IEEE Computer Society, January

2004.

