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Abstract 

Reasoning about actions and describing changes caused by the execution of these actions is an idea 

central to common sense reasoning. Action description languages have been developed to specify the 

effects and preconditions of actions using a logical framework. However, many of these formalisms 

suffer from a lack of generality and modularity [McCarthy, 1987]. 

A new Modular Action Description language (MAD) [Lifschitz & Ren, 2006] and a library of general 

purpose action descriptions [Erdogan, unpublished] written in MAD are being designed to solve these 

problems. This thesis is the first step towards testing the semantics of MAD and the ability of this 

library to succinctly and expediently describe new action domains. 

1. Introduction 

One of the major long term goals of Artificial Intelligence (AI) research is to endow computers with 

commonsense. One of the earliest suggestions on dealing with commonsense problems was to use 

formal logic. The roots of this branch of AI, known as logical AI, are found in the 1959 paper by 

McCarthy – Programs with Common Sense [McCarthy, 1959]. In this paper, he described that “a 

program has common sense if it automatically deduces for itself a sufficiently wide class of immediate 

consequences of anything it is told from what it already knows.” 

Logical AI provides an axiomatic basis for reasoning about the world inhabited by agents who 

have beliefs and goals, who perform actions in order to reach these goals and by doing so change the 

state of the world. The agent infers a course of actions that will lead to its goals by performing logical 

analysis i.e. commonsense reasoning.  

Reasoning about actions and describing changes caused by the execution of these actions is an 

idea central to commonsense reasoning. Action description languages – formal languages used to 

describe the effects of actions – have been developed to represent and solve problems in logical AI. 

Many of these formalisms suffer from a lack of generality and modularity [McCarthy, 1987]. A new 

Modular Action Descriptive language (MAD) [Lifschitz & Ren, 2006] aims to solve one half of this 

problem by allowing re-use of existing action descriptions. The other half that is necessary is a 

database of general-purpose action descriptions which can be used to succinctly and expediently 

describe new action domains. 



In this thesis, we describe our efforts to test the semantics of MAD and the applicability of 

such a library to describe new action domains [Erdogan, et al., 2006]. The library is an application of 

the idea of a database of reusable, general-purpose knowledge components [Clark and Porter, 1997; 

Porter, et al. 2001] to the design of action languages. It is being written in MAD, and is a topic of 

Selim Erdogan’s dissertation proposal [Erdogan, unpublished]. The idea of such a library was first 

explored in [Erdogan & Lifschitz, 2006]. 

Different actions in different domains are often related. Many actions can be described in terms 

of other actions [Erdogan & Lifschitz, 2006] – for example, pushing, carrying, and walking can all be 

described as special cases of a more general action move. Action domains tend to use specialized 

versions of such general actions, and in the process of formalization, reinvent knowledge. This library 

aims to factor out common aspects of these specialized actions to form a repository of reusable 

knowledge components, which will contain descriptions of general actions such as move. A 

formalization of an action domain could then “import” general knowledge from this library, with very 

few domain-specific axioms needed.  

To draw an analogy, this library is very similar to libraries (API) available in widely-used 

procedural languages such as C++ [Stroustrup, 2000] and Java [Arnold et al., 2000]. Differences exist 

in that this library represents knowledge as declarative axioms as compared to the imperative nature of 

programming in procedural languages.  

The library and MAD are still in the developmental stages, and much work is needed before 

either is fully mature. The future implementation of MAD (MAD Causal Calculator) is still in the 

works. Consequently, we have no means to verify the correctness, completeness, or quality of the 

library in achieving its goals at present. To solve this problem, we have developed a method of 

translating the library and a MAD formalization (of an action domain) into the language of the Causal 

Calculator1 (CCalc), and testing it using CCALC.  

In section 2 we give a brief background of the development of action description languages, 

MAD, and an example; in section 3 we describe the semantics of MAD; in section 4 we explain our 

algorithm which translates MAD action descriptions to input for CCalc; in section 5 we discuss our 

                                                 

1 http://www.cs.utexas.edu/users/tag/cc/ 



results – the errors we found on testing the library and our solutions; (Appendix A) contains segments 

of code used by our algorithm. 

2. Background 

Common sense capability can be broadly divided into common sense knowledge and common sense 

reasoning. Common sense knowledge concerns situations that change in time as a result of events and 

their effects. The most important events are actions. Commonsense reasoning involves drawing 

conclusions based on this knowledge. Facts about the world can be represented as logical axioms and 

deduction methods can be used to reason about the changes in the states of the world [McCarthy, 

1959]. 

Planning problems provide one of the most fruitful showcases for combining logical analysis 

with AI applications. On the one hand there are many practically important applications of automated 

planning, and on the other logical formalizations of planning are genuinely helpful in understanding 

the problems and in designing algorithms. In such a problem, an agent in an initial-world state is 

equipped with a set of actions, which can be thought of as partial functions transforming world states 

into world states. These actions are feasible only in world states that meet certain constraints (called 

“pre-conditions” of the action). The goal of the agent is to find a sequence of feasible actions that take 

it from the initial state to the desired state. 

Important problems, such as the frame problem [McCarthy, 1979] and ramification problem 

[Finger, 1986] have arisen in the research of logical AI. They have been successfully solved using 

nonmonotonic formalisms [Shanahan, 1997; Geffner, 1990; Lin, 1995; McCain and Turner, 1997]. In 

particular, very expressive action descriptive languages have been introduced, incorporating the 

solutions of these problems in their design. They define “transition systems” – directed graphs with the 

vertices representing all the possible states of an action domain and the edges representing actions an 

agent can take. 

A rich and eclectic set of conceptual tools has transformed the study of logical AI. This process 

and its outcome are well documented in [Russell & Norvig 2003]. However, work is still needed to 

make these systems “generally” applicable. In reviewing his Turing Award lecture of 1971 [McCarthy, 

1987], McCarthy notes –  

It was obvious in 1971 and even in 1958 that AI programs suffered from a lack of 

generality. It is still obvious, and now there are many more details. The first gross 



symptom is that a small addition to the idea of a program often involves a complete 

rewrite beginning with the data structures. Some progress has been made in 

modularizing data structures, but small modifications of the search strategies are even 

less likely to be accomplished without rewriting. 

Another symptom is that no-one knows how to make a general database of common 

sense knowledge that could be used by any program that needed the knowledge. Along 

with other information, such a database would contain what a robot would need to 

know about the effects of moving objects around, what a person can be expected to 

know about his family, and the facts about buying and selling. This doesn't depend on 

whether the knowledge is to be expressed in a logical language or in some other 

formalism. When we take the logic approach to AI, lack of generality shows up in that 

the axioms we devise to express common sense knowledge are too restricted in their 

applicability for a general common sense database. In my opinion, getting a language 

for expressing general common sense knowledge for inclusion in a general database is 

the key problem of generality in AI. 

MAD [Lifschitz and Ren, 2006] aims to partially solve this issue. The “high-level” notation of 

MAD along with the availability of transition system semantics, make it an attractive formalism for 

describing actions. The semantics of MAD is based on C+. The main distinctive feature of MAD is its 

use of modules to describe an action domain. Each module describes a set of interrelated fluents2 and 

actions. A module may contain references to other modules via import statements, which allows a new 

action domain to refer to other previously defined action descriptions. These import statements also 

allow the user to specialize or rename the general actions and fluents.  

MAD gives us the ability to build a hierarchy of action descriptions and inherit properties from 

parent modules. So, MAD is an appropriate language for developing the library. To quote from 

[Erdogan, unpublished] –  

The library will consist of MAD modules, each describing a group of general 

commonsense facts related to actions. For example, one module might describe the 

                                                 

2 A fluent is a condition that changes over time. Fluents are generally represented by predicates having an 
argument that depends on time. However, a fluent can also be represented as a function. For example, 
Location(Thing) is a function representation of a fluent that maps things to places. 



effects of the “move” action, including the axiom “moving an object causes it to be at a 

new location.” Another module might express more general information about locality, 

such as “an agent must be at the same location as an object to be able to perform an 

action on it.” 

The Causal Calculator (CCalc) is an implementation of a subset of C+, which can be used to 

solve problems in commonsense reasoning, such as prediction and planning. It has been applied to 

several challenging problems in commonsense reasoning [Lifschitz et al., 2000, Lifschitz, 2000, 

Campbell and Lifschitz, 2003, Akman et al., 2004], including domains of non-trivial size. We intend 

to use CCalc to test the library and a MAD formalization after translating the latter to the language of 

CCalc. 

2.1. Example 

The following figure (Fig. 1) illustrates the use of the MAD language and the library to model a 

simplified version of the Monkey and Bananas (M & B) domain3. In this version (Monkey and Box), 

there are no bananas and the monkey’s goal is to simply climb the box. This is a typical example of a 

planning problem – a search for a series of executable actions that successively transform the initial 

state of the world into the desired state of the world.  

This action description consists of two modules – a library module MOVE and a domain 

specific module MONKEY. Module MOVE is an axiomatization of “move-like” actions, which cause 

the location of the thing being moved to change. This idea is embedded in the axiom 

Move(x, p) causes Location(x) = p; 

which forms the crux of this module. Module MONKEY imports module MOVE twice, to describe two 

separate actions – walking and climbing i.e. horizontal movement and vertical movement. Action walk 

is defined using the first import statement. It is understood as a special case of action Move, wherein 

the monkey is the only thing that can move. Action ClimbOn is defined using the second import 

statement. It is also understood as a special case of action move, but in this case the monkey moves to a 

different level – from the floor onto the top of the box. 

                                                 

3 A monkey tries to grab a bunch of bananas that is hanging from the ceiling and out of its reach. It can 
grab the bananas by pushing a box to the empty place under the bananas and climbing on top of the box. 

Refer to [Erdogan, unpublished] for the complete action description of M & B, and other toy-domains. 



module MOVE; 

sorts 

Thing; Place; 

constants  

Location(Thing): fluent(Place); 
Move(Thing, Place): action; 

variables 

x: Thing; p: Place; 

axioms 

inertial Location(x); 

exogenous Move(x, p); 

Move(x, p) causes Location(x) = p; 

nonexecutable Move(x, p) if Location(x) = p; 

endmodule; 

 

module MONKEY; 

sorts 

Thing; Place; Level ; 

objects 

Monkey, Box : Thing; 

P1, P2: Place; 

BoxTop, Floor : Level ; 

constants 

OnBox : fluent; 

Walk(Place), ClimbOn, ClimbOff : action; 

variables 

x: Thing; p: Place; l: Level ; 

 

import MOVE; 

Move(x, p) is Walk(p) ∧ x = Monkey; 

 

import MOVE; 

Place is Level ; 

Location(x) = l is 

((x = Monkey ∧ OnBox ) ∧ l = BoxTop) V 

(¬(x = Monkey ∧ OnBox ) ∧ l = Floor ); 

Move(x, l) is 

(x = Monkey ∧ l = BoxTop ∧ ClimbOn) V 

(x = Monkey ∧ l = Floor ∧ ClimbOff ); 

 

axioms 

Location(Monkey) = p 

if OnBox ∧ Location(Box) = p; 

nonexecutable ClimbOn 

if Location(Monkey) ≠ Location(Box); 

nonexecutable ClimbOff ∧ Walk(p); 

 

endmodule 

Figure 1: Example – Monkey and Box action description in MAD 

 

In the initial state, the monkey is at location P1, and the box and bananas at P2. The correct two-

step solution for the monkey to reach its goal entails the following actions:  

1.walk(P2)  

2.ClimbOn 

In the example in section 3.1, we further explain the mechanics of the first import statement.  

 



2.2. Library Prototype 

Our current prototype of the library [Erdogan, unpublished] is a collection of fifteen modules that 

encapsulate the following concepts –  

• Actors and Themes – Modules about actions in general. For example, an action maybe 

executed by an “actor” (performing agent like the monkey above). An action may also have a 

“theme” associated i.e. the thing the action affects (example: theme of action Walk is the 

Monkey itself). There may be zero or more themes for an action. 

• Places and Movement – Describe movement, such as climbing on the box or walking. In order 

to formalize such actions, we need to express where things are located and how an action 

changes the location of that thing. 

• Supporting Objects – Modules that express how things are supported, and how actions affect 

the supporters. For example, the monkey is either supported by the floor and the box through 

time, and climbing changes the thing that supports the monkey (from floor to box). 

• General Properties of Actions – Represent preconditions of actions, like non-locality. An agent 

can’t perform an action on a thing unless it is next to it. 

The initial idea for building this library was to study many different domains in order to assemble a 

large number of interesting and useful library modules. However, the Monkey and Bananas (M & B) 

domain was found to be incredibly rich in itself, when viewed with an eye towards distinguishing 

generalizable features. Our current version of the library is based off such features in M & B. 

This version of the library has been used to formalize other toy-domains [Erdogan, unpublished].  In 

the future, we believe that our library will grow us we study more domains and include general 

features from those domains. 



3. Semantics of Modular Action Description (MAD) language4 

3.1. Overview 

 

• Function δ turns an arbitrary MAD action description 

into a single module by replacing every import statement 

with a modified copy of the corresponding module. 

• A single-module action description in MAD is 

essentially an action description in C+. 

Example 

Fig. 2 illustrates the effect of applying function δ on the first import statement in the Monkey & Box 

example we encountered in Fig. 1. This import statement demonstrates the renaming of action Move to 

Walk and is understood in this context as the monkey walking to a place. On the left is the original 

version of module MOVE and on the right is the modified copy.  

 

                                                 

4 Please refer to [Lifschitz & Ren, 2006] for a thorough description 



 

Fig 2. Applying function δ on the first import statement of the Monkey & Box domain 

3.2. Function δ – Generating a single-module description 

Function δ translates an arbitrary MAD action description into a single module by replacing every 

import statement with a modified copy of the corresponding module. This single-module action 

description in MAD is essentially an action description in C+.  

MAD offers two types of specialization or renaming as part of the import statements – sort 

renaming and constant renaming. There are rules with each flavor of renaming. Note, first, that any 

import statement has the following form 

import NAME ; 

s
1 
is s′

1 
; 

… 

s
k 
is s′

k 
; 

c
1 
(…) is F

1 
; 

…. 

c
l 
(…) is F

l 
; 



where NAME is a module name, s1, . . . , sk, s′1, . . . , s′k are sort names, c1, . . . , c1 are constant names, 

and F1, ..., Fl are predicate formulas. (The dots after each cj represent optional arguments). The lines 

following the import statement are known as renaming clauses.  

The rules of translation are –  

• Variable renaming – always performed irrespective of any renaming clauses 

o Prepend In to each occurrence of every variable name (where n is the import number) 

o Example – x: Thing  I1.x: Thing 

• Sort renaming ( si is si’ ) –  

o Replace every occurrence of each of sort name si with s’i            (i = 1…k) 

• Constant renaming ( cj (...) is Fj ) 

o Prepend In to every occurrence of this constant 

o Insert equivalences In.cj (...) ≡ Fj  at the beginning of the axioms section. (j = 1...l) 

o Example –  

 Original: Move(x, p) causes Location(x) = p ;  

 Renamed: I1.Move(x, p) ≡ Walk(p) ∧ x = Monkey ; 

                 I1.Move(I1.x, I1. p) causes Location(I1.x) = I1. p ;  



4. Translating the library and a MAD formalization into the 
language of the Causal Calculator 

4.1. Overview of the Translation Process 

 

Translating a MAD formalization to CCalc: 

1. A Perl script implements the function δ, which implements 

the translation rules listed above. The result is a non-definite 

action description. 

2. Translate non-definite axioms into definite5. 

3. Make textual substitutions so that the action description can 

be treated as an input to CCalc. 

Currently, only step (1) of this process is automated through a 

Perl script. We’re considering the automation of step 3. 

Steps (1) and (2) will be performed by the future implementation of MAD CCalc as well. 

4.2. Why Perl? 

At this point, it is appropriate to discuss some of the reasons behind choosing Perl as the 

language to implement function δ. Perl [Wall, et. al., 2000] is a procedural programming 

language broadly based on C [Kernighan & Ritchie, 1988] with variables, control blocks, and 

subroutines. More importantly, for our purposes, it combines key features from AWK 

(associative arrays or “hash”s) [Aho, et. al., 1988] and sed (regular expressions) [Robbins & 

Dougherty, 1997]. 

The crux of implementing function δ lies in parsing import statements and the associated 

renaming clauses. This involves making non-trivial textual substitutions, which are handled 

                                                 

5 The translation process and definite/non-definite laws are discussed in [Erdogan & Lifschitz, 2006]. 



well by Perl’s regular expression engine. For example, the following single line Perl statement 

can trim the white-space from the beginning of a line of text. 

$line =~ s/^\s+//; 

It would take a few lines of code to perform the same in C. 

Another Perl feature utilized by our algorithm is associative arrays. Perl includes this 

convenient data structure, which allows indexing of an array by strings rather than numbers. 

For example, the following command 

$hash{“sorts”} 

allows us to access an element indexed by the string “sorts”. 

4.3. Step 1: Perl script – Implementing the function δ 

The script accepts one file as its input, which contains the MAD action descriptions in hierarchical 

order i.e. if a module M1 imports another module M2, then M1 should be defined before M2 in the file. 

The script is comprised of two functions – the main body and a subroutine  

%hash parse_module(@array); 

The subroutine implements the crux of the algorithm – the rules related to import statements and 

renaming clauses. It accepts an unprocessed MAD module, and generates a single-module free of 

import statements. This single-module is then used as an input for step 2, which “definitizes” the 

action description. 

4.3.1. Algorithm6 

4.3.1.1. General outline – 

• Without loss of generality, we can assume that each module can be broken up into the 

following sections. (We will refer to these as keywords.) 

sorts, objects, constants, variables, axioms, import 

We translate a whole module by parsing one section at a time. Each line in a module belongs to 

one of these sections. 

                                                 

6 Segments of the Perl code for the algorithm can be found in Appendix A. 



• A section can be further categorized into two blocks – import sections or non-import sections. 

The first five sections noted above are non-import sections, while the last is an import section. 

To apply the rules of translation, we iterate through the sections and process each line 

according to the block it belongs in i.e. all import sections are handled in one way and all non-

import sections in another. 

• Finally, we add the contents of the imported module to the module being processed and 

remove duplicate entries in the sorts, constants, etc. sections. 

• Data structures – We use a Hash of Arrays to store the various sections of each module. By 

using a hash, we are assured amortized O(1) for add and access, the two functions we perform. 

Also, we make optimal use of space. 

Though this benefit in time and space complexity is small for our current needs, it might be 

useful when the grammar of MAD is expanded to include more sections. 

Note: $import_mod_hash{“sorts”} denotes a pointer to an array that contains the “sorts” section of the 

module being referred to. 

4.3.1.2. Main section 

Separate the library modules, and send each to the subroutine parse_module, which in turn generates a 

single-module for each, free of import statements. 

4.3.1.3. Subroutine parse_module 

Parsing a section in the non-import sections block – 

These sections are relatively easier to parse compared to the import sections. 

1. Such a section begins with a line containing one of the keywords except import.  

2. All the lines in this section are read into an array, and then a pointer to this array is stored in 

the hash of arrays. 

Parsing an import section -  

1. Prepend In to each occurrence of every variable name, where n is the import number. 

2. Check for renaming clauses and handle each case separately. 

a) Sort renaming according to the rules stated in section 3.2 (Semantics of MAD). 



b) Constant renaming according to the rules stated in section 3.2 (Semantics of MAD). 

3. Add the processed sections from the imported module to the original module and remove 

duplicates in the various sections. Duplicates can arise, for example, when a sort is implicitly 

declared in a module being imported, and also explicitly declared in the module itself. 

4.4. Step 2: Converting to a definite theory 

At this point, we have a single-module “non-definite” action description. Since, the Causal Calculator 

is an implementation of the “definite” fragment of C+, it is not possible to process this action 

description directly. However, [Erdogan & Lifschitz, 2006] propose several methods for “definitizing” 

an action description7. This step is currently performed by hand. Consider the following non-definite 

axiom from the example in section 3.1: 

I1.Move(x, p) ≡ Walk(p) ∧ x=Monkey; 

Note that Move(x, p) is an exogenous action, which satisfies a condition under which we can 

transform this law into a definite law. The following is an equivalent definite theory -  

always I1.Move(x, p) ≡ Walk(p) ∧ x=Monkey; 

exogenous Walk(p); 

We prepended the keyword always and added an axiom defining Walk to be an exogenous 

action since action Move was. 

4.5. Step 3: Textual substitutions in order to translate to CCalc input 

After “definitizing”, all we have left to do is make some textual substitutions to render the action 

description suitable for input to CCalc. This involves making trivial changes such as changing semi-

colons to periods, changing the case of keywords, prepending static laws with the keyword always, 

etc. At present, we make each type of change individually using Perl on the command line. However, 

we plan to bunch these together in a Perl script. 

After this step, we should have a single-module action description that can be run in CCalc. 

                                                 

7 Note that it is not generally possible to “definitize” an action description. It is, however, in this case. 



5. Results 

In translating the library modules to CCalc semantics and testing the translated single module in 

CCalc, we found several bugs in the library and our MAD formalization of Monkey & Bananas. Upon 

correcting these errors, we were successfully able to run queries, which gave correct answers. This is 

an important milestone in the development of the library as were able to verify its correctness to model 

an action domain. We will now briefly discuss the errors found. 

5.1. Error in function δ – semantics of MAD 

The first and most important error was in the rules of generating a single-module outlined in section 

3.2 – these rules are incomplete. As a result, there were multiple (different) declarations of a constant 

(I1.Move) in our single module. To solve this problem, we add another rule to the way constants are 

renamed while importing a module. This new rules is  

• Rename all constants that have been previously renamed. In terms of implementing function δ, 

we rename all constants that already have a In prepended to their name. 

Example – 

Before After 

 I1.Move(Thing, Place): Action; 

 I1.Move(Thing, Place, Thing): Action; 

 I2.I1.Move(Thing, Place): Action; 

 I3.I1.Move(Thing, Place, Thing): Action; 

5.2. Error in library module CARRY 

The second error occurred due to conflicting definitions of constant theme in module CARRY. It stems 

from the fact that module MOVE is imported twice by module CARRY, once directly and once 

indirectly through module GO. To correct this error, we changed the way MOVE is imported by GO. 

Before After 

module GO; 

… 

import MOVE; 

  Thing is Agent; 

  Move(u, p) is Go(u,p); 

module GO; 

… 

import MOVE; 

  Move(x, p) is exists u (u=x & Go(u, p)); 



Module CARRY imports the following definition of constant theme from module GO 

theme(agent, action) : boolean; 

It also imports the original definition of constant theme from module MOVE  

theme(thing, action) : boolean;  

MAD doesn't allow multiple declarations of the same constant (Move in this case) with the same 

number of arguments but different sort types. To overcome this error, we changed the way module GO 

imports module MOVE. 

5.3. Error in library module CLIMB 

There was a type error in the usage of constant Theme in an axiom.  

Before After 

constants 

  Theme(Thing, Action): Boolean; 
 

axioms 

  Theme(s, Climb(u, s)); 
 
% s is of type Supporter 

constants 

 Theme(Thing, Action): Boolean; 
 

axioms 

  Theme(x, Climb(u, x));  
 
% x is of type Thing 

In this axiom, we want to say that the Theme of action Climb is a Supporter. However, using a variable 

(s) of type Supporter directly in the axiom is incorrect since the first argument of Theme should be of 

type Thing. Hence, we change it to a variable of type thing (x). The meaning of the axiom remains the 

same since we declare Thing to be a sub-sort of Supporter. Therefore, a thing (variable x) is-a 

supporter (variable s), but not the other way round. 

  

5.4. Error in MAD action description  

The Monkey & Bananas (M & B) domain is formalized using three modules. There was a type error in 

the declaration of a fluent in one of these modules MB. In particular, fluent TopLevel should be 

declared of type “statically determined”, not of type “simple”. This change needs to be made since 

TopLevel is defined as a special case of fluent Top, which in turn is defined of type “statically 

determined” in module TOP. 



Before After 

TopLevel(Thing): fluent(Level); 

  … 

  import TOP; 

     Top(x) is TopLevel(x);  

TopLevel(Thing): sdFluent(Level); 

   … 

   import TOP; 

      Top(x) is TopLevel(x);  

 

6. Conclusion 

This thesis introduced a way to test a general-purpose library of action descriptions and semantics of 

the MAD language. We translated a complete MAD action description, which used library modules, to 

the language of the CCalc. The crux of this translation process lay in implementing the semantics of 

MAD (function δ). We found several bugs in the theoretical description of the library and MAD, and 

upon correcting these errors, we were able to get correct answers for our queries. 

In the future, we plan to continue testing this MAD action description, and other formalizations of toy 

domain from [Erdogan, unpublished]. 
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8. Appendix A – Algorithm code 

8.1. Main section  

Separate the library modules, and send each to the subroutine parse_module, which in turn 

generates a single-module free of import statements. 

# Read the next line of the file into the variable $line 
while ( $line = <LIB> ) { 
 
# If this line contains the reserved word endmodule indicating the end  
# of file, then break out of the while loop 
  last if $line =~ endmodule; 
 
  # push the line of text just read into an array 
  push @module_array,; 
} 
 
# send the module just read into the array @module_array to the  
# subroutine for processing 
my %module = &parse_module(@module_array); 

8.2. Subroutine parse_module(@array) – 

8.2.1. Parsing a non-import sections Parsing an import section -  

1. Such a section begins with a line containing one of the keywords except import. 

2. Read all lines in this section into an array, and then store a pointer to this array in the 

hash of arrays. The end of the section is marked by the beginning of another section i.e. 

when we come across another keyword.  

# check if this line contains a keyword 
if ( $keywords =~ /($line)/ ) {  
  ... 
  # reads the next line into $line 
  while ( $line = $module[ ++$i ] ) {  
    ... 
    # checks if this is the end of section 
    if ( $keywords =~ /($line)/  
         || $line =~ "import"  
         || $line =~ "endmodule" ) { 
      ... 
      # break out of the while loop as we're at the end of section 
      last;                               
    } 
    # store this section in an array 
    push @array, $module[$i];  
  } 
 



  # add this section to the hash of arrays 
  $module_hash{$keyword} = [@array];      
} 

8.2.2. Parsing an import section 

1.  Prepend I_n to each occurrence of every variable name, where n is the import number. 

Note: A line in the variables section is of the form  

# Iterate through all the lines in the variables section 
foreach my $var_line ( @{ $import_mod_hash{"variables"} } ) { 
  ... 
  # interate through each of the variables 
  foreach my $var (@var_arr) { 
    ... 
    # Iterate through the axioms section 
    foreach my $axiom ( @{ $import_mod_hash{"axioms"} } ) { 
      ... 
      # prepend I_n to the variable in all axioms it occurs 
      $axiom =~ s/(\b$var\b)/I$import_num.$var/g; 
    } 
    # Prepend I_n to the variable definition  
    $var =~ s/^/I$import_num./; 
  } 
} 

2.  Prepend I_n to a constant name if it has been renamed earlier 

# Iterate through all the lines in the variables section 
foreach my $constant ( @{ $import_mod_hash{"constants"} } ) { 
  ... 
  # Check if this constant has a I_m already prepended i.e. if it has    
  # been renamed earlier, then prepend I_n 
  if ( $const =~ $inumdot ) {     
 
    # Iterate through the axioms section 
    foreach my $axiom ( @{ $import_mod_hash{"axioms"} } ) { 
 
      # prepend I_n to the constant name wherever it occurs 
      $axiom =~ s/$const/I$import_num.$const/g; 
    } 
    # Prepend I_n to the constant definition  
    $constant =~ s/$const/I$import_num.$const/; 
  } 
} 

3. Check for renaming clauses and handle each case separately 

while ( $line =~ m/\bis\b/ ) { 

a. Sort renaming – Replace every occurrence of sort names si with s’i 

 # Iterate through all the lines in the sorts section 
foreach ( @{ $import_mod_hash{"sorts"} } ) { 



 
  # if we find a sort that needs to be renamed 
  if (/$var1/) { 
    ... 
    # Iterate through all the sections 
    foreach my $tmp ( @{ $import_mod_hash{$key} } ) { 
 
      # replace s  i.e. var1 with s  i.e. var2 

i j
      $tmp =~ s/\b$var1\b/$var2/g; 
    } 
  } 
} 

b. Constant renaming 

i. Prepend I_n to every occurrence of this constant 
ii. Insert the equivalences I_n.cj ... <-> Fj (j = 1...l) at the beginning of the 

axioms section. 
# Insert the equivalences I_n.c

j 
... <-> F

j
 (j = 1...l) at the beginning  

# of the axioms section 
unshift @{ $import_mod_hash{"axioms"} }, "    $var1 <-> $var2\n"; 
... 
    # Iterate through the axioms and constants sections, as only these   
    # can contain legal use of constants 
    foreach my $line ( @{ $import_mod_hash{$key} } ) { 
 
      # if this constant was already renamed in the general section  
      # in fig ___, then skip it 
      next if $line =~ m/I$import_num\.$const/; 
 
      # Prepend I_n to the constant definition  
      $line =~ s/\b$const/I$import_num.$const/g; 
    } 

4. Add the processed sections from the imported module and remove duplicates 

# Iterate through each section 
foreach my $key ( keys %import_mod ) { 
 
# Add the contents of the imported module section 
  push @{ $module_hash{$key} }, @{ $import_mod{$key} }; 
} 
 
# Remove duplicate entries in sorts, inclusions and constants sections 
foreach my $key (qw/sorts inclusions constants/) { 
  ...  
  # assign (key => value) pair to line in the section, where the key is  
  # the line and value its line number relative to the section 
  # by storing in a hash, duplicate entries are automatically removed 
  my %section_hash = map { $_ => $i++ } @section_arr; 
 
  # sort the hash by line number 
  my @unique_section = 
    sort { $section_hash{$a} <=> $section_hash{$b} } keys %section_hash; 



  ... 
} 
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