
Implementation and Experimental Evaluation of
the Cache-oblivious Buffer Heap

CS379H Thesis
Lingling Tong

Advisor: Vijaya Ramachandran

May 5, 2006

1 Introduction

During the last decade CPU speed has increased, but speedup in memory access
has not kept pace. Computer memory is divided into hierarchies with varying
levels. A trade-off exists between small and fast memory versus large and slow
memory. To simplify I/O analysis, memory can be thought of as divided into two
levels where computation on data in main memory is fast and going to external
memory is slow. With the emergence of applications that perform on large sets
of data, the need for I/O efficient algorithms has risen. As an example, the
online travel aid MapQuest provides directions for getting from destination A to
destination B. Data can be imagined as a graph, with vertices representing cities
and connecting streets representing edges. Dijkstra’s shortest path algorithm,
which uses the priority queue data structure augmented with the decrease-key
operation, can be used to compute the shortest path between A and B. Because
of the large data size and the growing gap between CPU speed and memory
access, efficient algorithms need to consider the non-trivial costs of I/O. This
thesis takes one data structure, a cache-oblivious priority queue-buffer heap-and
examines its practical running time. The goal is to see whether buffer heap is a
viable alternative to binary heap when working with large datasets.

2 Background

2.1 Memory hierarchy

We begin with a brief background on memory hierarchies. Memory hierarchies
were invented to provide faster memory access by dividing the flat memory struc-
ture into levels of varying size. A small, fast but expensive level is placed near

1

the CPU, and larger, slower, cheaper levels are arranged farther away. Different
architectures handle the divisions differently. A cache is any small, fast memory
level that acts as a buffer for larger, slower memory levels. Caches are designed to
take advantage of locality of reference. Temporal locality refers to the observation
that programs tend to reference the same data multiple times in short period of
time. Spatial locality refers to the trend that if a program references data at a
give memory address, it is likely to reference data in adjacent addresses as well.
Thus, data is transferred between memory levels in blocks. When the data is not
found in a memory level, it is considered a cache-miss, and the next larger, slower
memory level would be checked. Cache misses are expensive. There are many
policies on replacing data in the cache. We assume an optimal cache replacement
policy.

2.2 External memory algorithms

To simplify the memory hierarchy for algorithm analysis, we use the two level I/O
model [1]. In this model, the memory hierarchy is abstracted into a fast internal
memory (cache) and an arbitrarily large external memory (main memory). N is
the number of elements being processed, M is the size of the internal memory,
and B is the block size. We assume 1 ≤ B ≤ M < N for external-memory
problems. Because the time it takes to access memory on disk far outweighs the
number of instructions executed, these algorithms are evaluated based on I/O
efficiency. The complexity is measured in number of data transfers between cache
and main memory. Some known bounds for analyzing I/O are: scan(N) takes
O(N

B
) since N contiguous elements incur dN

B
e + 1 cache-misses; sort(N) takes

O(N
B

logM
B

N
B

) I/Os [1].

2.3 Cache-aware and cache-oblivious examples

Research in external memory graph algorithms and data structures has been
divided into algorithms that are cache-aware and algorithms that are cache-
oblivious. Cache-aware external memory algorithms achieve optimality by fine-
tuning hardware parameters. As an example, say we want to matrix multiply
two n× n matrices A and B and store it in matrix C. A cache-aware algorithm
works by dividing each matrix into submatrices of size s×s, where s is the tuning
variable. If a submatrix fits into internal memory, any standard O(s3) algorithm
could be used to update C. The drawbacks of cache-aware algorithms are that
they are machine dependent and complicated to tune optimally, especially when
dealing with multiple memory levels. Cache-oblivious algorithms, on the other
hand, are system independent. They need no prior knowledge of hardware param-
eters. To turn the cache-aware matrix multiply example into a cache-oblivious
version, a divide-and-conquer method can be used. The difference is to keep sub-
dividing the matrix until it reaches a constant size that is small enough to fit into

2

internal memory of any architecture. Cache-oblivious algorithms also free the
programmer from any responsibility for data movement between memory levels
[2].

2.4 Priority queues

This thesis focuses on a specific data structure, the priority queue. A priority
queue is a data structure that manages a set S of elements with associated key
values. The basic operations are:

• insert(x, k)-adds element x with key value k into S

• delete-min()-returns the element with the smallest key and removes that
element from S (in the case of min-heaps)

• minimum()-returns the element with the smallest key in S

Arge et al.’s cache-oblivious priority queue works by distributing elements into
levels of decreasing size [3]. The amortized time is O(1

B
logM

B

N
B

) I/Os, which

is optimal (follows from the sort(N) bound). The Funnel heap introduced by
Brodal and Fagerberg is patterned after funnelsort and works using a binary
merger [4]. It also has an amortized cost of O(1

B
logM

B

N
B

). Priority queues that

support two additional operations are useful in many graph algorithms. An
example application would be Dijkstra’s algorithm for finding shortest paths.
The two additional operations are:

• delete(x)-removes element x from S

• decrease-key(x, k)-sets element x with associated key value kx to min(kx, k)

The cache-aware Tournament tree supports the augmented priority queue with
an amortized cost of O(1

B
log2

N
B

) per operation [5]. The Buffer Heap (BH)
introduced by Chowdhury and Ramachandran [6] is the first priority queue that
has support for decrease-key and is cache-oblivious. It has an I/O bound of
O(1

B
log2

N
B

), a factor of 1
B

improvement over the traditional binary heap. It is
not known whether the O(1

B
log2

N
B

) bound is optimal for priority queues with
decrease-keys. A second version of buffer heap, the Slim Buffer Heap (SBH)
[7], also by Chowdhury and Ramachandran, has an amortized bound of O(1

λ
+

1
B

log2
N
λ
) where λ is a parameter, 1 ≤ λ ≤ M , and λ refers to the portion of main

memory where the data structure is stored. Access to those λ elements costs no
I/O. The data structure is free to use as much of main memory for temporary
calculations as it wants. The motivating factor for using SBH is in the case of
shared memory space. The main difference between BH and SBH is that the
U buffer in SBH is divided into levels, and those levels are bounded. What is
implemented is a combination of both BH and SBH without the λ. From here
forward, ”buffer heap” refers to this combination. The amortized bound is the
same, O(1

B
log2

N
B

).

3

3 Buffer heap

3.1 Overview

The buffer heap data structure maintains the heap state by keeping track of
operations stored in two buffers. The U buffer is the update buffer, and the B
buffer is the element buffer where the elements of the data structure are stored.
Each buffer is divided into a total of r levels where r = 1+ dlog Ne, and N is the
maximum number of elements. The buffers are arranged such that the top of each
buffer is denoted B0 and U0 and the bottom as Br−1 and Ur−1. All new operations
enter at the top of the buffer, U0. The buffer heap takes the lazy approach and
operates by applying updates as a batch process. Each decrease-key and delete
is allowed to accumulate in the U buffer and applied to the elements in the B
buffer all at once when a delete-min is called or the data structure periodically
restructures itself. The data structure does as much useful work on data currently
in the cache as possible before eviction. The invariants of the buffer heap are:

1. Each Bi contains at most 2i elements.

2. Each Ui contains at most 2i updates.

3. For 0 ≤ i < r − 1, the key of every element in Bi is no larger than the key
of any element in Bi+1.

4. For 0 ≤ i < r−1, for each element x in Bi, all updates applicable to x that
are not yet applied reside in U0, U1, . . ., Ui.

5. Elements in each Bi are kept sorted in ascending order by element ID.

6. Updates in each Ui are divided into (a constant number of) segments with
updates in each segment sorted in ascending order by element ID and time
stamp.

Pseudocode can be found in the appendix.

3.2 Operations

The buffer heap supports the operations decrease-key(x, kx), delete(x), and delete-
min. The function decrease-key(x, kx) serves the dual purpose of decreasing the
key associated with x to min(kx, key) if x is found in the data structure, and
inserting the pair (x, kx) into the data structure if x is not found.

4

3.2.1 Decrease-key/Delete

Each decrease-key and delete is first added to U0 and marked with the current
timestamp. At this point, invariant (2) may be violated. The data structure uses
two internal functions. Fix-U(i, B′) maintains invariant (2). Starting at level
i, if Ui contains more than 2i elements, Fix-U(i, B′) applies the updates in Ui

on Bi according to its operation and timestamp and collects the results in B′.
Apply-Updates(i) handles the movement of elements between Ui and Bi. It is then
possible for Bi to contain more than 2i elements due to multiple decrease-keys
turning into inserts. Then, the 2i smallest elements by key value are kept in Bi

(sorted by element ID) and the rest of the elements are moved to Ui+1 as internal
Sink operations. Operations in Ui that were not applied to some element in Bi

are also copied as Sink operations into Ui+1. At the end of Apply-Updates(i), Ui

is empty. This process is repeated for each i until either invariant (2) is satisfied
or i = r. Finally, the elements collected in B′ are redistributed to the shallowest
levels in the B buffer while maintaining invariants (1, 3, 5).

3.2.2 Delete-min

The case of delete-min() is different. A delete-min() is not inserted into U0.
Instead, it calls Apply-Updates(i) until some element has been collected into B′.
Because of the invariants, we know that B0 contains the minimum element, and
it is returned and removed from the B buffer.

Finally, the data structure is optionally periodically reconstructed when the
number of operations in the U buffer becomes twice the number of elements in
the B buffer. Reconstruction calls Apply-Updates(i) from i = 0 to i = r − 1.
And, the collected elements are also redistributed to the shallowest levels in B
maintaining invariants (1, 3, 5). Reconstruction guarantees that the buffer heap
uses linear space in the size of the elements.

Correctness follows from maintenance of the invariants.

3.2.3 I/O bound

We use the potential method to calculate amortized I/O bound. Amortized
analysis provides the bound for cost per operation. The potential function uses
a potential Φ defined on a data structure D such that Φ(Di) = Φ(D0) where Di

is the data structure after ith operation and D0 is initial data structure. Then,
the amortized cost is the actual cost plus the change in potential.

ĉi = ci + Φ(Di)− Φ(Di−1) (1)

Observations A few observations will be helpful for the analysis for buffer
heap. The general movement of elements follows a U shape where an operation
starts in U0, moves down the U buffer, crosses over to the B buffer, and moves

5

up the B buffer. Since the height of each buffer is r, the total levels traversed is
at most 2r. The elements in each Bi will traverse at most i+1 levels before being
removed from the data structure. Finally, each decrease-key is treated as two
operations. The application of Apply-Updates(i) could result in an overflow of
Bi, in which case the excess elements each generate a new internal sink operation
and are moved to Ui+1.

Lemma: The amortized cost of operations on the buffer heap is O(1
B

log2
N
B

).

The potential function is defined as follows:

Φ(H) =
2

B

r−1∑
i=0

{(2r − i)ui + (i + 1)bi}+
2∆0r

B
(2)

Here ui refers to the number of operations in Ui, and bi refers to the number of
elements in Bi. The ∆0 represents the number of new operations since the last
reconstruction. The 1

B
results from the sequential scan of X elements costing

Θ(X
B

) I/O. The (2r − i)ui accounts for movement of elements in the U buffer;
the (i+1)bi accounts for movement of elements in the B buffer. The ∆0r provides
credit for movement of new operations.

Reconstruct Reconstruction occurs whenever ∆0 = Ne

2
, where Ne is number

of elements in the data structure after the last reconstruction. This means that
bi is between Ne

2
and 3Ne

2
. The worst case scenario is that all ∆0 updates travel r

levels before being applied for an actual cost of O(1+ ∆0r
B

). After reconstruction,
all ui are emptied and each update adds at most 1 element. The potential after
reconstruction is 2

B

∑r−1
i=0{(r + 1)ui + (i + 1)bi}. This gives a potential change of

at least ∆0

B
, for an amortized cost of at most 0.

Decrease-key/Delete The change in potential is 2× 6r
B

for decrease-key and 6r
B

for delete. We show that the cost for accessing each level via calls to Fix-U pays
for itself. We assume the first log B−1 levels incur no I/O. The cost for accessing
a level higher than log B− 1 has also been paid. Let j be highest level i accessed
by Apply-Updates. If Uj is full then, the potential drop from the movement of the
2j updates to Uj+1 is sufficient to pay for scanning and updating those elements.

Redistribution using a linear selection algorithm also takes O(2j

B
) I/Os since the

2j term dominates in choosing 2k, 0 ≤ k ≤ j smallest keys for redistribution. If
Uj is not full then the movement of each update to Uj+1 pays for its scan. Then,
the amortized cost becomes O(1

B
log2 N) for both decrease-key and delete. And,

because the first log B levels have no I/O cost, it becomes O(1
B

log N
B

).

Delete-min The potential change is 2r
B

. The amortized cost of delete-min is
the same as that for decrease-key/delete. The call to Apply-Updates(i) empties

6

out all Uj elements j < i up to Ui, which pays for the scanning and movement of
those elements. And, the Ui overflow case handled by Fix-U has also been shown
to be self-paid. The amortized cost is then O(2

B
{log N − log B}) = O(1

B
log N

B
).

4 Implementation

4.1 Buffer heap data structure

The language of choice is C++ for its object-oriented style and template datatypes.
The representation of each element/update is a struct that contains the x value,
key value, and an unsigned integer state field. The state field is broken up into a
timestamp, level number, and operation code.

Conceptually, the buffer heap is divided into two buffers. For implementation
purposes, it is more efficient to use one buffer, as we want to maximize spatial
locality. The natural representation for the buffer would be the stack due to the
pushing and popping from one end. However, we are dealing with two buffers
interleaved into one and require the simultaneous scan of both Ui and Bi. Thus,
our basic data structure is a one-dimensional, dynamically resizable vector. The
vector doubles in size whenever it becomes full and shrinks during reconstruction.
During reconstruction we know r, the size of the data structure, so it becomes
efficient to resize our vector at that time to minimize wasted space. The arrange-
ment of the U and B segments are as follows. If the vector grows from 0 to N ,
then the buffers are laid out as Br−1, Ur−1, . . ., B0, U0 in contiguous segments,
with a size marker between each segment. This arrangement makes it efficient to
add a new operation to the head of U0.

Two internal operations are utilized to maintain correctness: sink-i and delete-
i. Sink-i marks updates that originated with a decrease-key applied to some
level i and became evicted due to Bi overflow. A delete-i operation is added to
Ui+1 whenever a decrease-key operation inserts a new element into Bi. These
operations help maintain a correct state.

4.2 Selection

The part of the pseudocode that required optimization is the linear selection
algorithm for handling Bi overflows and redistribution of the elements. Because of
the requirement that scanning both Bi and Ui must be done in linear time, the Bi

data must be kept stored in x-value order. However, overflows and redistribution
are handled based on key value ordering. These two competing factors contribute
to the bottleneck of the buffer heap.

The first algorithm examined for doing linear selection is randomized-select.
Randomized-select works by randomly choosing a pivot element in the array,
partitioning the elements around that pivot, and returning the pivot if the index

7

of the pivot is i. If the pivot is not at index i, then it recursively calls itself on the
left subsection or the right subsection. Because randomized-select is dependent
on randomly choosing the pivot, its run-time could be as bad as Θ(n2) if we want
to find the smallest element and it always partitions around the largest. But, our
input data is mostly randomized, and randomized-select runs in O(n) on average.

The second linear select algorithm is sample-select. Sample-select works by
taking a sampling sized n

3
4 of an input array A of size n, call the resulting array

S. It sorts the elements of S and finds the elements x and y with ranks i× s
n
−
√

n
and i× s

n
+
√

n where s is size of sampled array. It then scans the original array
to find the ranks of x and y in A, call them L and R. With high probability,
L < i < R. Then a scan is made through the original array A and all elements
z, x ≤ z ≤ y, are collected in a new array Q. After sorting the elements of Q,
the element with rank i is in Q[i − L]. Even though there are two calls to sort
routines, sample-select runs in O(n). The two calls to sort are made on arrays of

size at most n
3
4 so the dominating term is the linear scan of A.

A summary of the timing findings is given in Figure 1 and a plot is given in
Figure 2.

Figure 1: Timing data for rand-select and sample-select

All testing was done on a random sample of size n, searching for the element
with rank i, also randomly chosen, and averaged over 5 runs. Rand-select and
samp-select were coded according to the above descriptions, with no modifica-
tions. Because the bound for rand-select is only linear in the expected case and
the bound for samp-select is O(n) with high probability in n, samp-select does
better. Samp-mod contains additional improvements to the basic sample-select
idea.

The first observation is that sorting the sampled array S and finding x and
y with ranks l and r can be done in linear time with calls to samp-select. The
next changes are based on finding x and y and collecting x ≤ z ≤ y at the same
time. This feat is accomplished using a 3-way partitioning algorithm by Bentley
and McIlroy’s [8]. After partitioning, if L ≤ i ≤ R, then we know our element
with rank i is in A[L..R]. And, we make a recursive call on A[L..R]. If L > i we
recurse on A[0..L− 1]. If i > R, we recurse on A[R + 1..n− 1]. The basecase is
handled with a call to rand-select. Based on the timings, samp-mod was chosen

8

Figure 2: Plot of selection data

for incorporation into buffer heap.

4.3 Incorporation into buffer heap

Implementation from the pseudocode is straightforward.
The two functions open to variations are merge and redistribution. For merge,

in the general case, each level Ui can have multiple segments from the movement
of elements and updates from Bi−1 and Ui−1 respectively. Before Apply-Updates
is called, the different segments of Ui should be merged. Merging happens two
segments at a time and uses extra space equal to the size of one of the merging
segments. For redistribution, sample-select finds the 2ith largest element and
partitions the elements around that element. Partitioning does not guarantee
any ordering of the first 2i elements. Because those elements need to be placed
back into the B buffer in x value order, a system sort is called. Repeated calls
to sort are expensive.

The improved version of buffer heap uses a merge during the collection of
elements for redistribution. Using merge does not disrupt the amortized bound
since merging takes linear time in the length of the segment, and the dominating
factor is the length of the longest segment, which is paid for by the movement of
elements of that segment to lower B buffers. Then, when the elements are ready
for redistribution, no call to sort is necessary, as the previous merge steps have
already placed the elements in x value order. We also allowed the capability of
turning off reconstruction and beginning the buffer heap on a level other than
i = 0, i.e., for some j, the first j levels of B and U are not used, and operations
are first inserted into Uj.

9

5 Evaluation

The binary heap data structure was chosen for comparison as it has worst case
bound of O(log2 N). The hope is that the buffer heap would provide a rough 1

B

improvement to the binary heap. Once we deemed the buffer heap to be correct,
we used operations generated from Dijkstra’s shortest path on a random graph
as input. All test data fit into internal memory.

Figure 3: Comparison of binary heap and buffer heap with and without recon-
struction and fix-u. The left (blue) bar is binary heap. The right (red) bar is
buffer heap.

The above values were averages from 3 runs on Uruk-2, a 3.0 GHz Intel Xeon
machine with 4GB RAM, 8KB L1 cache and 512KB L2 cache. A similar trend
was seen on leaflock, a dedicated Sun machine. The test data was the sequence
of operations performed during Dijkstra’s algorithm on a randomly generated
graph. In all four figures, the number of vertices was 10 million.

Buffer heap does better with reconstruction and fix-u turned off. For the
purposes of shortest paths, turning those routines off is reasonable, as the space
requirement is known ahead of time. As the number of operations is increased
buffer heap slows down faster than binary heap. This trend can be accounted for
by the extra cost of traversing down the levels in buffer heap for decrease-keys.
Without reconstruction and fix-u, buffer heap has a reduction in time of about
25% over binary heap. For smaller sets of vertices, that percentage is lower,

10

and in many cases, due to the high cost of overhead, buffer heap runs slower.
For significantly large set of vertices and external memory access, we expect the
percentage to be higher.

Preliminary results using STXXL show the expected increase in performance.
STXXL is a C++ STL extension library that allows simulation on restricted
memory sizes. This way we can force external memory access for both buffer
heap and binary heap. The data was provided courtesy of Lan Roche. Buffer
heap does extremely well when the memory size is restricted to less than 4N bytes
where N is the number of vertices. Buffer heap showed an increase by a factor of
115.

6 Conclusion

The design of buffer heap was motivated by the desire to improve runtime of
finding the shortest path on graphs with a large number of vertices and edges.
The amortized cost of buffer heap as compared to binary heap showed an increase
by a factor of 1

B
. Preliminary runtime results show a lower than expected increase.

The reason is two-fold. One, the overhead of maintaining the buffer heap state is
high. Comparison between turning reconstruction and fix-u on and turning those
routines off shows that turning reconstruction and fix-u off gives an improved
runtime. Two, perhaps the data size is not large enough and going to external
memory will provide the difference. Results from STXXL provide evidence for
significant improvement of buffer heap compared with binary heap when the
memory size is restricted less than 4N bytes, where N is the number of vertices.

References

[1] A. Aggarwal and J.S. Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, 31:1116-1127, 1988.

[2] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proceedings of the 40th Annual Symposium on Foundations
of Computer Science, pp. 285-297, 1999.

[3] L. Arge, M.A. Bender, E.D. Demaine, B. Holland-Minkley, and J.I. Munro.
Cache-oblivious priority queue and graph algorithm applications. In Pro-
ceedings of ACM Symposium on Theory of Computing, pp. 268-276, May
2002.

[4] G.S. Brodal and R. Fagerberg. Funnel heap - a cache oblivious priority queue.
In Proceedings of the 13th Annual International Symposium on Algorithms
and Computation, LNCS 2518, pp. 219-228, Nov. 2002.

11

[5] V. Kumar and E. Schwabe. Improved algorithms and data structures for solv-
ing graph problems in external memory. In Proceedings of the IEEE Sympo-
sium on Parallel and Distributed Processing, pp. 169-177, 1996.

[6] R.A. Chowdhury and V. Ramachandran. Cache-oblivious shortest paths in
graphs using buffer heap. In Proceedings of the 16th Annual Symposium on
Parallelism in Algorithms and Architecture (SPAA). pp. 245-54, 2004.

[7] R.A. Chowdhury and V. Ramachandran. External-memory exact and approx-
imate all-pairs shortest-paths in undirected graphs. In Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete algorithms (SODA), pp.
735-744, Jan. 2005.

[8] J. L. Bentley and M. D. McIlroy, Engineering a sort function, Software–
Practice and Experience, 23, 1249–1265 (1993).

7 Appendix

Buffer Heap

Decrease-Key(x, key)/Delete(x):

1) Insert the operation into U0 augmented with the current timestamp

2) a) Set B’ <- 0, i <- 0

b) Fix_U(i, B’)

3) Redistribute B’ to shallowest levels maintaining invariants

4) Reconstruct

Delete-Min():

1) Set i <- -1

while i < r-1 do

a) set i <- i+1

b) Apply_Updates(i)

c) if Bi is non-empty then exit loop

2) a) set B’ <- Bi, i <- i+1

b) Fix_U(i, B’)

3) a) Extract the element with the minimum key from B’ to return

b) Move remaining elements from B’ to the shallowest possible element

buffers maintaining invariants

4) Reconstruct

Reconstruct():

12

// No is number of operations since the last reconstruction

// Ne is number of elements in BH after last reconstruction

1) if No = Ne/2+1

a) for i = 0 to r-1 do

1) Apply_Updates(i)

2) Merge the elements of Bi with B’ by element id

b) distribute the elements remaining in BH to the shallowest possible element buffers

Fix-U(i, B’):

1) while i < r and Ui overflows

a) Apply_Updates(i)

b) Merge the elements of Bi with B’ by element id

c) set i <- i+1

2) if i < r then merge the segments of Ui

Apply-Updates(i, B’):

1) if Bi is empty and i < r-1

a) merge segments of Ui

b) move the contents of Ui as a new segment of Ui+1

c) set Ui <- 0

2) else

a) merge the segments of Ui

b) if i = r-1 then set k<-inf else set k<-largest key of elements in Bi

c) scan Bi and Ui simultaneously and for each operation in Ui if the

operation is:

1) delete(x), then remove any element (x, kx) from Bi if exists

2) decrease-key(x, kx)/sink(x, kx), then if any element (x, kx’)

exists in Bi

a) replace it with (x, min(kx, kx’))

b) otherwise copy (x, kx) to Bi if kx <= k

d) if i < r-1 then

1) copy each decrease-key(x, kx)/sink(x, kx) in Ui with kx > k to Ui+1

2) for each delete(x) and decrease-key(x, kx) with kx <= k in Ui copy

a delete(x) to Ui+1

e) if Bi overflows then

1) if i = r-1 then r <- r+1

2) keep the 2i elements with the smallest 2i keys in Bi and insert

each remaining element (x, kx) into Ui+1 as sink(x, kx)

f) set Ui <- 0

13

Selection

Randomized-select(A, p, r, i)

1. if p = r

2. then return A[p]

3. q <- Randomized-partition(A, p, r)

4. k <- q - p + 1

5. if i = k

6. then return A[q]

7. elseif i < k

8. then return Randomized-select(A, p, q-1, i)

9. else return Randomized-select(A, q+1, r, i-k)

Partition(A, p, r)

1. x <- A[r]

2. i <- p - 1

3. for j <- p to r - 1

4. do if A[j] <= x

5. then i <- i + 1

6. exchange A[i] <-> A[j]

7. exchange A[i+1] <-> A[r]

8. return i + 1

Randomized-partition(A, p, r)

1. i <- Random(p, r)

2. exchange A[r] <-> A[i]

return Partition(A, p, r)

Sample-select(A, 0, n, i)

(1) Pick a random sample S of the elements of array A by choosing each

element in A to be in S with probability p = 1/(n1/4) independent of the

other elements.

(2) Sort the elements in the set S using Quicksort.

(3) Let |S| = s and let l = (s/2)-sqrt(n) and r = (s/2)+sqrt(n).

Find the element x with rank l in S. Find the element y with rank r in S.

(4) Find the ranks of x and y in A and let these ranks be L and R,

respectively.

(5) If L < n/2 and R > n/2 then

(i) Find all elements z in A such that x < z < y, and place these

elements in a set Q.

(ii) Sort the elements in Q using Quicksort and output the element with

rank ((n+1)/2)-L in Q as the median element of A.

14

