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1 Introduction

Privacy of data concerns data owners, customers, and marketers. Breaches in
privacy populate headlines frequently, including one case where ID numbers and
contact information of Hong Kong citizens who complained about the police in
the past five years were exposed on the Internet [11]. The research commu-
nity has proposed data privacy protection through statistical data randomiza-
tion [1, 5], query auditing [10], secure multi-party computation [9], and private
information retrieval [4]. We would like to protect the data differently by mak-
ing imprecise queries to a database computationally infeasible to evaluate. In
other words, we restrict allowed accesses to the database to those that should be
computed quickly. We can do this through obfuscation, which effectively moves
access control into the target database, allowing database owners to release the
database knowing that only precise queries can be evaluated efficiently, depend-
ing exponentially on the number of records that would satisfy the query. Thus,
access becomes non-interactive–the owner or any trusted party does not have
to oversee or approve every query submitted by the database user.

Legal accesses are embodied by the owner-specified access/privacy policy,
which describes the ideal functionality of the obfuscated database by specifying
which queries can be satisfied efficiently. Ideal functionality is an abstraction
that allows us to decide whether the obfuscator is secure [7]. We can imagine a
trusted third party who provides the ideal functionality by filtering all accesses
from a simulator. We will consider our construction secure if an attacker’s
actions can be emulated by this simulator and trusted third party. Because
our construction leaks meta information about the content of the database, we
work with a weaker notion of obfuscation than a ”virtual black box” [2]. The
construction is still useful because the leakage does not compromise the security
of access control, which is our primary focus.

1.1 Purpose of obfuscation

In program obfuscation, we garble the source code of the program so that users
who have access to the result will only be able to garner as much information
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as if they had only the set of inputs and outputs that the unobfuscated pro-
gram supports. In addition, the program should not be much more inefficient
than the original program and the two should be approximately the same in
functionality [2].

Similarly, we would like to obfuscate a database so that it remains functional,
is efficient when the original is efficient, and its representation is inscrutable to
an attacker’s investigation. In other words, users can only learn information that
their queries give them access to according to the privacy policy. Only allowed
queries will reveal new information after it is evaluated. Obfuscation allows the
owner of a database to distribute freely his database, knowing that the user will
be able to interact with the database only according to the owner’s access policy,
which we integrate in the database along with its enforcement. By integrating
the access control in the database, we make circumvention computationally
infeasible.

1.2 Group privacy

Narayanan and Shmatikov proposed an obfuscation algorithm that ensures a
new notion of privacy, group privacy [15]. The resulting obfuscated database
returns the results of a query quickly as long as the query is precise. Queries
will be evaluated in exponential time–exponential in the number of records that
satisfy the query. A precise query is satisfied by a small set of records and would
be evaluated quickly. An imprecise query would be computationally infeasible.

An obfuscator that can ensure group privacy in a database could help pro-
tect large public datasets. It could help prevent a nurse from finding out all
the details of all the patients in a hospital database, an employee from gath-
ering contact information from a customer relationship management database
and selling it, and spammers from indiscriminately harvesting all the telephone
numbers in a directory.

For example, a financial advisor may outsource some of his duties safely
by first obfuscating his client database. A recipient of the database would
only be able to efficiently access those records that are allowed by the financial
advisor’s privacy policy, since the policy enforcement comes with the database.
Consequently, the recipient cannot harvest all the financial advisor’s clients’
information and spam the clients with his own financial offerings or sell their
information to other spammers.

1.3 Space usage

An existing implementation of the algorithm posited by Narayanan and Shmatikov,
written by Chris Nienhuis, demonstrates the possibility of obfuscating a database;
however, the space requirement of O(N2) restricts the size of databases that can
be obfuscated and still be usable. We reduce space usage by employing reverse
Merkle trees, which are described later. The blowup in size using the reverse
Merkle tree is Nlog(N) at best, when all the records in the database are unique,
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and up to N2 otherwise. We evaluate the improvement on a database of function
call frequencies.

1.4 Organization of paper

We discuss related work and provide a short comparison of our notion of obfus-
cated databases and previous work in the next section. Then we establish the
foundation upon which we build the obfuscator in section 3. We also discuss
how we evaluate the implementation in section 3. In section 4, we describe the
original obfuscating algorithm and which tools we need for the improved ver-
sion, including the reverse Merkle tree. The modified obfuscation algorithm is
described and analyzed in section 5, and the implementation is detailed under
section 6. Finally, we evaluate the implementation in section 7 compared to an
implementation that is not optimized and draw conclusions in section 8.

2 Related Work

Barak et al. define the objectives of obfuscation and demonstrate the impos-
sibility of creating a general obfuscator, an obfuscator that can obfuscate all
possible programs. Goldwasser and Kalai also show that obfuscation with re-
gard to auxiliary input is impossible [8]. Their result does not apply to our
obfuscator because they base it on a different class of programs. While a gen-
eral obfuscator may elude us according to Barak et al., we can still construct
obfuscators for particular purposes. We show that our database obfuscator is
one such program. We use point functions, in particular hash functions, which
return the value True on only one input value. Goldwasser and Kalai show
that point functions are obfuscatable even with auxiliary input [8], and Lynn
et al [12] and Wee [17] construct obfuscators for point functions. Their work
assures us that we can use obfuscated point functions.

We would like to use obfuscation to ensure database privacy. Both academia
and industry have researched database privacy. However, initiatives like Mi-
crosoft Research’s [14] and Agrawal et al’s [1] address the accumulation of data,
statistical knowledge that can be gleaned from a database and risks to the pri-
vacy of individual records. We are concerned only with access to the data;
therefore, our studies are orthogonal to one another. We allow accesses to indi-
vidual records as long as users can specify them precisely while the other studies
seek to protect individual records amongst statistical analyses or data mining
operations. To control access, we integrate the enforcement of an access policy
into the database and so, create a non-interactive privacy enforcer. Chawla et
al. [3] also have a non-interactive scheme, but like research in private information
retrieval, they focus on the privacy of data rather than access to the data.

Our implementation is based on the algorithm and heuristic proposed by
Narayanan and Shmatikov [15]. A previous implementation in Java was written
by Chris Nienhuis without the proposed heuristic.
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3 Security Context

3.1 Foundation

Our obfuscator satisfies a weaker notion of security than the ”virtual black box”
property as defined by Barak et al. In the ”virtual black box” model, the only
queries that can be efficiently answered by an adversary with the obfuscated
database are queries that can be efficiently answered by a simulator that com-
municates only with a trusted third party that enforces the ideal functionality
of the database, the ”virtual black box.” The ideal functionality is embodied
in an owner-specified access policy. Our notion of a good obfuscator allows the
attacker some information about the database; specifically, how much repetition
is there. On the other hand, the attacker cannot see which values are repeated
unless they know the attribute values and can determine if the supplied attribute
values are repeated often. We accept this leakage since it does not allow the
attacker to violate the access policy. Our construction simulates a trusted third
party and thus, integrates access control into the database upon obfuscation.
This foregoes the process of establishing the third party, which requires its own
protection and is difficult to establish.

3.2 Evaluation database

To test the effectiveness and efficiency of the obfuscator implementation, we
will be testing it with a database of system call traces that is used by the Navel
system. The Navel system allows a group of users to share information about
system failures, including the system call traces that lead up to a failure and
possible solutions to prevent the same failure in the future. The information
used by Navel can be sensitive; for example, the number of calls to particular
functions could provide clues about the input before the failure. Therefore, we
would like to obfuscate the database to prevent them from browsing sensitive
system information, but still allow legitimate users to submit their data and
retrieve precisely requested data.

4 Building blocks

4.1 Original Algorithm

We modify the obfuscation algorithm proposed by Narayanan and Shmatikov
in [15]. In summary, the original obfuscation replaces a given database with
records of hashes and encryptions. Every hash function call is salted with a
random number, to prevent attackers from comparing values to find out which
values are equal. Since the hash functions are one-way, the resulting represen-
tation gives attackers no information about the individual values of each entry.

To obfuscate a database, the data owner first partitions the database into
query attributes and data attributes. Then the obfuscator obfuscates the database
one record at a time. For each record in the database, it randomly generates a
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secret key that is the same length as the number of records in the database. We
compute and store the hash of the secret key so that the user can see if they
have the correct key to retrieve the data attribute value for this record. The
user needs the correct key because we xor the data attribute value with another
hash of the secret key. (Every hash is computed with a randomly salted hash
function call.) From the secret key, we derive shares, which are copies of the
secret key with bits (possibly different) missing. A share is associated with each
query attributes, and the share’s nth bit is missing when the nth record’s query
attribute value is the same as the current record. We compute and store the
hash of each query attribute value so that the adversary cannot simply look at
the database representation to find the values. For the same reason, we xor the
share for each query attribute value with another hash of the query attribute
value. Once this procedure has been done for each record in the database, the
database has been obfuscated.

In retrieval, the user supplies query attribute values to collect as many shares
as possible to reconstruct the whole key. Because each share is missing the same
number of bits as the number of records that have the same query attribute
values, more common query attribute values are less useful in secret key recovery.
Once the user recovers as many bits as possible, there may still be missing bits,
so the user must guess the remainder to form the secret key. Because the number
of guesses increases with the frequency of given query attribute values and only
precise queries can be satisfied quickly, the obfuscated database ensures group
privacy.

4.2 Tools

To improve the construction’s space usage, instead of randomly generating the
key, we use a reverse Merkle tree to pseudo-randomly generate a secret key.
A Merkle tree is a binary tree of hashes where the leaves are hashes of data
and the parent nodes are hashes of the children [13]. So, the parent nodes’
values are determined by the children nodes. In a reverse Merkle tree, the
children nodes are determined by the parent nodes. In our implementation, we
feed the value of the parent node to a length-doubling pseudo-random number
generator to create values for the children nodes. If a parent node has 2 bits,
then the pseudo-random number generator generates a number with 4 bits, 2
for each child. We form the key by concatenating the values of the leaves.
Because of the dependence of children on parents, we can store just the root
node and reconstruct the tree using the same algorithm. We depend on the
determinism of the pseudo-random number generator. While we would like
keys to be unpredictable, we need to be able to reconstruct the key with the
reverse Merkle tree.

The hash function that we use to hash the key and the query attributes must
be one-way, so that an attacker cannot determine the value of the query from
the hash of the query. It just needs to be weakly collision resistant because
we salt the hash each time we use it. Because of these constraints, we can use
SHA-1. Wang, Yin, and Yu can find a collision in 269 operations instead of
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Name Flight Detail Secret Key
Smith 88 Acme 0100
Brown 500 Counter 1100
Jones 88 Nonrevenue 1110
Jones 100 Agent 0110

Table 1: Ticket sales database

280 [16], but this is still within our constraints of weak collision resistance. Our
adversaries cannot use attacks on SHA-1’s weak collision resistance to subvert
our obfuscator since we salt, with a random number, each SHA-1 function call,
simulating a different function each time. We put these tools together in a
detailed description of the algorithm in the next section.

5 Modified obfuscation

In this section, we will describe the modified algorithm in detail and illustrate
the obfuscation with a small example, slightly modified from [15]. Let Name
and Flight be query attributes and Detail be a data attribute. The example
database (below) has only 4 elements so the attacker could launch a successful
brute-force attack of just 24 guesses for the secret key, but our construction
invalidates the brute-force strategy with large datasets.

5.1 Algorithm

5.1.1 Obfuscation

Modified from [15], the obfuscation algorithm follows:
For each record i, < xi1, xi2, xi3, xi4, ...y > where the x’s are query attributes

and y is the data attribute, we create new record, < salts, ui, zi, vi1, wi1, vi2, wi2, vi3, wi3, ... >

where

• salts = The salts that are used in each of the following hash function calls
for this record.

• ui = SHA(salt1, ri) where ri is the complete secret key for this record.

• zi = SHA(salt2, ri) ⊕ y

• vij = SHA(salt3, xij)

• wij = SHA(salt4, xij)⊕sij where sij is the share for this query attribute.

The share for each query attribute increases the size of the database quadrat-
ically, since its length in bits is the number of records in the database. We reduce
this overhead to Nlog(N) by using a reverse Merkle tree to generate the secret
key. First, the data owner specifies how many bits (call it k) are at each node.
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With k and the number of rows N, we can construct the tree, keeping in mind
which bits are missing. So, for k = 3 and N = 24, a share with missing bits in
the 2nd, 4th, and 5th bit positions can be represented as below.

..

Figure 1: A reverse Merkle tree with security parameter k = 3

Because of the nature of reverse Merkle trees (the children depend on the
parents), we can reconstruct the key with knowledge of just the highlighted
nodes. We reduce the storage required for this key, from 24 bits to 12 bits, not
including the position information for each stored node, which is constant and
does not rely on the size of the database.

For our example database, the first record < Smith, 88, Acme > would be
replaced by the following if its secret key were 0100:

< salts[],
SHA(salt1, 0100), SHA(salt2, 0100) ⊕ Acme,

SHA(salt3, ”Smith”), SHA(salt5, ”Smith”)⊕?100 >.
The ?’s indicates which bits in the salt are missing. Because the first record

has Name=Smith, only the first bit is missing in the share. The reverse Merkle
tree stored for this share value ?100:

Figure 2: A reverse Merkle tree with security parameter k = 1 and 1 bit missing

The first and second bits are stored along with the parent node of the third
and fourth. This is enough to reconstruct the share since each child depends on
their parent node.
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5.1.2 Retrieval

In retrieval, the user inputs as many query attribute values as he can to describe
the record he would like to access. With each of the supplied query attribute
values, the database access program compares the hash of the supplied query
attribute value to each corresponding entry in each record of the obfuscated
database to find matches. Matches will allow it to retrieve that query’s stored
share, which reveals a part of the record’s key. Upon gathering all the shares
possible with the users’ input, the program consolidates the shares to find out
how much computation is required to find the key. If there are still n bits missing
after the shares are collected, then we must guess 2n values. If the user were
not precise enough and ended up with 10 missing bits, they would have to guess
up to 210 values. We guess until the hash of our guess matches the hash that
is stored in the obfuscated record. Once the key is found, we can compute the
exclusive or with another hash of the query and the stored attribute z to find
the data attribute.

Suppose a user queries for records that have query attribute value, Name =
Jones, from our example database. The obfuscated database is processed one
record at a time. From the third record, the user acquires the share 11??
because the third and fourth records of the database have Name = Jones. He
guesses all possible secret keys from this information 1100, 1101, 1110, 1111,
and eventually finds 1110, the correct key. He then uses this to decrypt the
data attribute Nonrevenue. He repeats this procedure for the fourth record.

5.2 Tradeoffs

While we can reduce the storage requirement for the obfuscated database by
using Merkle trees, we also reduce time efficiency. We must reconstruct the
Merkle tree for every query attribute, recursively find the missing bits, and
guess the value of the secret key. Furthermore, the space reduction depends
heavily on the dataset: a dataset with many repeated query attribute values
will require more time to compute the key and force users to specify precise
queries to reduce this time. On the other hand, the number of missing bits
will also increase, undercutting the benefits of using a Merkle tree. Storing
the Merkle tree reveals the size of the incomplete keys, which indicates the
number of other records that have the same query value. We could mitigate
this information leakage, but then our space efficiency would be compromised.
Finally, the obfuscation can be effectively applied only to large datasets. Since a
brute-force attack would guess all possibilities for they key and the key as long as
the number of records in the database N , it would take 2N trials. Large dataset
would have N large enough for 2N trials to be computationally infeasible. As
seen in the four-record example, smaller datasets are subject to brute force
attacks.
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6 Implementation

We implement the new obfuscator in Python, so it can run on Windows, Linux,
Mac OS X. Python is freely available online [6]. The implementation includes
an obfuscator, the reverse Merkle data structure, utilities for parsing, and a
retrieval program. Besides the standard Python library, we also use BitVector,
created by Avinash Kak.

We follow strictly the construction in section 5; however, we represent the
information differently to save on storage space. For example, each node does
not explicitly need a string describing its position in the reverse Merkle tree.
Rather, when the nodes that must be kept are recorded, we record them in the
order of reconstruction. This way, in recovering the share from the tree, we only
need to know the depth of the node stored to know when to stop expanding and
concatenate our result for this subtree to the secret that we are reconstructing.
Consider this subtree for instance:

Figure 3: A reverse Merkle tree with security parameter k = 1 and 1 bit missing

We record the shaded nodes in order, 1, 2, and the last shaded node. In
reconstructing the share, we have ? concatenated to 1, concatenated to the
expansion of the last shaded node. We expand the node as if we were making a
new Merkle tree with its depth.

Also, we arbitrarily set the missing bits to 0 so that we can use BitVector
and use just one bit instead of allocating a whole character’s worth of memory
to use ’?’. This means that we must incur additional execution penalties to
traverse the obfuscated database to find out which 0 in the share is in fact a
0 or a missing bit marker. Finally, instead of storing a vector of salts for each
record, we store only a seed for a pseudo-random number generator. Then, in
retrieval, we must take more time to call the pseudo-random number generator
to obtain the salts for the hash function calls.

9



7 Evaluation

We test the implementation on a database of function calls and their frequencies
from the Navel system. Each combination of function calls and frequencies is
associated with a class, which is the diagnosis of the error. We would like to
protect this information since it could reveal the inputs prior to the error, so
class is the data attribute. The frequencies of each function call are query
attributes. There are 531 different functions so there are 531 query attributes.

We conduct the experiments on a PC with a Pentium 4 3.4 GHz processor.
The following table gives a comparison of the running time and resulting ob-
fuscated database size. Our implementation runs much slower than the original
implementation, which did not have to process the trees. For this dataset we
also came out with dramatically larger obfuscation–about 5 times the original
obfuscation.

Output Records Java Time Python time Java space Python space
215K 128 7.968s 8m 30.912s 7.4M 45M
420K 256 16.445s 23m 41.665s 18M 108M
830K 512 48.627s 67m 53.842s 46M 262M

Table 2: Time and space usage comparison

The experimental results contradict what we expect from using Merkle trees.
Possibilities for this discrepancy include particular implementation details and
serialization techniques in Python and Java. In addition, with 531 query at-
tributes, we have to construct as many reverse Merkle trees, one for each share
in each record. Finally with similar query attribute values across records, we
cannot take advantage of the space savings. It seems that the overhead of
constructing and maintaining the trees trumped any savings that would theo-
retically have been possible.

8 Conclusion

We implemented a database obfuscator that ensures group privacy [15]. A
usable obfuscator could benefit data owners who would like to embed access
control into their database. We sought to improve on the space usage of a
previous implementation so that we could use it for larger datasets. Instead,
we found that the loss in time-efficiency was a prohibitively expensive tradeoff.
Moreover, maintaining the trees, whether because of serialization details or its
implementation, presented an insurmountable overhead in obfuscating the Navel
database. We have demonstrated the possibility of using reverse Merkle trees
in the obfuscator, but we must improve the preliminary implementation further
before we can use it practically. A large dataset without as much repetition of
query attributes’ values would theoretically leverage the reverse Merkle tree’s

10



capabilities to store just NlogN in the best case and N2 at worst. Further
investigation is needed to realize this theoretical result.
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