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Abstract 
This research provides a more reliable and secure methodology and programming 

environment for developing network-enabled applications.  The goal was achieved by designing 

and developing an Object-Oriented framework and APIs using C++.  The contributions of this 

thesis are: 

1. A new open source ANSI C++ standard Sockets++ iostreams framework and 

implementation that ensures that all network communication is not subject to common 

buffer overflow attacks.  The framework utilizes robust iostreams buffering abstractions, 

consistency checking, and is compatible with OpenSSL, POSIX threads, and the C++ 

Standard Template Library.  

2. A new open source ANSI C++ framework and implementation of the Tor onion-routing 

client that uses encryption and Sockets++ to enable application-level privacy and 

enhanced security when used with Sockets++. 

3. A simple Web Proxy Server that is built from the previous components that enables 

additional privacy and anonymity when configured for use with standard web browsers.  

In particular, the proxy protects against snooping of a user's settings, etc. 
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1. Introduction 
This research provides a more reliable and secure methodology and programming 

environment for developing network-enabled applications.  The goal was achieved by designing 

and developing an Object-Oriented framework and APIs using ANSI C++ [5].  The contributions 

of this thesis are: 

1. A new open source ANSI C++ standard Object-Oriented Sockets++ iostreams 

framework and implementation that ensures that all network communication is not 

subject to common buffer overflow attacks.  The framework utilizes robust iostreams 

buffering abstractions, consistency checking, and is compatible with OpenSSL [7], 

POSIX threads [6], and the C++ Standard Template Library.  

2. A new open source ANSI C++ framework and implementation of the Tor onion-

routing client that uses encryption and Sockets++ to enable application-level privacy 

and enhanced security when used with Sockets++. 

3. A simple Web Proxy Server that is built from the previous components that enables 

additional privacy and anonymity when configured for use with standard web 

browsers.  In particular, the proxy protects against snooping of a user's settings, etc. 

Figure 1 illustrates the connection between all three of these contributions. 

 
Figure 1: Anonymizing Proxy High-Level Overview 

Many technologies exist to address issues related to creating safe and secure networking.  

Some such applications include IPSec [4] and Virtual Private Networking (VPN) using Layer 2 

Tunneling Protocol (LT2P) [8] network services.  They provide security at the OSI network and 

data link layers between a trusted client and a trusted server through an un-trusted local or wide-

area network.  Most modern operating systems provide built-in security mechanisms to protect 

against spoofing and other common TCP/IP attacks.  However, exploits still occur, usually due 

to programmer sloppiness and error (e.g., stack smashing).  This type of exploit usually results in 

privilege level escalation by compromising the vulnerable program’s stack and allowing 

execution of code introduced to the system from the network.  These common problems can be 

overcome by providing safe and secure programming abstractions and APIs in the session layer 
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and/or higher layers, but few exist.  The standard way for programmers to utilize the transport 

layer is through raw memory buffers, which is the source of many of the network software 

exploits.  By providing a more robust programming interface to the transport layer, many of the 

vulnerabilities can be eliminated.  Our approach is Sockets++, a library that provides a safe 

“socket stream” interface to the transport layer. The library can be reused to provide presentation 

and application layer protection for network-enabled software applications. 
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2. Design 
The first part of the solution is to create a portable, secure, thread-safe library that 

transforms the interface provided by the operating system to the transport layer into an easier to 

use and more intuitive C++ iostreams compatible abstraction and interface that complies with the 

latest C++ standards and co-exists with the Standard Template Library and POSIX threads.  This 

library is called Sockets++ and allows networked application input and output to be programmed 

using the same methods as reading and writing to a file or an I/O device.  By providing safe 

buffered streams through the library that only allow indirect access to the buffers through the 

well-understood iostreams interface, more secure programs can be written.  In addition, the 

library utilizes the OpenSSL open source security library to provide SSL support to applications.  

SSL support provides the applications with confidentiality through end-to-end encryption and 

authentication using digital certificates.  Using the Sockets++ library, programs can be securely 

written, safe from buffer overflow and other stack-smashing attacks, and have a confidential 

stream from the client to the authenticated server system. 

2.1. Sockets++ Core Design 

 
Figure 2: Sockets++ Core Library Design 

The first portion of design involved creating an abstraction for everything specific to the 

operating system in order to isolate the later parts of the design from having to worry about 

operating system specific differences.  The first abstraction that was designed represents socket 

addresses.  Socket addresses represent where the socket can bind to or connect to.  For example, 

with standard IPv4 sockets, the socket address represents the IP address and the port number.  A 
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base class named SocketAddress was designed with the goal of representing all possible 

current and future sockaddr types.  sockaddr is a structure which is ‘overloaded’ by the 

operating system to provide socket address types for many various address families.  Address 

families define classes of sockets which share the same address type.  Both UDP and TCP 

sockets use AF_INET as their address family types which is the address family for IPv4 sockets.  

The SocketAddress class contains several pure virtual functions designed to retrieve the 

operating system specific sockaddr structures.  The class is then inherited by subclasses which 

take responsibility for a specific address family type.  The subclass in control of IPv4 socket 

addresses is called SocketInetAddress.  It inherits from both SocketAddress and the 

operating system’s sockaddr_in structure.  The virtual functions from SocketAddress are 

then implemented to return various details from the sockaddr_in structure which the 

operating system will ask for as parameters to socket functions such as connect and bind. 

The next step was to create an abstraction for the socket descriptor.  This abstraction was 

designed in the form of another class called Socket.  Many functions exist that are common to 

all types of sockets such as accept, bind, close, connect, listen, and shutdown.  

Another functionality that is common to all sockets is the ability to send and receive data.  All of 

these common functions were designed into the Socket class as member functions so that no 

code outside the Socket class need access the operating system’s methods.  Other sections of 

the library which need to make socket function calls can simply call the appropriate member 

function on the Socket class.  This effectively hides any intricacies of dealing with the 

operating system’s API inside one class which can be easily reconfigured to support multiple 

operating systems. 

Now that multiple abstractions have been designed to deal with the specifics of each 

operating system the library needs to deal with, the design for the actual iostreams 

implementation can begin to take shape.  Luckily, the iostreams interface provides a very 

extensible mechanism to create new stream implementations.  This extensibility is provided by 

the stream buffer interface, or basic_streambuf as it is referred to in §27.5 of the 2003 C++ 

standard (ISO/IEC 14882:2003).  By creating a new class which extends the 

basic_streambuf class, it is possible to create a new stream type which sends and receives 

its data from a socket instead of from the console or from a file.  This class is called 

BasicSocketBuffer.  It provides the essential functionality required to implement a 

basic_streambuf interface.  However, since some methods of sending and receiving data 
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require different methods to be called, two protected member functions were designed into 

the BasicSocketBuffer class to deal with this case.  These methods, Read and Write, are 

designed as pure virtual functions in this class allowing any new socket buffer implementation to 

be creating easily by just overriding the Read and Write functions.  The remaining functions 

in BasicSocketBuffer are generic enough to work regardless of the underlying data read 

and write methodologies. 

The safety and security guarantees of the Sockets++ library are provided by the 

basic_streambuf class.  This class requires only that the BasicSocketBuffer class 

override the buffer underflow and buffer overflow methods to refill the get buffer when it runs 

dry (underflow) or to flush the put buffer when it fills up (overflow).  The methods are named, 

appropriately enough, underflow and overflow.  Given that the basic_streambuf 

class is secure from buffer overrun attacks, it is only necessary to verify the correct functionality 

of the overridden underflow and overflow functions in BasicSocketBuffer in order 

to assert an increase in safety and security against buffer overrun attacks.  Barring a purposeful 

attempt by the library user to cause a buffer overrun error inside the BasicSocketBuffer 

class, this series of abstractions provides protection from stack smashing attacks. 

The first class designed to extend the BasicSocketBuffer class is the 

BasicSocketInetBuffer.  As indicated by the name, this class provides the 

implementation of the Read and Write methods that were pure virtual in 

BasicSocketBuffer for reading and writing to IPv4 sockets. 

The next class designed to extend the BasicSocketBuffer class is the 

BasicSocketSslBuffer.  It provides an implementation of the Read and Write methods 

that send and receive data through an SSL connection constructed on top of a normal TCP/IPv4 

socket.  In order to support all the various configuration options available through SSL, it 

permits an addition argument to the constructor not seen in the BasicSocketInetBuffer.  

This argument is the SSL context, a structure provided by the OpenSSL library that defines most 

of the various configurable features of an SSL connection. 
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2.2. Sockets++ Threading Design 

 
Figure 3: Sockets++ Threading Library Design 

The design up to this point is sufficient to allow users to write single threaded client 

applications using sockets through the Sockets++ library.  However, there is no mechanism yet 

provided by the library to enable easy server creation.  Though it is possible to create a socket 

that acts as a server side socket, the library provides no mechanism for multithreading and is thus 

limited in potential as a server side tool. 

To remedy this lack of server-side usability, the design once again focused on abstracting 

existing operating system specific concepts so that cross system porting would be limited in 

scope to a few classes rather than a library wide process.  In this new round of design, the 

multithreading API, pthreads, was abstracted into several classes.  These classes are Cond, 

Mutex, and Thread.  They represent, respectively, the pthread concepts of a conditional wait 

variable, a mutual exclusion lock, and, of course, a thread. 

The Mutex class was designed first as it is the most basic of the three.  It is simple: The 

only three methods a Mutex instance provides are Lock, TryLock, and Unlock.  Lock and 

Unlock naturally provide the basic ability to take the Mutex and release the Mutex.  

TryLock, unlike Lock, is guaranteed to return immediately after attempting to take the Mutex 

while returning whether or not it successfully acquired the lock. 

Following the Mutex class, the Cond class was designed to abstract a system dependent 

conditional wait variable type.  Like the Mutex class, the Cond class provides a simple 
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interface.  The Wait method takes as an argument a Mutex which it releases, and then the 

thread which called Wait will not get control back from the Wait method until the Cond 

instance gets a signal.  The Signal method indicates that one thread currently waiting on this 

Cond instance should receive control back from the Wait method.  Similarly, the Broadcast 

method indicates that all threads currently waiting on this Cond instance should receive control 

back from the Wait method. 

Figure 3 illustrates the UML design for the threading abstraction layer provided by the 

library.  Of course, this UML design indicates the one-to-one correspondence between 

Sockets++ classes and pthreads concepts.  In other operating systems which do not provide a 

pthreads interface, the code for the Sockets++ library will be more involved than simple 

delegates.  As long as the Sockets++ library provides the same interface on the library user end 

of the threading API, the library can worry about the intricacies of what the underlying operating 

system is.  The application developer should not need to be concerned with these details. 

3. Implementation 
The IPv4 specific implementation of the interface provided by the SocketAddress 

class is written into SocketInetAddress.  As mentioned in the design section, this class is 

primarily an abstraction to ease porting the library.  The SocketAddress class defines an 

enum which matches up to a group of preprocessor constants defined by the operating system’s 

socket interface.  This enum represents the socket address family.  These indicate to the 

operating system what type of socket address it has received.  The most widely used are 

AF_INET (for IPv4 socket addresses), AF_UNIX (for UNIX socket addresses), and AF_INET6 

(for IPv6 [1] socket addresses).  All of the functions present in SocketInetAddress simply 

delegate to operating system methods.  The two routines of interest in SocketInetAddress 

are the two constructors.  One takes an in_addr structure and a port number and simply copies 

them into the appropriate place in the sockaddr_in structure.  The other constructor takes a 

hostname or IPv4 address in a human-readable string and a port number.  It then performs a DNS 

lookup if necessary to resolve the hostname and fills in the in_addr structure and port number 

inside the sockaddr_in structure.  Both constructors assume arguments are in host byte order 

and convert the fields to network byte order as necessary. 

The Socket class is once again an abstraction of operating system methods.  The 

operating system methods have return values which indicate different failure conditions.  Instead 

of passing these return values back to the user program to interpret, the Socket class will 
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instead throw an exception indicating a failure.  This way, the library user need not be concerned 

with the intricacies of the operating system call under each method.  Instead, any error will result 

in a SocketException being thrown with a message to explain what went wrong.  Similar to 

the SocketInetAddress class, the Socket class defines a few enums to represent the 

operating system constants which are grouped together.  These enums are the protocol family of 

the socket, the type of the socket, and finally the three modes which are available for calling 

Shutdown.  The protocol family represents such values as PF_UNIX, PF_INET (IPv4), and 

PF_INET6 (IPv6).  The two commonly used types are SOCK_STREAM (TCP) and 

SOCK_DGRAM (UDP).  The Socket class does not inherent from anything and the only data 

member is an integer which identifies the socket file descriptor.  All of its methods, except for 

one, simply delegate their work to the operating system methods that perform the appropriate 

task.  The one method that is not just a delegate is conditionally compiled only if the OpenSSL 

library is present.  This method, getBio, returns a BIO object which is capable of being used 

by the OpenSSL library to establish an SSL/TLS connection on this socket. 

The BasicSocketBuffer class is templated in exactly the same way as the 

basic_streambuf class provided by the standard template library.  It inherits from the 

basic_streambuf and passes through the template types to the basic_streambuf class.  

To comply with the C++ standard for creating a new instance of basic_streambuf, the 

BasicSocketBuffer overrides the underflow, overflow, and sync methods.  These 

methods are called from code inside the basic_streambuf.  The basic_streambuf 

deals with all the normal buffering activities, and the BasicSocketBuffer only needs to 

concern itself with buffer underflow and overflow conditions.  Additionally, the library user can 

force the buffer to be flushed to the output sink.  This case is handled by the sync function.  The 

BasicSocketBuffer class calls some virtual functions, Read and Write, to handle getting 

data from the input source and sending data to the output sink.  This allows the creation of 

different types of BasicSocketBuffers by simply overriding the Read and Write 

methods.  Currently, the two subclasses of BasicSocketBuffer are 

BasicSocketInetBuffer and BasicSocketSslBuffer.  These override the Read 

and Write methods to receive and send data from IPv4 sockets and SSL/TLS connections 

respectively. 
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At this point in the implementation, sufficient structure exists to allow creation of socket-

enabled single-threaded applications.  For example, a simple HTTP retrieval program can be 

written using the Sockets++ library in 15 lines of code. 
Step 1: socketspp2::Socket s(socketspp2::Socket::DOMAIN_INET, 

socketspp2::Socket::TYPE_STREAM); 

Step 1:  Create a Socket object for IPv4 (DOMAIN_INET) and TCP (TYPE_STREAM). 
Step 2: socketspp2::SocketInetAddress sia(“www.google.com”, 80); 

Step 2:  Create an address object representing the IPv4 address of www.google.com on port 80 

(the standard HTTP port). 
Step 3: s.Connect(sia); 

Step 3:  Connect the socket to the address. 
Step 4: socketspp2::SocketInetBuffer sib(s); 

 std::iostream sockio(&sib); 

Step 4:  Create a socket buffer object from the socket object and then create an iostream object 

from that buffer. 
Step 5: std::string line; 

 sockio << “GET / HTTP/1.1\r\n” 

        << “Host: www.google.com\r\n” 

        << “Connection: Close\r\n” 

        << “\r\n” 

        << std::flush; 

Step 5:  Send the HTTP request to get http://www.google.com/. 
Step 6: while(std::getline(sockio, line)) 

 { 

     std::cout << line << std::endl; 

 } 

Step 6:  Read in lines from the socket and echo them to STDOUT. 

The same program written in the normal socket methodology would require close to 50 

lines with multiple opportunities for errors.  These opportunities include forgetting to check the 

return codes on the multiple BSD socket API calls that must be made.  Additionally, the 

input/output must be conducted through raw character buffers by the application developer.  This 

introduces the possibility for serious stack overflow issues.  Plus, the application is then 

operating system specific.  The Sockets++ approach allows the application to be written system 

independently allowing it to run anywhere the library has been ported to. 

Before showing an example server, it is necessary to discuss the implementation of the 

multi-threading capabilities provided by the Sockets++ library.  As mentioned in the design 
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section, the three classes provided by the library to abstract the operating system’s threading 

methodology are Thread, Mutex, and Cond.  This still does not provide a simple 

methodology to design a Sockets++ server however.  To ease the implementation of multi-

threaded servers, the Sockets++ library also provides a ThreadPool class.  This class starts up 

a specified number of threads (specified by the constructor argument, the default is 32) when an 

instance of the ThreadPool is constructed.  These threads end up sitting in a Cond instance’s 

Wait function waiting for tasks to be added to the ThreadPool’s task queue.  When a task is 

added to the task queue, one of the waiting threads is awaken, it is assigned the new task, it 

executes the task, and then it returns back to the Wait function from which it was awaken and 

repeats the cycle.  Tasks are assigned to the ThreadPool by the library user.  The function 

AddTask takes a function pointer and a void pointer to an argument to give to the function.  The 

Finish function on the ThreadPool object sleeps while waiting on the ThreadPool to 

complete all its assigned tasks.  It then joins into each thread in the pool in order to complete all 

the threads.  The destructor performs the same exact function without waiting for the task queue 

to empty out. 

This allows easy creation of multi-threaded server applications using the Sockets++ 

library.  An echo server makes a perfect example application and demonstration of the library’s 

multi-threading capabilities. 
Step 1: int main() 

 { 

     socketspp2::ThreadPool pool; 

Step 1:  Create a ThreadPool object (default constructor starts 32 threads) 
Step 2:     socketspp2::Socket s(socketspp2::Socket::DOMAIN_INET, 

socketspp2::Socket::TYPE_STREAM); 

     socketspp2::SocketInetAddress sia(“127.0.0.1”, 21); 

Step 2:  Create a TCP/IPv4 socket and an address for localhost on port 21 
Step 3:     s.Bind(sia); 

     s.Listen(); 

Step 3:  Bind the socket to the address and begin listening on the socket for new connections 
Step 4:     socketspp2::Socket s2; 

Step 4:  Create a temporary socket object to represent a new connection 
Step 5:     do { 

Step 5.1:         s2.Assign(s.Accept()); 

Step 5.2:         if(s2) 

         { 
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Step 5.3:             pool.AddTask(&EchoClient, new 

socketspp2::Socket(s2)); 

         } 

     } while(s2); 

     return 0; 

 } 

Step 5:  Loop while we do not receive an error from the accept method on our listening socket. 

Step 5.1:  Assign the new connection’s socket to the temporary object we created. 

Step 5.2:  Check to make sure the socket is a valid connection. 

Step 5.3:  Add a task to the thread pool to call method EchoClient with the given argument. 

 

The EchoClient method takes care of processing each connection for as long as the 

connection exists: 
Step 1: void* EchoClient(void* socket) 

 { 

     socketspp2::Socket *s = 

reinterpret_cast<socketspp2::Socket*>(socket); 

Step 1:  Cast the void pointer parameter to a socket pointer type. 
Step 2:     socketspp2::SocketInetBuffer sib(*s); 

     std::iostream sock(&sib); 

Step 2:  Create the iostream object from the socket. 
Step 3:     std::string line; 

     while(line != “QUIT” && sock) 

     { 

         std::getline(sock, line); 

         sock << line << std::endl; 

     } 

Step 3:  Read lines from the connection while it is open and while the line is not the value 

“QUIT” and echo the lines back to the socket 
Step 4:     s->Close(); 

     delete s; 

     return NULL; 

 } 

Step 4:  Since the socket is on the heap and not the stack, need to make sure to cleanup before 

returning to prevent a memory leak. 

This application, in less than 40 lines, starts 32 threads as the default behavior of the 

ThreadPool object’s constructor; it then dispatches incoming connections from localhost on 
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port 21 to a thread to be dealt with for the life of the connection.  It sends everything it receives 

back along the same connection until it receives ‘QUIT’ on a line by itself.  The same application 

written without benefit of the library requires many times the line count and introduces numerous 

unnecessary opportunities for the introduction of logic errors, multi-threading issues, and buffer 

overflow exploits. 

4. Onion Routing and The Personal Private Proxy Server 
To validate the library and its utility, a practical end-to-end system is constructed that 

adds additional privacy features to common web browsing.  The majority of modern web 

browsers willingly give away a substantial amount of user and system information to web servers 

when requesting pages from them.  This information may be used by illegitimate websites for 

nefarious purposes. The browser user should have more control over what information is given 

away, but technical ignorance and/or laziness is the norm among most web users.  Much of the 

time, enough data is given away to uniquely identify the user without their knowledge or 

permission.  The Sockets++ library is used to create a Personal Private Proxy Server to remove 

confidential data from the HTTP stream before forwarding the request on to the remote web 

server.  Since some websites only work on a select few browsers but all browsers support 

proxies, the proxy will provide browser independence as far as security of client data is 

concerned. However, the proxy server itself is not capable of hiding the logical address of the 

client machine.  To provide anonymity, the Personal Private Proxy Server will communicate 

with the Internet by “onion routing” using Tor [10].  Tor provides network layer anonymity by 

forwarding streams through several servers in between the client and end system and protects 

data confidentiality by repeatedly encrypting the data so that as each server in the route receives 

it, all it can do is peel off one layer of the encryption and forward the stream on to its next 

destination.  Thus, only the remote end system and the last hop in the Tor network see the 

original data stream.  Figure 4 illustrates how a web browser using Sockets++ and a Tor client 

built using Sockets++ provides safe and secure networking along with application level privacy. 

 
Figure 4: Anonymizing Proxy High-Level Overview 
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4.1. Tor Overview 
In order to establish a Tor connection, the Tor proxy must first know what nodes are out 

there.  The demonstration Tor client included with the library has a hard-coded list of a few 

nodes and their public keys.  Fully featured versions of the Tor proxy have a list of about five 

nodes that are ‘trusted’ to provide a list of Tor nodes.  The directory list is signed by the node the 

list is hosted on to verify that no one has tampered with the list in between the Tor proxy and the 

directory listing.  These ‘trusted’ Tor directory nodes appear to be the weakest point in Tor’s 

anonymity guarantees.  If the directory servers were to be compromised, the Tor proxy could be 

tricked into setting up a Tor connection through Tor nodes which all belong to the same person, 

thus eroding the anonymity guarantees made by Tor.  Figure 5 below illustrates how the Tor 

directory is retrieved by the Tor proxy. 

 
Figure 5: Step 1: Establishing a Tor connection [10] 

Once the Tor proxy has the list of Tor nodes provided by the directory, it will randomly 

choose two of them for the first two nodes in a circuit.  Tor nodes are allowed to establish ‘exit 

policies’ which specify IP addresses and ports that can be connected to from that Tor node.  

Some nodes establish a policy in which no exit is allowed that can only be used for node 1 or 

node 2 in the circuit.  The third node must allow the connection that the client wishes to make.  

For example, to prevent misuse, almost all the Tor exit nodes do not allow connections to be 

made to port 25 (SMTP’s port) in order to prevent anonymous email spam from coming out of 

the Tor network.  Once the three nodes are selected, the Tor proxy creates a connection one node 

at a time starting from node 1 going to node 3.  The only node that the client system connects to 
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directly is node 1.  In order to set up the session keys, Tor uses Diffie-Hellman key exchange [2].  

However, since Diffie-Hellman key exchange is subject to man-in-the-middle attack, Tor wraps 

the publicly traded parts of the Diffie-Hellman key in RSA public key encryption so that only the 

intended recipient will know the public portion (ga mod p) of the Diffie-Hellman key.  The 

remote node must then verify with the proxy that it has received the Diffie-Hellman key and 

sends a hashed value of the key back to the Tor proxy so the Tor proxy can check to see if they 

agree on the key.  If the value received matches the expected value, then the Tor proxy knows 

the remote system has the same value for the Diffie-Hellman key and the connection has been 

successfully established.  The key is then expanded via hashing it together with some constants 

to create a forward and backward symmetric key and a forward and backward data digest value 

to be used to initialize a hash function which will keep a running hash of everything that has 

been destined for and originated from this Tor node.  Once these values are established, the 

connection between the two nodes is ready to be used. 

 
Figure 6: Step 2: Establishing a Tor connection [10] 

As mentioned earlier, the client system does not communicate directly with anyone other 

than node 1.  Thus to extend the connection to node 2, the client system tells node 1 to set up a 

connection with node 2.  However, the key exchange is done via relay between the client and 

node 2, once again relying on RSA to prevent node 1, or any other man-in-the-middle, from 

getting the Diffie-Hellman key.  The same key verification process takes place and the same key 

expansion takes place.  Thus once the connection to node 2 is established, the client has four 

symmetric keys and four running digest hashes.  Node 1 only knows its two symmetric keys and 
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its two digests.  It does not know how to communicate with node 2, even though it is the one that 

has the actual TCP/IP connection to node 2.  Node 2 only knows its two symmetric keys and its 

two digests.  The same process is used to extend the circuit to node 3.  Node 1 is asked to relay a 

message to node 2 which asks node 2 to extend the circuit to node 3.  Once the third node is 

established into the circuit, the client can ask all three to relay along the circuit to node 3 which 

is then asked to create a connection to the ultimate destination of the circuit.  See Figure 6 above 

and Figure 7 below for examples of what the Tor circuit looks like in its fully established state. 

 
Figure 7: Step 3: Establishing a second Tor connection [10] 

Each link is established using standard SSLv3 or TLSv1 as the first layer of encryption.  

As discussed earlier, each link also has established a pair of keys and digests with the originating 

Tor proxy system.  Data being sent outbound in the circuit from the Tor proxy to the endpoint is 

encrypted first using one of the keys setup between node 3 and the Tor proxy.  It is encrypted 

again with one of the keys established between node 2 and the Tor proxy.  Finally, it is again 

encrypted with one of the keys established between node 1 and the Tor proxy.  Thus, node 1 and 

node 2 can not see the data or final destination for the message.  Node 1 can not see node 3 and 

node 3 can not see node 1.  Additionally, nodes 1 and 2 are not sure whether they are receiving 

messages from the originator of the circuit or just another Tor node.  The only way node 3 knows 

that it is not communicating with the circuit originator is because it is the exit point and almost 

all Tor circuits are created with three nodes in them. 

Similarly, when data is returning from the endpoint of the circuit back to the circuit 

originator, the data is encrypted by each node as it is sent back along the circuit.  Once the 
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message reaches the Tor proxy at the circuit origin, it must decrypt the message three times to 

get to the original content.  This sequencing of encryption and decryption is where the name 

onion routing comes from.  The encryption is added on and peeled away like layers of an onion. 

4.2. Sockets++ Tor Client 

 
Figure 8: Tor Design Using Sockets++ 

The original Tor client is extremely interconnected with the operating system’s socket 

library and is very difficult to follow.  Many functions have parameters which are no longer used 

and most functions also include ‘goto’ statements. 

As a test and demonstration of the Sockets++ library, the Sockets++ library includes a 

rewritten Tor client.  The design for this Tor client is illustrated in Figure 8.  All the data sent 

back and forth through a Tor connection is sent via Tor cells.  These cells are 512 bytes in length 

and have a standardized format which depends on the type of cell.  The Sockets++ Tor client has 

a class named Cell which overloads the stream extraction and insertion operators so that 

reading and writing to the Tor circuit is as simple as: 
> sockio >> c; // sockio is a socket stream and c is a Cell 

> sockio << c; 

The cell can be created or parsed by functions in the Connection class to send data 

across a circuit or receive data from the circuit.  At some point in the future, it should be possible 

to include this processing into a stream buffer so that reading and writing to a Tor circuit is as 

simple as reading and writing across a regular socket connection in Sockets++. 
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The Circuit class keeps track of the series of Tor nodes that are linked together to 

form an end-to-end connection through the Tor network.  It must keep track of the two 

symmetric keys that have been established between each node in the circuit.  Additionally, it 

must remember the cipher method’s state for each of these keys since the cipher used is a stateful 

cipher. 

The AES [1] count cipher as used in Tor keeps a sixty-four bit counter which is placed in 

a 128 bit value with the first sixty-four bits set to zero.  It then encodes this value using AES128 

and the established symmetric key.  The encoded buffer is then XORed with the data that will be 

sent across the Tor network to produce the encrypted data.  The encoded buffer is only used to 

encrypt 16 bytes after which the counter is incremented and the encoded buffer is recreated.  The 

class AesCountCipher keeps track of all of these inner workings and allows other portions of 

the Tor client to make method calls on it to encrypt and decrypt data. 

Thus, the Circuit class stores two AesCountCiphers for each node (one for data 

being sent and one for data being received).  Additionally, Tor provides data integrity guarantees 

with a digest which keeps track of all the data which has been sent to a given Tor node and 

another digest which tracks all of the data which has been received from a given Tor node.  The 

Circuit class must keep track of these values as well. 

The Connection class represents the actual socket based connection between the Tor 

client and the first node in the circuit.  Additionally, it is possible to have multiple circuits on a 

connection uniquely identified by a 16 bit integer.  These circuits naturally share the same first 

node (otherwise they would not be on the same connection).  The Connection class provides a 

place to store the socket, the socket SSL buffer, and the socket stream necessary to communicate 

with the node at the other side of the socket.  Also, it must keep a map from circuit identifiers 

(the 16 bit integer) to the Circuit object so that data coming in from this connection can be 

dispatched to the appropriate Circuit object. 

4.3. Personal Private Proxy Server 
Built on top of the Tor client, the anonymizing proxy server prevents a browser from 

revealing information about the client system’s identity to the other end of the connection.  Tor 

prevents the actual connection from providing information about the client system’s identity to 

the other system.  Tor also prevents any middleman from knowing both the source system and 

the destination system.  However, many browsers will willingly send information about what 

websites you visited before the one you are currently viewing, tracking information sent to the 
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browser by the remote site, the type and version of the browser, and operating system 

information.  The anonymizing proxy server receives proxy connections from any modern 

browser (as all the recent browsers support proxies).  Since HTTP is standardized, rather than 

writing a plug-in for each browser to remove these potentially identity revealing data items, we 

can filter them out of the HTTP stream in the proxy before forwarding the HTTP stream through 

Tor.  Thus, in one utility, all modern browsers can be provided with anonymity from both the 

data revealing one’s identity and from the IPv4 connection infrastructure revealing one’s 

identity. 

 
Figure 9: Firefox Proxy Configuration (left) and Internet Explorer Proxy Configuration (right) 

5. Contributions 
1. A new open source ANSI C++ standard Sockets++ iostreams framework and 

implementation that ensures that all network communication is not subject to common 

buffer overflow attacks.  The framework utilizes robust iostreams buffering abstractions, 

consistency checking, and is compatible with OpenSSL, POSIX threads, and the C++ 

Standard Template Library.  The Sockets++ library is available at 

http://www.sourceforge.net/projects/sockets2 and consists of nearly 6000 lines of code. 

2. A new open source ANSI C++ framework and implementation of the Tor onion-routing 

client that uses encryption and Sockets++ to enable application-level privacy and 

enhanced security when used with Sockets++.  The Sockets++ Tor onion routing client is 

available as a portion of the Sockets++ library. 

3. A simple Web Proxy Server that is built from the previous components that enables 

additional privacy and anonymity when configured for use with standard web browsers.  
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In particular, the proxy protects against snooping of a user's settings, etc.  The Personal 

Private Proxy Server is also available within the Sockets++ library code base at the same 

URL. 

6. Conclusion 
Encapsulating operating specific methods for dealing with threading and networking 

inside a library allows easy application porting and enhanced stability, safety, and security.  The 

potential for errors is greatly reduced by providing a unified methodology, regardless of 

underlying operating system, to access networks and utilize threading.  Many of the major 

modern errors discovered in computer applications are caused by buffer overflow attacks causes 

by programmer error, oftentimes in the networking layer of an application due to its unorthodox 

method of sending and receiving via raw buffers.  By providing a familiar interface, which C++ 

programmers begin learning from their very first ‘Hello World’ program, for sockets, not only 

does the library remove barriers for entry into network-enabled applications, but it also 

extremely reduces the risk of buffer overflow exploits existing in the application.  Additionally, 

using the same framework, additional tools can be provided to assist in the creation of secure 

channels of communication via OpenSSL and anonymous channels of communication via Tor. 

7. Future Work 
Support for a wider variety of address families should be built into the Sockets++ library.  

Given the library’s design, however, this should be as simple as creating more subclasses of the 

SocketAddress class. 

The included Tor client requires additional work to make it more stable and do more 

testing on the Tor network.  Currently, it is serves primarily as a test and demonstration of the 

library’s capabilities.  However, with a little additional work, it could become an easy to use and 

fully functional Tor client library which could be provided for reuse by other applications.  The 

fact that it uses Sockets++, however, significantly adds to its safety and overall security. 

The included Tor client needs to have a parsing engine created for parsing the Tor 

directory server file format.  The nodes it uses in creating a circuit are currently hard-coded 

along with their public keys into the source code which makes the Tor client only useful as a 

demonstration. 

An additional compile time option to enable Tor not just as a stand alone proxy, but as a 

library element would be an excellent addition to the Sockets++ library.  It should be fairly easy 
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to create a stream buffer which uses a Tor connection as its data source and sink instead of an 

IPv4 socket or an SSL/TLS connection. 

Additionally, there are many more applications which could be implemented using the 

Sockets++ library.  The library is openly available from SourceForge under an open source 

license that allows anyone to use it under the terms of the GNU Public License v2.  One 

application in particular that would be very interesting and useful to implement in terms both of 

usefulness as an application and as a test for the library would be a web server.  This would test 

the full capabilities of the library from the basics of socket streaming to the more advanced 

multiple threading capabilities of the library. 
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Appendix A:  Source Code and Documentation 
Source Code and Documentation are available at <http://sourceforge.net/projects/sockets2/> 


