

Undergraduate Honors Thesis:

Testing a library of general-purpose action
descriptions

by

Ashu Manohar

Advisor: Vladimir Lifschitz

Summer 2006

Abstract

Reasoning about actions and describing changes caused by the execution of these actions is an idea

central to common sense reasoning. Action description languages have been developed to specify the

effects and preconditions of actions using a logical framework. However, many of these formalisms

suffer from a lack of generality and modularity [McCarthy, 1987].

A new Modular Action Description language (MAD) [Lifschitz & Ren, 2006] and a library of general

purpose action descriptions [Erdogan, unpublished] written in MAD are being designed to solve these

problems. This thesis is the first step towards testing the semantics of MAD and the ability of this

library to succinctly and expediently describe new action domains.

1. Introduction

One of the major long term goals of Artificial Intelligence (AI) research is to endow computers with

commonsense. One of the earliest suggestions on dealing with commonsense problems was to use

formal logic. The roots of this branch of AI, known as logical AI, are found in the 1959 paper by

McCarthy – Programs with Common Sense [McCarthy, 1959]. In this paper, he described that “a

program has common sense if it automatically deduces for itself a sufficiently wide class of immediate

consequences of anything it is told from what it already knows.”

Logical AI provides an axiomatic basis for reasoning about the world inhabited by agents who

have beliefs and goals, who perform actions in order to reach these goals and by doing so change the

state of the world. The agent infers a course of actions that will lead to its goals by performing logical

analysis i.e. commonsense reasoning.

Reasoning about actions and describing changes caused by the execution of these actions is an

idea central to commonsense reasoning. Action description languages – formal languages used to

describe the effects of actions – have been developed to represent and solve problems in logical AI.

Many of these formalisms suffer from a lack of generality and modularity [McCarthy, 1987]. A new

Modular Action Descriptive language (MAD) [Lifschitz & Ren, 2006] aims to solve one half of this

problem by allowing re-use of existing action descriptions. The other half that is necessary is a

database of general-purpose action descriptions which can be used to succinctly and expediently

describe new action domains.

In this thesis, we describe our efforts to test the semantics of MAD and the applicability of

such a library to describe new action domains [Erdogan, et al., 2006]. The library is an application of

the idea of a database of reusable, general-purpose knowledge components [Clark and Porter, 1997;

Porter, et al. 2001] to the design of action languages. It is being written in MAD, and is a topic of

Selim Erdogan’s dissertation proposal [Erdogan, unpublished]. The idea of such a library was first

explored in [Erdogan & Lifschitz, 2006].

Different actions in different domains are often related. Many actions can be described in terms

of other actions [Erdogan & Lifschitz, 2006] – for example, pushing, carrying, and walking can all be

described as special cases of a more general action move. Action domains tend to use specialized

versions of such general actions, and in the process of formalization, reinvent knowledge. This library

aims to factor out common aspects of these specialized actions to form a repository of reusable

knowledge components, which will contain descriptions of general actions such as move. A

formalization of an action domain could then “import” general knowledge from this library, with very

few domain-specific axioms needed.

To draw an analogy, this library is very similar to libraries (API) available in widely-used

procedural languages such as C++ [Stroustrup, 2000] and Java [Arnold et al., 2000]. Differences exist

in that this library represents knowledge as declarative axioms as compared to the imperative nature of

programming in procedural languages.

The library and MAD are still in the developmental stages, and much work is needed before

either is fully mature. The future implementation of MAD (MAD Causal Calculator) is still in the

works. Consequently, we have no means to verify the correctness, completeness, or quality of the

library in achieving its goals at present. To solve this problem, we have developed a method of

translating the library and a MAD formalization (of an action domain) into the language of the Causal

Calculator1 (CCalc), and testing it using CCALC.

In section 2 we give a brief background of the development of action description languages,

MAD, and an example; in section 3 we describe the semantics of MAD; in section 4 we explain our

algorithm which translates MAD action descriptions to input for CCalc; in section 5 we discuss our

1 http://www.cs.utexas.edu/users/tag/cc/

results – the errors we found on testing the library and our solutions; (Appendix A) contains segments

of code used by our algorithm.

2. Background

Common sense capability can be broadly divided into common sense knowledge and common sense

reasoning. Common sense knowledge concerns situations that change in time as a result of events and

their effects. The most important events are actions. Commonsense reasoning involves drawing

conclusions based on this knowledge. Facts about the world can be represented as logical axioms and

deduction methods can be used to reason about the changes in the states of the world [McCarthy,

1959].

Planning problems provide one of the most fruitful showcases for combining logical analysis

with AI applications. On the one hand there are many practically important applications of automated

planning, and on the other logical formalizations of planning are genuinely helpful in understanding

the problems and in designing algorithms. In such a problem, an agent in an initial-world state is

equipped with a set of actions, which can be thought of as partial functions transforming world states

into world states. These actions are feasible only in world states that meet certain constraints (called

“pre-conditions” of the action). The goal of the agent is to find a sequence of feasible actions that take

it from the initial state to the desired state.

Important problems, such as the frame problem [McCarthy, 1979] and ramification problem

[Finger, 1986] have arisen in the research of logical AI. They have been successfully solved using

nonmonotonic formalisms [Shanahan, 1997; Geffner, 1990; Lin, 1995; McCain and Turner, 1997]. In

particular, very expressive action descriptive languages have been introduced, incorporating the

solutions of these problems in their design. They define “transition systems” – directed graphs with the

vertices representing all the possible states of an action domain and the edges representing actions an

agent can take.

A rich and eclectic set of conceptual tools has transformed the study of logical AI. This process

and its outcome are well documented in [Russell & Norvig 2003]. However, work is still needed to

make these systems “generally” applicable. In reviewing his Turing Award lecture of 1971 [McCarthy,

1987], McCarthy notes –

It was obvious in 1971 and even in 1958 that AI programs suffered from a lack of

generality. It is still obvious, and now there are many more details. The first gross

symptom is that a small addition to the idea of a program often involves a complete

rewrite beginning with the data structures. Some progress has been made in

modularizing data structures, but small modifications of the search strategies are even

less likely to be accomplished without rewriting.

Another symptom is that no-one knows how to make a general database of common

sense knowledge that could be used by any program that needed the knowledge. Along

with other information, such a database would contain what a robot would need to

know about the effects of moving objects around, what a person can be expected to

know about his family, and the facts about buying and selling. This doesn't depend on

whether the knowledge is to be expressed in a logical language or in some other

formalism. When we take the logic approach to AI, lack of generality shows up in that

the axioms we devise to express common sense knowledge are too restricted in their

applicability for a general common sense database. In my opinion, getting a language

for expressing general common sense knowledge for inclusion in a general database is

the key problem of generality in AI.

MAD [Lifschitz and Ren, 2006] aims to partially solve this issue. The “high-level” notation of

MAD along with the availability of transition system semantics, make it an attractive formalism for

describing actions. The semantics of MAD is based on C+. The main distinctive feature of MAD is its

use of modules to describe an action domain. Each module describes a set of interrelated fluents2 and

actions. A module may contain references to other modules via import statements, which allows a new

action domain to refer to other previously defined action descriptions. These import statements also

allow the user to specialize or rename the general actions and fluents.

MAD gives us the ability to build a hierarchy of action descriptions and inherit properties from

parent modules. So, MAD is an appropriate language for developing the library. To quote from

[Erdogan, unpublished] –

The library will consist of MAD modules, each describing a group of general

commonsense facts related to actions. For example, one module might describe the

2 A fluent is a condition that changes over time. Fluents are generally represented by predicates having an
argument that depends on time. However, a fluent can also be represented as a function. For example,
Location(Thing) is a function representation of a fluent that maps things to places.

effects of the “move” action, including the axiom “moving an object causes it to be at a

new location.” Another module might express more general information about locality,

such as “an agent must be at the same location as an object to be able to perform an

action on it.”

The Causal Calculator (CCalc) is an implementation of a subset of C+, which can be used to

solve problems in commonsense reasoning, such as prediction and planning. It has been applied to

several challenging problems in commonsense reasoning [Lifschitz et al., 2000, Lifschitz, 2000,

Campbell and Lifschitz, 2003, Akman et al., 2004], including domains of non-trivial size. We intend

to use CCalc to test the library and a MAD formalization after translating the latter to the language of

CCalc.

2.1. Example

The following figure (Fig. 1) illustrates the use of the MAD language and the library to model a

simplified version of the Monkey and Bananas (M & B) domain3. In this version (Monkey and Box),

there are no bananas and the monkey’s goal is to simply climb the box. This is a typical example of a

planning problem – a search for a series of executable actions that successively transform the initial

state of the world into the desired state of the world.

This action description consists of two modules – a library module MOVE and a domain

specific module MONKEY. Module MOVE is an axiomatization of “move-like” actions, which cause

the location of the thing being moved to change. This idea is embedded in the axiom

Move(x, p) causes Location(x) = p;

which forms the crux of this module. Module MONKEY imports module MOVE twice, to describe two

separate actions – walking and climbing i.e. horizontal movement and vertical movement. Action walk

is defined using the first import statement. It is understood as a special case of action Move, wherein

the monkey is the only thing that can move. Action ClimbOn is defined using the second import

statement. It is also understood as a special case of action move, but in this case the monkey moves to a

different level – from the floor onto the top of the box.

3 A monkey tries to grab a bunch of bananas that is hanging from the ceiling and out of its reach. It can
grab the bananas by pushing a box to the empty place under the bananas and climbing on top of the box.

Refer to [Erdogan, unpublished] for the complete action description of M & B, and other toy-domains.

module MOVE;

sorts

Thing; Place;

constants

Location(Thing): fluent(Place);
Move(Thing, Place): action;

variables

x: Thing; p: Place;

axioms

inertial Location(x);

exogenous Move(x, p);

Move(x, p) causes Location(x) = p;

nonexecutable Move(x, p) if Location(x) = p;

endmodule;

module MONKEY;

sorts

Thing; Place; Level ;

objects

Monkey, Box : Thing;

P1, P2: Place;

BoxTop, Floor : Level ;

constants

OnBox : fluent;

Walk(Place), ClimbOn, ClimbOff : action;

variables

x: Thing; p: Place; l: Level ;

import MOVE;

Move(x, p) is Walk(p) ∧ x = Monkey;

import MOVE;

Place is Level ;

Location(x) = l is

((x = Monkey ∧ OnBox) ∧ l = BoxTop) V

(¬(x = Monkey ∧ OnBox) ∧ l = Floor);

Move(x, l) is

(x = Monkey ∧ l = BoxTop ∧ ClimbOn) V

(x = Monkey ∧ l = Floor ∧ ClimbOff);

axioms

Location(Monkey) = p

if OnBox ∧ Location(Box) = p;

nonexecutable ClimbOn

if Location(Monkey) ≠ Location(Box);

nonexecutable ClimbOff ∧ Walk(p);

endmodule

Figure 1: Example – Monkey and Box action description in MAD

In the initial state, the monkey is at location P1, and the box and bananas at P2. The correct two-

step solution for the monkey to reach its goal entails the following actions:

1.walk(P2)

2.ClimbOn

In the example in section 3.1, we further explain the mechanics of the first import statement.

2.2. Library Prototype

Our current prototype of the library [Erdogan, unpublished] is a collection of fifteen modules that

encapsulate the following concepts –

• Actors and Themes – Modules about actions in general. For example, an action maybe

executed by an “actor” (performing agent like the monkey above). An action may also have a

“theme” associated i.e. the thing the action affects (example: theme of action Walk is the

Monkey itself). There may be zero or more themes for an action.

• Places and Movement – Describe movement, such as climbing on the box or walking. In order

to formalize such actions, we need to express where things are located and how an action

changes the location of that thing.

• Supporting Objects – Modules that express how things are supported, and how actions affect

the supporters. For example, the monkey is either supported by the floor and the box through

time, and climbing changes the thing that supports the monkey (from floor to box).

• General Properties of Actions – Represent preconditions of actions, like non-locality. An agent

can’t perform an action on a thing unless it is next to it.

The initial idea for building this library was to study many different domains in order to assemble a

large number of interesting and useful library modules. However, the Monkey and Bananas (M & B)

domain was found to be incredibly rich in itself, when viewed with an eye towards distinguishing

generalizable features. Our current version of the library is based off such features in M & B.

This version of the library has been used to formalize other toy-domains [Erdogan, unpublished]. In

the future, we believe that our library will grow us we study more domains and include general

features from those domains.

3. Semantics of Modular Action Description (MAD) language4

3.1. Overview

• Function δ turns an arbitrary MAD action description

into a single module by replacing every import statement

with a modified copy of the corresponding module.

• A single-module action description in MAD is

essentially an action description in C+.

Example

Fig. 2 illustrates the effect of applying function δ on the first import statement in the Monkey & Box

example we encountered in Fig. 1. This import statement demonstrates the renaming of action Move to

Walk and is understood in this context as the monkey walking to a place. On the left is the original

version of module MOVE and on the right is the modified copy.

4 Please refer to [Lifschitz & Ren, 2006] for a thorough description

Fig 2. Applying function δ on the first import statement of the Monkey & Box domain

3.2. Function δ – Generating a single-module description

Function δ translates an arbitrary MAD action description into a single module by replacing every

import statement with a modified copy of the corresponding module. This single-module action

description in MAD is essentially an action description in C+.

MAD offers two types of specialization or renaming as part of the import statements – sort

renaming and constant renaming. There are rules with each flavor of renaming. Note, first, that any

import statement has the following form

import NAME ;

s
1
is s′

1
;

…

s
k
is s′

k
;

c
1
(…) is F

1
;

….

c
l
(…) is F

l
;

where NAME is a module name, s1, . . . , sk, s′1, . . . , s′k are sort names, c1, . . . , c1 are constant names,

and F1, ..., Fl are predicate formulas. (The dots after each cj represent optional arguments). The lines

following the import statement are known as renaming clauses.

The rules of translation are –

• Variable renaming – always performed irrespective of any renaming clauses

o Prepend In to each occurrence of every variable name (where n is the import number)

o Example – x: Thing I1.x: Thing

• Sort renaming (si is si’) –

o Replace every occurrence of each of sort name si with s’i (i = 1…k)

• Constant renaming (cj (...) is Fj)

o Prepend In to every occurrence of this constant

o Insert equivalences In.cj (...) ≡ Fj at the beginning of the axioms section. (j = 1...l)

o Example –

 Original: Move(x, p) causes Location(x) = p ;

 Renamed: I1.Move(x, p) ≡ Walk(p) ∧ x = Monkey ;

 I1.Move(I1.x, I1. p) causes Location(I1.x) = I1. p ;

4. Translating the library and a MAD formalization into the
language of the Causal Calculator

4.1. Overview of the Translation Process

Translating a MAD formalization to CCalc:

1. A Perl script implements the function δ, which implements

the translation rules listed above. The result is a non-definite

action description.

2. Translate non-definite axioms into definite5.

3. Make textual substitutions so that the action description can

be treated as an input to CCalc.

Currently, only step (1) of this process is automated through a

Perl script. We’re considering the automation of step 3.

Steps (1) and (2) will be performed by the future implementation of MAD CCalc as well.

4.2. Why Perl?

At this point, it is appropriate to discuss some of the reasons behind choosing Perl as the

language to implement function δ. Perl [Wall, et. al., 2000] is a procedural programming

language broadly based on C [Kernighan & Ritchie, 1988] with variables, control blocks, and

subroutines. More importantly, for our purposes, it combines key features from AWK

(associative arrays or “hash”s) [Aho, et. al., 1988] and sed (regular expressions) [Robbins &

Dougherty, 1997].

The crux of implementing function δ lies in parsing import statements and the associated

renaming clauses. This involves making non-trivial textual substitutions, which are handled

5 The translation process and definite/non-definite laws are discussed in [Erdogan & Lifschitz, 2006].

well by Perl’s regular expression engine. For example, the following single line Perl statement

can trim the white-space from the beginning of a line of text.

$line =~ s/^\s+//;

It would take a few lines of code to perform the same in C.

Another Perl feature utilized by our algorithm is associative arrays. Perl includes this

convenient data structure, which allows indexing of an array by strings rather than numbers.

For example, the following command

$hash{“sorts”}

allows us to access an element indexed by the string “sorts”.

4.3. Step 1: Perl script – Implementing the function δ

The script accepts one file as its input, which contains the MAD action descriptions in hierarchical

order i.e. if a module M1 imports another module M2, then M1 should be defined before M2 in the file.

The script is comprised of two functions – the main body and a subroutine

%hash parse_module(@array);

The subroutine implements the crux of the algorithm – the rules related to import statements and

renaming clauses. It accepts an unprocessed MAD module, and generates a single-module free of

import statements. This single-module is then used as an input for step 2, which “definitizes” the

action description.

4.3.1. Algorithm6

4.3.1.1. General outline –

• Without loss of generality, we can assume that each module can be broken up into the

following sections. (We will refer to these as keywords.)

sorts, objects, constants, variables, axioms, import

We translate a whole module by parsing one section at a time. Each line in a module belongs to

one of these sections.

6 Segments of the Perl code for the algorithm can be found in Appendix A.

• A section can be further categorized into two blocks – import sections or non-import sections.

The first five sections noted above are non-import sections, while the last is an import section.

To apply the rules of translation, we iterate through the sections and process each line

according to the block it belongs in i.e. all import sections are handled in one way and all non-

import sections in another.

• Finally, we add the contents of the imported module to the module being processed and

remove duplicate entries in the sorts, constants, etc. sections.

• Data structures – We use a Hash of Arrays to store the various sections of each module. By

using a hash, we are assured amortized O(1) for add and access, the two functions we perform.

Also, we make optimal use of space.

Though this benefit in time and space complexity is small for our current needs, it might be

useful when the grammar of MAD is expanded to include more sections.

Note: $import_mod_hash{“sorts”} denotes a pointer to an array that contains the “sorts” section of the

module being referred to.

4.3.1.2. Main section

Separate the library modules, and send each to the subroutine parse_module, which in turn generates a

single-module for each, free of import statements.

4.3.1.3. Subroutine parse_module

Parsing a section in the non-import sections block –

These sections are relatively easier to parse compared to the import sections.

1. Such a section begins with a line containing one of the keywords except import.

2. All the lines in this section are read into an array, and then a pointer to this array is stored in

the hash of arrays.

Parsing an import section -

1. Prepend In to each occurrence of every variable name, where n is the import number.

2. Check for renaming clauses and handle each case separately.

a) Sort renaming according to the rules stated in section 3.2 (Semantics of MAD).

b) Constant renaming according to the rules stated in section 3.2 (Semantics of MAD).

3. Add the processed sections from the imported module to the original module and remove

duplicates in the various sections. Duplicates can arise, for example, when a sort is implicitly

declared in a module being imported, and also explicitly declared in the module itself.

4.4. Step 2: Converting to a definite theory

At this point, we have a single-module “non-definite” action description. Since, the Causal Calculator

is an implementation of the “definite” fragment of C+, it is not possible to process this action

description directly. However, [Erdogan & Lifschitz, 2006] propose several methods for “definitizing”

an action description7. This step is currently performed by hand. Consider the following non-definite

axiom from the example in section 3.1:

I1.Move(x, p) ≡ Walk(p) ∧ x=Monkey;

Note that Move(x, p) is an exogenous action, which satisfies a condition under which we can

transform this law into a definite law. The following is an equivalent definite theory -

always I1.Move(x, p) ≡ Walk(p) ∧ x=Monkey;

exogenous Walk(p);

We prepended the keyword always and added an axiom defining Walk to be an exogenous

action since action Move was.

4.5. Step 3: Textual substitutions in order to translate to CCalc input

After “definitizing”, all we have left to do is make some textual substitutions to render the action

description suitable for input to CCalc. This involves making trivial changes such as changing semi-

colons to periods, changing the case of keywords, prepending static laws with the keyword always,

etc. At present, we make each type of change individually using Perl on the command line. However,

we plan to bunch these together in a Perl script.

After this step, we should have a single-module action description that can be run in CCalc.

7 Note that it is not generally possible to “definitize” an action description. It is, however, in this case.

5. Results

In translating the library modules to CCalc semantics and testing the translated single module in

CCalc, we found several bugs in the library and our MAD formalization of Monkey & Bananas. Upon

correcting these errors, we were successfully able to run queries, which gave correct answers. This is

an important milestone in the development of the library as were able to verify its correctness to model

an action domain. We will now briefly discuss the errors found.

5.1. Error in function δ – semantics of MAD

The first and most important error was in the rules of generating a single-module outlined in section

3.2 – these rules are incomplete. As a result, there were multiple (different) declarations of a constant

(I1.Move) in our single module. To solve this problem, we add another rule to the way constants are

renamed while importing a module. This new rules is

• Rename all constants that have been previously renamed. In terms of implementing function δ,

we rename all constants that already have a In prepended to their name.

Example –

Before After

 I1.Move(Thing, Place): Action;

 I1.Move(Thing, Place, Thing): Action;

 I2.I1.Move(Thing, Place): Action;

 I3.I1.Move(Thing, Place, Thing): Action;

5.2. Error in library module CARRY

The second error occurred due to conflicting definitions of constant theme in module CARRY. It stems

from the fact that module MOVE is imported twice by module CARRY, once directly and once

indirectly through module GO. To correct this error, we changed the way MOVE is imported by GO.

Before After

module GO;

…

import MOVE;

 Thing is Agent;

 Move(u, p) is Go(u,p);

module GO;

…

import MOVE;

 Move(x, p) is exists u (u=x & Go(u, p));

Module CARRY imports the following definition of constant theme from module GO

theme(agent, action) : boolean;

It also imports the original definition of constant theme from module MOVE

theme(thing, action) : boolean;

MAD doesn't allow multiple declarations of the same constant (Move in this case) with the same

number of arguments but different sort types. To overcome this error, we changed the way module GO

imports module MOVE.

5.3. Error in library module CLIMB

There was a type error in the usage of constant Theme in an axiom.

Before After

constants

 Theme(Thing, Action): Boolean;

axioms

 Theme(s, Climb(u, s));

% s is of type Supporter

constants

 Theme(Thing, Action): Boolean;

axioms

 Theme(x, Climb(u, x));

% x is of type Thing

In this axiom, we want to say that the Theme of action Climb is a Supporter. However, using a variable

(s) of type Supporter directly in the axiom is incorrect since the first argument of Theme should be of

type Thing. Hence, we change it to a variable of type thing (x). The meaning of the axiom remains the

same since we declare Thing to be a sub-sort of Supporter. Therefore, a thing (variable x) is-a

supporter (variable s), but not the other way round.

5.4. Error in MAD action description

The Monkey & Bananas (M & B) domain is formalized using three modules. There was a type error in

the declaration of a fluent in one of these modules MB. In particular, fluent TopLevel should be

declared of type “statically determined”, not of type “simple”. This change needs to be made since

TopLevel is defined as a special case of fluent Top, which in turn is defined of type “statically

determined” in module TOP.

Before After

TopLevel(Thing): fluent(Level);

 …

 import TOP;

 Top(x) is TopLevel(x);

TopLevel(Thing): sdFluent(Level);

 …

 import TOP;

 Top(x) is TopLevel(x);

6. Conclusion

This thesis introduced a way to test a general-purpose library of action descriptions and semantics of

the MAD language. We translated a complete MAD action description, which used library modules, to

the language of the CCalc. The crux of this translation process lay in implementing the semantics of

MAD (function δ). We found several bugs in the theoretical description of the library and MAD, and

upon correcting these errors, we were able to get correct answers for our queries.

In the future, we plan to continue testing this MAD action description, and other formalizations of toy

domain from [Erdogan, unpublished].

7. Acknowledgements

This thesis was greatly influenced by the members of the Texas Action Group (TAG) at Austin

and I am grateful for all their help. I would like to thank my supervisor Vladimir Lifschitz for

advising this research. It would not have been possible without his guidance.

I would also like to thank Selim Erdogan for helping me implement the translation

process (step 2) and all his valuable suggestions throughout my research; Wanwan Ren for

helping me find an error in my algorithm; and Yuliya Lierler for suggestions on improving the

paper. I would like to thank all of them for their help in finding the errors discussed above. I

would also like to thank Greg Plaxton and Bruce Porter for reviewing this thesis.

8. Appendix A – Algorithm code

8.1. Main section

Separate the library modules, and send each to the subroutine parse_module, which in turn

generates a single-module free of import statements.

Read the next line of the file into the variable $line
while ($line = <LIB>) {

If this line contains the reserved word endmodule indicating the end
of file, then break out of the while loop
 last if $line =~ endmodule;

 # push the line of text just read into an array
 push @module_array,;
}

send the module just read into the array @module_array to the
subroutine for processing
my %module = &parse_module(@module_array);

8.2. Subroutine parse_module(@array) –

8.2.1. Parsing a non-import sections Parsing an import section -

1. Such a section begins with a line containing one of the keywords except import.

2. Read all lines in this section into an array, and then store a pointer to this array in the

hash of arrays. The end of the section is marked by the beginning of another section i.e.

when we come across another keyword.

check if this line contains a keyword
if ($keywords =~ /($line)/) {
 ...
 # reads the next line into $line
 while ($line = $module[++$i]) {
 ...
 # checks if this is the end of section
 if ($keywords =~ /($line)/
 || $line =~ "import"
 || $line =~ "endmodule") {
 ...
 # break out of the while loop as we're at the end of section
 last;
 }
 # store this section in an array
 push @array, $module[$i];
 }

 # add this section to the hash of arrays
 $module_hash{$keyword} = [@array];
}

8.2.2. Parsing an import section

1. Prepend I_n to each occurrence of every variable name, where n is the import number.

Note: A line in the variables section is of the form

Iterate through all the lines in the variables section
foreach my $var_line (@{ $import_mod_hash{"variables"} }) {
 ...
 # interate through each of the variables
 foreach my $var (@var_arr) {
 ...
 # Iterate through the axioms section
 foreach my $axiom (@{ $import_mod_hash{"axioms"} }) {
 ...
 # prepend I_n to the variable in all axioms it occurs
 $axiom =~ s/(\b$var\b)/I$import_num.$var/g;
 }
 # Prepend I_n to the variable definition
 $var =~ s/^/I$import_num./;
 }
}

2. Prepend I_n to a constant name if it has been renamed earlier

Iterate through all the lines in the variables section
foreach my $constant (@{ $import_mod_hash{"constants"} }) {
 ...
 # Check if this constant has a I_m already prepended i.e. if it has
 # been renamed earlier, then prepend I_n
 if ($const =~ $inumdot) {

 # Iterate through the axioms section
 foreach my $axiom (@{ $import_mod_hash{"axioms"} }) {

 # prepend I_n to the constant name wherever it occurs
 $axiom =~ s/$const/I$import_num.$const/g;
 }
 # Prepend I_n to the constant definition
 $constant =~ s/$const/I$import_num.$const/;
 }
}

3. Check for renaming clauses and handle each case separately

while ($line =~ m/\bis\b/) {

a. Sort renaming – Replace every occurrence of sort names si with s’i

 # Iterate through all the lines in the sorts section
foreach (@{ $import_mod_hash{"sorts"} }) {

 # if we find a sort that needs to be renamed
 if (/$var1/) {
 ...
 # Iterate through all the sections
 foreach my $tmp (@{ $import_mod_hash{$key} }) {

 # replace s i.e. var1 with s i.e. var2

i j
 $tmp =~ s/\b$var1\b/$var2/g;
 }
 }
}

b. Constant renaming

i. Prepend I_n to every occurrence of this constant
ii. Insert the equivalences I_n.cj ... <-> Fj (j = 1...l) at the beginning of the

axioms section.
Insert the equivalences I_n.c

j
... <-> F

j
 (j = 1...l) at the beginning

of the axioms section
unshift @{ $import_mod_hash{"axioms"} }, " $var1 <-> $var2\n";
...
 # Iterate through the axioms and constants sections, as only these
 # can contain legal use of constants
 foreach my $line (@{ $import_mod_hash{$key} }) {

 # if this constant was already renamed in the general section
 # in fig ___, then skip it
 next if $line =~ m/I$import_num\.$const/;

 # Prepend I_n to the constant definition
 $line =~ s/\b$const/I$import_num.$const/g;
 }

4. Add the processed sections from the imported module and remove duplicates

Iterate through each section
foreach my $key (keys %import_mod) {

Add the contents of the imported module section
 push @{ $module_hash{$key} }, @{ $import_mod{$key} };
}

Remove duplicate entries in sorts, inclusions and constants sections
foreach my $key (qw/sorts inclusions constants/) {
 ...
 # assign (key => value) pair to line in the section, where the key is
 # the line and value its line number relative to the section
 # by storing in a hash, duplicate entries are automatically removed
 my %section_hash = map { $_ => $i++ } @section_arr;

 # sort the hash by line number
 my @unique_section =
 sort { $section_hash{$a} <=> $section_hash{$b} } keys %section_hash;

 ...
}

9. Bibliography

Aho, A.V., Kernighan, B. W., Weinberger, P. J., 1988. The AWK Programming Language.

Addison Wesley.

Arnold, K., Gosling J., and Holmes, D. 2000. The Java Programming Language (3rd Edition).

Addison-Wesley Professional.

Barker, K.; Porter, B.; and Clark, P. 2001. A library of generic concepts for composing knowledge

bases. In First International Conference on Knowledge Capture, 14-21.

Clark, P and Porter, B. 1997. Building concept representations from reusable components. In

proceedings of AAAI-97, pages 369–376.

Dougherty, D. and Robbins, A., 1997. sed & awk (2nd Edition). O'Reilly Media.

Erdogan, S., unpublished. A Library of General-purpose Action Descriptions (Dissertation proposal).

Erdogan, S.; Ferraris, P.; Lifschitz, V.; Manohar A.; Ren, W. Unpublished. Why the Monkey Needs

the Box: A Serious Look at a Toy Domain.

Erdogan, S. and Lifschitz, V. 2006. Actions as special cases. In Proceedings of the Tenth International

Conference on Principles of Knowledge Representation and Reasoning (KR).

Finger, J. 1986. Exploiting Constraints in Design Synthesis. PhD thesis, Stanford University.

Geffner, H. 1990. Causal theories for nonmonotonic reasoning. In Proceedings of National Conference

on Artificial Intelligence (AAAI), 524–530. AAAI Press.

Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and Turner, H. 2004. Nonmonotonic causal

theories. Artificial Intelligence 153(1–2):49–104.

Lifschitz, V. and Ren, W. 2006. A modular action description language. In Proceedings of the Twenty-

First National Conference on Artificial Intelligence. To appear.

Lin, F. 1995. Embracing causality in specifying the indirect effects of actions. In Proceedings of

International Joint Conference on Artificial Intelligence (IJCAI), pages 1985–1991.

McCain, N., and Turner, H. 1997. Causal theories of action and change. In Proceedings of National

Conference on Artificial Intelligence (AAAI), 460–465.

McCarthy, J. 1959. Programs with Common Sense. Proceedings of the Teddington Conference on the

Mechanization of Thought Processes: 75-91.

McCarthy, J. 1979. Ascribing mental qualities to machines. In Martin Ringle, editor, Philosophical

Perspectives in Artificial Intelligence. Harvester Press, 1979. Reproduced in [McCarthy, 1990].

McCarthy J., 1987. Generality in Artificial Intelligence. Communications of ACM, 30(12):1030–1035.

Reproduced in [McCarthy, 1990].

Russell, S. and Norvig, P., 2003, Artificial Intelligence: A Modern Approach. Englewood Cliffs, New

Jersey: Prentice Hall, 2nd edition.

Shanahan, M. 1997. Solving the Frame Problem: A Mathematical Investigation of the Common Sense

Law of Inertia. MIT Press.

Stroustrup, B., 2000. The C++ Programming Language (Special 3rd Edition). Addison-Wesley

Professional.

Wall, L., Christiansen, T., Orwant J., 2000. Programming Perl (3rd Edition). O'Reilly Media.

