Design of Standar dized Representations for Animated Scenes for
Ray Tracing

David Whiteford
The University of Texas at Austin

1 Introduction

In computer graphics, the process of creating agergenerally consists of several steps: a
scene file is created, the scene file is loademlargraphics system, and finally the system creates
the image in a process called rendering. The sidergtores information about the scene from
which the image will be created. More specificafiyscene file generally consists of a collection
of objects, information about where the objectsaar@ how they look, lights to illuminate the
scene, the viewpoint from which the scene is saed,if the scene is animated, information
about how everything in the scene changes over time

The file format used to represent the scesealarge impact on the system as a whole. If the
format is not robust enough, then there will be sarseful graphics effects that will be hard or
impossible to represent within the file. If therfat provides too many features, then it becomes
harder to understand and integrate into a systéthe format does not organize the data it
represents in a good way, then the system will laalvard time rendering the image in an
efficient manner. Thus, a format suitable for $lgstem being used and task being performed
must be chosen.

Two of the most commonly used methods of rendeare Z-buffering and ray tracing. Z-
buffering is a method of approximating what a sdewné&s like, and is relatively computationally
inexpensive. Ray tracing, on the other hand, isemealistic, but is much more computationally
expensive compared to Z-buffering. Even thoughtraging is more realistic, it is not feasible
to do in real-time on modern hardware, which hdsdéuffering to be the most widely used
algorithm for many applications, especially thdsat tare real-time. As such, most of the
graphics hardware out nowadays is designed spaityfior Z-buffering. As hardware in
general and algorithms advance, however, ray tgasilbecoming more feasible. To make the
switch from Z-buffering to ray tracing happen, diént things need to happen. For example,
new, more advanced algorithms must be discoverddeeter hardware, maybe even hardware

targeted towards ray tracing, must be developddo 8f importance is designing a file format
suitable for this task, which this paper will foqus.

The goal of this paper, specifically, is takate design alternatives for representing
animated scenes to be used in ray tracers. Existjng graphics file formats that address
related goals will be discussed and evaluated.t,Nlex exact requirements for a file format for
animated scenes to be used in ray tracers wilsbessed. Finally, a suitable file format, as well
as thoughts on what would be required to implemsapport for the given format, will be

presented.

2 Background

2.1 Ray Tracing

Ray tracing is a method used to create very reaiisages. The idea behind ray tracing is to
simulate light as it is transported throughoutengc In a real scene, light is emitted from atligh
source over a continuous range of directions. @&higted light is called radiance. The
irradiance of a point on a surface is defined adrtegral of the incoming radiance over all
directions. When the light reaches the surfacanadbject, the light is reflected from the surface,
transmitted through the object, or both, also @/eontinuous range. This continues until the
light hits an eye point or film, at which pointistseen by the viewer. The combination of
irradiance over all points on the eye or film defirthe image.

Finding the exact irradiance at a specifimpoequires solving a complex integral involving
the objects and lights in the scene. This is easible, so ray tracers normally discretize the
integral to approximate it. This is done by mongliight as rays and simulating these rays as
they propagate through the scene. This is gegyatahe in one of two ways: “shooting” or
“gathering.” The “shooting” method involves castirays from light sources and seeing where
they end up, much like what happens in realitye Tgathering” method calculates irradiance by
casting rays from a point and seeing how much inegmadiance arrives at the point from those
rays. Either way, if many rays are shot out ahgamnt, the complexity of the process will grow
very quickly. Thus, another approximation whiclstsatewer rays but still retains most of the
real-world effects is often necessary.

Whitted style ray tracing, due to Turner Watktis one example of this. Whitted style ray
tracing uses a simplified version of the “gathetimgethod along with Phong shading. Rays are
cast from the eye towards the scene. When a tagsects with an object, the color of that point
when viewed from the eye must be determined. Pkbading is performed by determining the
contribution of light by the light sources that dieectly visible from the point. Reflectance
effects are approximated by casting a ray in thection that the incoming ray would be
reflected by the surface. If the object is atrahslucent, a ray is cast through the objectén th
direction that the incoming ray would be refractedording to Snell’s Law. This way, most of
the effects desired in ray tracing are reasonghpyaximated by sending out at most two rays at
each intersection point.

When done naively, even Whitted style rayitrgucs expensive. One of the most time-
consuming aspects of ray tracing is finding ther@staobject that a ray intersects. To find which
object that is, a naive solution would simply festintersection against every object in the scene
and the closest object would be chosen. The uspatial sorting acceleration structures, such
as octreesd trees, and BSP trees, can greatly improve thaesity of this process. These
structures sort objects based on where they ateiacene. This way, intersection tests only
need to be performed on objects that are neaiatheAlso, intersection tests can be performed
starting from the objects closest to the originhef ray, so that as soon as an intersection isffoun
we know we have found the closest object and agm sAcceleration structures play a very key

role in making ray tracing feasible on modern haaby

2.2 Skinning

Often in computer graphics we wish to representpier, realistic looking figures, such as
humans. To represent such a figure, different@ggres can be taken. One such approach is to
use a triangle mesh, which is simply a set of gies that are grouped together to form one
object. This works great for representing an digecing a single frame, but representing a
detailed object during animation using this mettskarder. One solution is to create a separate
triangle mesh for each position that the objectlwam, and use the appropriate mesh during the
appropriate frame. This solution is not a good femevarious reasons. For one, storing multiple
copies of a detailed object will use up much moesnory than desired. Also, this method

requires that the artist spend time producingaagiie mesh for each pose. Another solution is to

partition the triangle mesh into a hierarchy ofaepe parts. For example, a human mesh can
start with a torso, have a head, arms, and legstedtl to the torso, have a hand attached to each
arm, and have a foot attached to each leg. Thys when the character needs to change
positions, all that needs to be done is to chahg@osition of each body part relative to its
parent in the hierarchy. This solution is alsoagreat one, because during animation, the body
parts connecting to each other will not blend wssl the joints will not be visually compelling.

The solution that combines the best of botthe§e other methods is called skinning.
Skinning is the process of binding a mesh "skind tderarchy of bone joints. Each vertex of the
mesh is bound to a number of joints using diffekeeights. The weighted average of the joints
determines the position of the vertex. During ation, the movement of the joints is specified,
and thus the positions of the vertices move smyatith the joints. Using this method you can
create objects that deform much more smoothly atdrally than objects with rigid

transformations.

2.3 Shaders

Most file formats and rendering systems allow teeruo specify the material of an object,
which in turn determines how an object appearse mhaterial often includes attributes such as
the color of the object, different ways in whicle thbject reflects light, and the translucency of
the object. This is useful in many cases and allfaw a decent approximation of how objects
appear in real life, but for more realistic lookimgages, better tools are required. Shaders are
often used to create customized, and often vefistieaappearances of objects.

A shader is usually written by a user, andsisd to determine what the outgoing radiance
from a point on an object is. Shaders most ofi&e the form of a small function or program
that can be embedded into the description of aesitself. A shader can be as simple or
complex as the user desires, and can include tsungfs as the color of the object itself, light
coming in directly from light sources, light reftexwy off of other objects in the scene, the angle
that the object is being viewed from, and evenot$f¢hat are not realistic at all if the user

desires.

3 PreviousWork

Given the immense number of applications that usgeate graphics, it is no surprise that there
are also many different formats for scene represiemis being used. This section will discuss

some of these formats.

3.1 RenderMan Interface

The RenderMan Interface, or RI, was designed bgrRixthe 1980’s, and is said to be the
“Postscript of 3D Graphics.” The idea was to ceemstandardized representation for 3D scenes
that was general enough to fit the needs of mqdicgtions that use 3D graphics. It will be
good to look at the RenderMan Interface becauséligive us an idea of how to design a 3D
graphics file format to be general, and becauseltides a powerful shading language. RI
comes in two forms. One is an API that specifiesléection of function calls that tell the
application what to draw. These functions canny@lémented in any language, and can thus be
called from within any language for which the Remdign Interface has been implemented. The
other form is the RenderMan Interface BytestreanRI8, which is the file format version of RI.
Files encoded in this way can be stored using re@&héASCIl representation or a binary
representation. There is essentially a one tonwaggping from RIB to the RI API. RIB allows
any scene to be represented and stored in a wawithallow it to be rendered in any system
implementing the RenderMan Interface.

The RenderMan Interface is great in some atasot so much in others. For example, it
includes only rudimentary support for animatiorack frame of animation is specified one at a
time using the RiFrameBegin() and RiFrameEnd() fioms. In between the two functions, the
entire scene that must be drawn during that framst tme specified completely. It is not
possible to simply modify the parts of the scera ave changed for use in the next frame.
This makes it very difficult for an application éaploit the frame to frame coherence that is
often present in animations. RI also does not srigpe skinning method described above.

The RenderMan Interface does include a rothestling language called the RenderMan
Shading Language. It is a procedural shading lagguhat is syntactically similar to the C
programming language. There are useful built-imcfions supplied by the language that make

many things, such as ray tracing, possible. Theihate() function, for example, provides a

way to specify the outgoing radiance from a spe@bint. This function is normally used in

light shaders, which specify how the lights in arszact. A cone and a statement are passed into
the illuminate() function, and the statement isoeted with respect to each point within the cone
that the light source illuminates. Whereas illuatéy) is the “shooting” function, illuminance()

is the “gathering” function. A cone and a statetragp passed into illuminance(), and the
statement is executed with respect to each objglcirvihe cone that illuminates the point. This
can include light sources, as well as other objietsreflect light onto the point. The job of the
illuminance() function is to gather the incominglieence and convert that to an outgoing

radiance. The phong() function, which providesieckjand easy way to perform Phong shading,
is also included.

3.2 Macromedia Flash

Macromedia Flash is a file format that is desigpegdharily for animations that will be shared
over the internet, and is geared towards 2D graphiidash will be interesting to look at because
it is supposed to be elegant and handle animateh \8ince Flash was designed with efficiency
in mind, the files are stored using a binary enaegdiThis allows them to be quickly transferred
over the internet, and to be read and processmiktetfy. The file consists of a header, a series
of tags, and an end tag. Tags, other than theéagndonsist of one of two types. Definition tags
define some object and add that object to a diatypanControl tags perform actions, which can
include using objects in the dictionary.

Flash handles animation very well. A disgiayis used to represent the scene at any given
time. The display lists consists of objects ataiardepths, with each depth being occupied by at
most one object. Initially, control tags are useddd objects to the display list. A ShowFrame
tag then displays all of the objects on the disfity The display list is maintained from frame
to frame, meaning the entire scene does not halve te-specified for every frame. All that is

required is to add, remove, or update objects adewfrom frame to frame.

3.3 PBRT

PBRT is a physically based ray tracer developeMait Pharr and Greg Humphreys. Looking
at it will give us an idea of what is involved wighphotorealistic ray tracer. PBRT is a ray tracer

that attempts to render images as close to physaty as possible, which it does through

things such as accurately modeling materials dasas, scattering light through mediums such
as fog and murky water, allowing for different camand film models, and outputting the final
image using an image format that allows for arbjttarightness of light. Similar to the
RenderMan Interface, scenes are given to PBRT gfrthe use of an API, but can also be
stored in a file using a file format correspondiaghe API. When a scene file is given to PBRT,
it will parse and load the file, and then makedperopriate calls to the renderer itself. Also
similar to RenderMan, PBRT does a great job of eeing a single image, but does not include
much support for animation. The entire scene hese-specified for each frame, and no

convenient method of moving the objects in the s@mound is provided.

3.4 X3D

X3D, or Extensible 3D, is a standard developedieyWeb3D Consortium that defines an
abstract representation for real-time 3D graphltalso defines multiple encodings for the
abstract representation, including XML and binamgadings. XML, or Extensible Markup
Language, is a standard which describes a gewneralflexible plain text file format for use in
storing and exchanging data. X3D defines a congpoment required in all X3D compliant
runtime systems, as well as many additional compisnehich each provide a specific set of
features that can be selectively supported by sgstem.

Being geared towards real-time graphics, X3B ¢pood support for animation. In X3D
applications, there is a notion of time. Statigeots, which are objects that don’t move or
change over time, are defined without regard tetifhor dynamic objects, on the other hand,
the attributes of the object, such as where ihgwahat it looks like, are defined with respect to
time. The system then displays the objects acaglyli Support for skinning is included
through the Humanoid Animation component of X3CheToints, skin vertices, and weights as
described above, as well as many more attribuggsbe defined. X3D also enables the use of
embedded scripts in languages such as Java and BGiipf These scripts can be referenced
from other files or in some cases, such as with BSktipt, they can be embedded directly into
the X3D file itself. X3D interacts with the scrgby calling certain functions when certain
events happen, at which point the function will@axe and possibly change data in the scene.

Despite the rich set of features X3D suppdrtdpes not quite meet our needs, as it is

targeted towards real-time 3D graphics and notraging. Thus, it is missing certain features

that are important to realistic ray tracing, sustaa index of refraction for objects, a sufficigntl
general camera model, and support for a shadirguéage suitable for ray tracing.

3.5 COLLADA

COLLADA, which stands for Collaborative Design Adty, is another standard that attempts to
facilitate the process of storing and exchangiraphics between people and applications. Itis
similar to X3D in its overall structure and funectadity, but certain aspects of it are more
appealing. COLLADA is encoded using XML, and hasdhnimation and skinning in a fashion
similar to that of X3D. It supports features theg helpful in realistic ray tracing, such as an
index of refraction and a realistic camera modédiere is also more of a community backing for
COLLADA. One of the selling points for COLLADA ihat developers of major graphics
applications, such as 3ds Max and Maya, can cangito the design of COLLADA. This

makes COLLADA interesting because this way it wilpport all of the features needed by these
applications, and thus facilitate the exchange betwthem. Also like X3D, however,

COLLADA lacks support for a shading language su@dor ray tracing.

3.6 Maya

Maya is a very popular 3D graphics modeling appilica Looking at the file format used by
Maya will be of interest because it is designedaias storing data about a scene in a modeler,
as opposed to a scene in a renderer. A Mayadilebe stored in one of two ways; binary or
ASCII. Ifitis stored in ASCII, it is represented a series of instructions in the MEL
programming language. This is different from thel Approach used above, however, because
only a few of the MEL instructions are supportemljtss much simpler and more similar to a
normal file format.

A Maya file is broken up into distinct parte&t come in order; Header, (Non-procedural) File
references, Requirements, Units, Nodes, attribates parenting, Disconnections, Connections,
and Procedural references. The Header contairesglenformation about the file. The (Non-
procedural) File references section contains thes are included into and can be used by the
current file. The Requirements section specifieatwequirements are needed by the file, such
as a certain version number. The Units sectiomégfwhich units are used to measure length

and angles. The Nodes, attributes, and parengicigps is where the bulk of the file will usually

reside. This is where many objects in the scara) as geometry and lights, are declared. The
Disconnections and Connections sections discororemnnect attributes from or to each other.
If two attributes are connected, then when the@®attribute changes, the destination attribute
is changed to match the source. The Proceduetiemedes section declares references to
external MEL scripts, which are run after the Méiais loaded.

Maya handles animation using a method calesdriame animation, which will be discussed
in the next section. Basically, it is a great wagompactly and easily specify the movement of
an object throughout an animation. It also supptbre model skinning method as described

above.

4 Design Considerations

There are many design decisions that will affedctviieatures are included in the final file

format, as well as how it looks.

4.1 General

To promote usability, there should be built-in soipydor basic things that are useful for 3D
graphics in general, such as simple geometry,gliameshes, materials, and lights. Simple
geometry should include spheres, cubes, conesdeyk, and other common shapes. Materials
should include at least emissive, ambient, diffgpecular, shininess, reflectivity, translucency,
and index of refraction attributes, as well as supfor texture mapping. At least ambient, point,
and directional lights should be included.

4.2 Encoding

The way a scene file is stored has a large impathe size, speed, and usability of the file.
There could be a number of different encodings.

A binary encoding is compact and efficientt isthard to work with. Tools are needed to
create and modify files, as you can't just readdir them using a text editor. This is
inconvenient and makes debugging harder. Alsogtbeuld be compatibility issues because of

different endianness on different machines.

Plain text is easy to work with, but is bigged slower than a binary representation. If XML
is used, the plain text encoding will also be wegll structured. XML is more universal, so
there are already existing tools that can be usg@aitse and create files. Also, it is human
readable and editable, which makes developmentestiig much easier.

Creating an API, such as the kinds the RenderMterface and PBRT use, gives more
flexibility as far as being able to use the feasusEa programming language. For example, a
for-loop could be used to instantiate several pfea sphere in different locations, whereas
with a normal file each copy would have to be imdiinally stated. Scenes represented in this
way are generally less portable, though. Alsaems file written in a programming language
would have to be recompiled after every updateciwban be a hassle.

Given that at this point this scene repregemavould be primarily used as a research tool, it
makes sense to choose the more user-friendly XMbding. If space efficiency and loading

time became an issue, a binary encoding might bre suitable and could be developed.

4.3 Animation

Proper support for animation is an important featuVith only rudimentary animation support,
the user must re-specify the entire scene for &aahe. Thus, the internal acceleration
structures must be rebuilt every frame, which igemsive. Proper support for animation would
include a mechanism to update the scene ratheréhgpecify the entire scene every frame.
This would allow the ray tracer to incrementallydage the acceleration structures instead of
rebuilding them every frame, which would be morfecefnt. Even if the acceleration structures
were rebuilt every frame, having an update mechammsuld still remove the need to destroy
and reinitialize each object every frame.

Proper support for animation does not only mieaving an update mechanism. There should
also be features that allow the artist to easigcgp how objects in the scene will actually be
animated. One very important and useful way ohdahis is through the use of keyframe data.
Keyframe data specifies where something, an objecéertex of an object for example, is at
certain points in time. The find where the objedit any given time, the system interpolates
between the positions of the surrounding keyfraoiatp. This interpolation can be simple

linear interpolation, or can be more complex walysi@rpolating data, such as Bezier curves or

10

B-splines. Keyframe animation is one of the priynaethods for animating objects in many
applications. X3D, COLLADA, and Maya all suppdnts.

For generality, it would be useful to allowleedded scripts, written in a language such as
Javascript, either stored in a separate file afederced or in the scene file itself. This would
allow the user to animate objects in any way ddsindether it be interpolating between
keyframe points, evaluating an analytical functienyriting a complex program to move
objects around in a customized way. Embeddedtsargn be used for a variety of other

purposes, as well, not just animation.

4.4 Skinning

In order to facilitate the creation of compellingacacters and objects, support for skinning
should be included in the scene representationcafse seen by the review of the file formats
above, the blend-weight skinning method is the wetihat is used in most applications. It's
fairly simple, but it’s still effective enough toake very convincing animations. The joints and
vertices would be specified in the file as desatiBbove, with each vertex bound to a number of
joints. The joints would then be moved by onehef animation mechanisms described above,

which would in turn move the entire character.

45 Shaders

Shaders have become an important part of ray yaciime writer of a ray tracer cannot predict
all of the effects that the user will want to used even if each effect desired by a user could be
included as part of the ray tracer, this would miakeilkier than necessary for most purposes. A
good shading language provides a powerful, geneaglto let users develop a wide variety of
effects themselves.

There are a few things that help to make dislgdanguage good. For one, it should provide
plenty of functionality. This includes things sueé being able to access the surface material and
the lights in the scene, cast rays from any pairtriy point, and use control statements such as
“if,” and “for.” In addition to functionality, théanguage should be intuitive and easy to use.
One way to make it intuitive is to use a syntax thalready familiar to most people. The
similarity of the syntax of the RenderMan Shadiranguage to C is an excellent example of this.

Also, there should be plenty of built-in functiossich as various math functions and functions

11

to handle common shading algorithms. All of thésegs contribute to the user being able to

easily write a shader to accomplish whatever taslesired.

5 Proposed File Format

Based on the design considerations above, norieedbtmats described above support all of the
desired features for representing dynamic scenks tsed for ray tracing. This does not mean
that an entirely new format is required, howeV@OLLADA does support many of the desired
features, and is closer to supporting all of treuees than any of the other formats discussed. It
is encoded using XML, has great support for aniomaéind skinning, and has plenty of basic
features useful in both ray tracing and 3D grapimageneral. The only thing it is missing is
support for a proper shading language. The Render®hading Language is very powerful and
meets all of the needs described above for a shdainguage for ray tracing. Thus, if proper
support for the RenderMan Shading Language coubliided to COLLADA, the combination

would be suitable for representing dynamic scendetused for ray tracing.

6 Thoughtson Implementation

Implementing support for this format would requirdecent amount of work. The main tasks to
be done are loading the COLLADA file, loading therlRerMan shaders, and interacting with
the rendering system to actually render the scene.

Most of the work of loading the COLLADA fils ialready done. There is a COLLADA
parser written in C++ that is available for dowrddeom the COLLADA website which will
parse everything other than the RenderMan Shadanglilage enhancements. Support for this
will need to be added. The bulk of the work wil done by including domRSL_*.{cpp,h} and
domProfile_RSL .{cpp,h} files, which should be fairgimilar to the related files for other
shading languages, such as CG and GLSL. To sestrtteture and behavior of including a
RenderMan shader in a COLLADA file, refer to Append. Once the COLLADA parser is
done, a new schema file for the format incorporathre changes in Appendix A should be
produced. Once this is done, support must stifidided to parse and run the actual code of the

shaders. Source code for doing this is suppliech@gy open source projects, one such project

12

being Pixie, which is a RenderMan-like photorealistnderer. The source code for compiling
and running a shader should be taken and incogmbmato the COLLADA parser.

Now that the file is loaded, the scene muggilsen to the underlying rendering system to be
rendered. To do this, a runtime system shoulddveldped which will interact with the
rendering system in various ways. The runtimeesysteeds to be able to do certain things
based on how the rendering system works. Theviatig paragraphs will describe what would
need to be done to include support for this filerfat in a few different types of rendering
systems.

The first rendering system will be PBRT. Giwbat PBRT does not support animation, the
runtime system will have to handle it. The runtisystem will keep track of the state of the
scene at any given point in time. Each time a &atmould be drawn, the runtime system will
specify the entire scene to PBRT through the ARt BBRT provides. This means that although
the file format supports animation, PBRT will n@ &ble to take advantage of all of the benefits,
particularly those related to efficiency. Whentaation arises in which a shader needs to be run,
such as a ray hitting the surface of an object whigs a shader associated with it, PBRT should
call the runtime system to handle it. While thad#r is being processed, it might actually be
necessary to make calls back to PBRT, such as wimenv ray needs to be traced. Thus, the
code that runs the shaders must be augmentedporsiipis. One final observation is that
skinning is not directly supported in PBRT. Thilig runtime system should keep track of any
skinned models in the skinned model format, buttroasvert this to a triangle mesh format
when specifying it to PBRT.

Another choice for a rendering system is adeean based ray tracer, such as Pixie. Many
aspects of including support for our file formatifPixie are similar to those related to PBRT;
animation and skinning should be handled in theesamy. The major difference comes from
how shading is handled. In Pixie, the RenderMaad8ty Language is inherently supported, so
instead of Pixie calling the runtime system to aa# a shader, it will simply do it itself. This
makes it significantly easier to use something Rkdae as opposed to PBRT.

Another type of rendering system availabla ray tracer specifically designed to run in real-
time. The benefit of this type of system is thaan take advantage of the optimizations
available with a file format that supports animatwell. If the rendering system supports the
same animation features that COLLADA supports, sagckeyframing, then all that needs to be

13

done is to specify the scene to the rendering systece and let it handle the animation.
Otherwise, the runtime system will still need t@pgdrack of the scene as it is animated, but it
need only re-specify the objects that have chafrged frame to frame. Also, if skinning is
supported, the rendering system, as opposed tatiiene system, can keep track of the skinned
model. If the real-time ray tracer does not suppie RenderMan Shading Language by default,
it will have to be integrated as with PBRT.

Based on these observations, although it wowst likely be easier to include support for
our file format into Pixie, it would be better oadirto be able to do so for a general real-time ray

tracer. This makes sense, as real-time ray tragagythe original goal of the format.

7 Conclusion

The file format | ended up choosing as suitabladépresenting animated scenes to be used for
ray tracing was COLLADA with added support for RenderMan Shading Language. This
format is a good choice for a few reasons. Fifsiloit is as functional as we need and want it
to be, as it has all of the desired features dgamigabove in the design considerations section.
Next, the format is already created for the most, ga there is no need to create an entirely new
format. This is good because having multiple filemats that accomplish the same tasks will
only serve to make digital content less standaddared portable. Finally, there is a good
amount of community support behind COLLADA and BenderMan Shading Language, which
is good for different reasons. For one, thereearsting tools to deal with them, as we have seen
in the implementation section above. Also, therexisting content available for use, such as an
abundance of shaders written in the RenderMan 8pddinguage. Finally, because
COLLADA is backed by major graphics software depeics, it is likely to change to reflect the
changing needs of graphics applications as timgrpeses.

As ray tracing animated scenes becomes marenane feasible, we need to make some
changes to make the shift possible, one of whialsiisg a suitable file format. COLLADA with
RenderMan Shading Language support will be a gbotte for this task.

14

8 Acknowledgements

I'd like to thank Bill Mark for advising me througit this project. I'd also like to thank Don
Fussell and Vijaya Ramachandran for providing Valleideedback.

Appendix A

This is an extension of the COLLADA 1.4.0 specifioa to include support for the RenderMan
Shading Language. The framework for including ad@&eMan shader in a COLLADA file is
similar to that for including a shader currentlypparted by COLLADA. For more information,
see “COLLADA - Digital Asset Schema Release 1.4.0.”

Elements

This section describes the elements related tadnoy a RenderMan shader in a COLLADA file
and how to use them.
<library effects>

Declares a module of effect elements.

<effect>

Description of a COLLADA effect. This element kg attribute “id,” which is used by other
elements to reference the effect. Children inckadewparam> elements specifying the

parameters needed by the effect, and <profile_&mehts specifying how to compute the effect.

<newparam>

Creates a new parameter in the FX Runtime andresgig type and initial value. It must
contain exactly one of four children: <float>, <pt, <color>, or <string>. The <float>
element should contain a single floating point nembrhe <point> element should contain

three floating point numbers separated by spaths. <color> element should contain any

15

number of floating point numbers, depending on himsvsystem specifies the color type,
separated by spaces. The <string> element shoualdia a string of characters.

<profile RSL>

Opens a block of platform-specific data types atgtknique> declarations. This should have

one <technique> element as a child.

<technique>

Holds a description of the shaders, parameterspasskes used to perform this effect. Must
contain the “sid” attribute, which describes theneént. Must have at least one <code> or

<include> child, and one <pass> child.

<code>

Contains an embedded block of source code. This&e the code for the actual RenderMan

shader goes.

<include>

Imports source code or precompiled binary shaaeeosthe FX Runtime by referencing an
external resource. The “url” attribute specifidsane the resource is located.

<pass>

Contains information about the different shaderhis technique. Contains <shader> elements

as children.
<shader>
Declares a shader and specifies how it interadts twe rest of the COLLADA file. The “stage”

attribute must be one of the following values: LIGWOLUME, TRANSFORMATION,

16

DISPLACEMENT, SURFACE, or IMAGER, depending on tiype of shader being declared.

Contains <name> and <bhind> elements as children.

<name>

Contains the entry symbol for the shader functidhe symbol is given by a string of character

in between the <name> and </name> tags.

<bind>

Binds a symbol in the COLLADA file to a parameterthe shader. The “symbol” attribute
specifies the name of the parameter in the sha@entains either a <param> element or one of
<float>, <point>, <color>, or <string>. If it isn@ of the latter four, a constant value is bound to

the parameter.

<param>

References a predefined parameter in the COLLADEA flhe “ref” attribute contains the name
of the parameter.

Behavior

The FX Runtime must follow certain behaviors wheteiacting with a RenderMan shader.

Certain pieces of information are communicdted RenderMan shader through the use of
global variables. When a shader is called, theRlaXtime must make sure that the global
variables that the shader might use are set toditrect values. Also, certain pieces of
information are returned from a shader throughuteof global variables. The FX Runtime
must also make sure to read these values aftshtaer is done to get the information it needs.
For a complete list of which global variables apaywhich types of shaders, see “The
RenderMan Companion.”

Surface shaders must take into account othjects in the scene, even if those other objects

do not have RenderMan shaders associated with tR@mexample, a surface shader must be

17

able to get and use information about a light defiwithin the COLLADA file. Thus, the
runtime system must be able to simulate the efigicésRenderMan shader for lights and other
objects based on their normal behavior in a COLLATDA

Both COLLADA and RenderMan shader require faualé value for parameters, so two
default values must be specified. However, the CAIDA default value will override the
shader default value, because the COLLADA defaaliies will be passed in as an argument to

the shader.

18

Example
This example demonstrates a matte surface shader.

<library_effects>
<effect i1d="Matte">

<newpar am si d="anbi ent " >
<float> 1.0 </fl oat >

</ newpar ane

<newpar am si d="di f f use" >
<float> 1.0 </fl oat >

</ newpar anp

<profil e RSL>
<t echni que sid="default">

<code>
surface
matte(float Ka = 1,
Kd = 1)
{
point Nf = faceforward(normalize(N), 1);
a = Gs;
C =0 * C * (Ka*ranmbient() + Kd*diffuse(Nf));
}
</ code>
<pass>

<shader st age="SURFACE">
<nanme>mat t e</ nane>
<bi nd synbol =" Ka" >
<param ref="anmbient" />
</ bi nd>
<bi nd synbol =" Kd" >
<param ref="diffuse" />
</ bi nd>
</ shader >
</ pass>
</t echni que>
</profile RSL>
</ effect>
</library_effects>

19

References

Barnes, M. “COLLADA - Digital Asset Schema Releds£.0,” The Khronos Group Inc.,
January 2006.

Macromedia, Inc., “Macromedia Flash (SWF) File Fati8pecification, Version 7,” 2005.

Pharr, M., and Humphreys, @hysically Based Rendering. Morgan Kaufmann, 2004.

Upstill, S. The RenderMan Companion. Addison-Wesley, 1992.

Web3D Consortium. “X3D Specification,” April, 2006

http://www.web3d.org/x3d/specifications.

Whitted, T. An Improved lllumination Model for Stbad Display. Communications of the ACM,
23(6), pp. 343-349, June 1980.

World Wide Web Consortium. “Extensible Markup Laage,” February 5, 2006.
http://mwww.w3.org/XML.

20

