
Algorithms for Identification of Patterns in

Biogeography and Median Alignment of Three

Sequences in Bioinformatics

by

Hai-Son Le

Supervisor: Vijaya Ramachandran

The University of Texas at Austin

December 2006

Acknowledgments

I am grateful for the supervision of Dr. Vijaya Ramachandran during my undergraduate research.

I have learned from her the fundamentals of theoretical Computer Science and the joy of doing

research. Her tireless passion and motivation enlightens my way through many difficult problems.

It is my honor to work with Dr. Ganeshkumar Ganapathy and Rezaul Chowdhury, with generous

help and kindness in responding to my multitude of questions. I would like to thank my collabo-

rators: Rezaul Chowdhury, Ganeshkumar Ganapathy, Vijaya Ramachandran and Tandy Warnow

in preparation of papers, where this work was presented. Special thanks to Dr. Tandy Warnow

and Dr. Anna Gál for serving as committee members of this thesis. Finally, I am indebted to my

parents for their support of my education and the endless encouragement during my stay at the

University of Texas.

Hai-Son Le

The University of Texas at Austin

December 2006

ii

Contents

Acknowledgments ii

Chapter 1 Introduction 1

Chapter 2 Identification of Patterns in Biogeography 2

2.1 Preliminaries . 2

2.2 Basic Dynamic Programming algorithm for MAAC 4

2.3 Implementation . 7

2.4 Sparse Dynamic Program for MAAC . 8

2.5 MAAC for k Trees. 15

Chapter 3 Median Alignment of Three Sequences: Theory 19

3.1 Preliminaries . 19

3.2 Knudsen’s Dynamic Programming algorithm MED-Knudsen 21

3.3 Hirschberg’s space reduction technique and MED-H 24

3.4 Cache-Oblivious Method and the Cache-Oblivious algorithm MED-CO 29

Chapter 4 Median Alignment of Three Sequences: Experiments 35

4.1 Experimental set-up . 35

4.2 Implementation . 36

4.3 Results . 40

Chapter 5 Conclusion 44

Bibliography 45

iii

Chapter 1

Introduction

Dynamic programming is a common technique used to solve variety of problems in many Computer

Science fields. In bioinformatics, the technique finds wide usage due to the natural recursive

structure of many computational problems. In my undergraduate research, I have looked at two

different applications of dynamic programming in bioinformatics.

1. Tree comparison to infer common patterns in biogeography.

2. Median alignment of three DNA, RNA or protein sequences with affine gap cost.

My contribution to both of these problems have been to develop and apply techniques to

improve the running time of the traditional algorithm. In the first application, we have developed

a sparsified dynamic programming algorithm that improves the running time from O(n2.5 log n) to

O(n2) in most common cases. For the second application, I applied the cache-oblivious method for

dynamic programs, developed by Rezaul Chowdhury and Vijaya Ramachandran to obtain highly

I/O efficient algorithms. This thesis shows how two very different approaches could improve the

performance of traditional dynamic programming algorithms and their applications in bioinformat-

ics.

1

Chapter 2

Identification of Patterns in

Biogeography

2.1 Preliminaries

Biogeography is the science that attempts to understand spatial patterns of biodiversity. It is the

study of distributions of organisms and of related patterns of variation over geographic areas in

the numbers and kinds of living things. One of many ways to study the patterns is by looking

at the evolutionary history of species. The evolutionary relationships are typically represented

as branching tree structures called phylogenetic trees, or simply phylogenies. Biologists use area

cladograms(Fig. 2.1) to represent the relationships and distribution of species in an area.

Definition 1. Area cladograms are rooted or unrooted trees (as are phylogenies) whose leaves are

labeled with geographic areas instead of taxa. They are obtained by replacing the taxon label in a

phylogenic tree with the label of the area in which the taxon is found.

The main difference between phylogenies and area cladograms relies on the uniqueness of

leaf labels. Many leaves of an area cladogram could share the same label while leaf in a phylogeny

is a unique species.

One technique to reconstruct the historial biogeographic distribution is Indirect Inference.

Here, area cladograms of different groups of organisms which share their geographic distributions

are compared. A consistent pattern observed in the evolutionary trees of species from different

2

Figure 2.1: A phylogeny on taxa p,q,r,s,t,u,v and the associated area cladogram

Geographic Distribution of Taxa: p → a1,a3 q → a1
r → a4 s → a4 t → a1 u → a2

genera in the same geographic area will imply stronger evidence for the particular hypotheses

suggested by that pattern.

The problem of comparing phylogenies has been well studied for many years. Algorithms

to solve this problem are formulated explicitly with the assumption that leaves on phylogenies are

uniquely labeled. Therefore, these algorithms do not often apply to the context of area cladograms.

Until recently, to solve this problem biologists have employed resolution techniques, which resolve

area cladograms so that each leaf is uniquely labeled, and then used phylogeny-comparison algo-

rithms. In 2005, Ganapathy et al. [GGJ+05] proposed a different approach to this problem. They

invented the first rigorous metric, called the a Maximum Agreement Area Cladogram (MAAC) met-

ric to directly compare area cladograms without any resolution steps. The new metric therefore is

believed to yield stronger patterns.

We need some definitions before we can formally define the MAAC metric. Let T be an

area cladogram on a set of leaves L. The restriction of T to a set of leaves L′ is the cladogram

obtained by deleting leaves in the set L−L′ from T and then suppressing internal nodes of degree

two (except the root, if there is one). The formal definition of MAAC is:

Definition 2. Maximum Agreement Area Cladogram (MAAC) and the MAAC metric [GGJ+05]

Let {T1, T2, . . . , Tk} be a set of rooted area cladograms, with Li the leaf set of tree Ti, for

i = 1, 2, . . . , k. Let λ1 ⊆ L1 through λk ⊆ Lk be sets of leaves of maximum cardinality such that

the respective restrictions of the trees T1, . . . , Tk to the sets λ1 . . . λk are all isomorphic, with the

isomorphisms preserving leaf labels. A restriction of any tree Ti to such a subset of leaves λi is a

maximum agreement area cladogram (MAAC) for the cladograms T1 through Tk. The size of the

3

MAAC is defined to be the number of leaves in the maximum agreement area cladogram, and is

denoted by sizemaac(T1, T2, . . . , Tk).

The MAAC distance between two trees T1 and T2 is dM (T1, T2) = max(n1, n2)−sizemaac(T, T ′),
where n1 and n2 are the number of leaves in T1 and T2 respectively.

Figure 2.2 shows an example of T1, T2 and their MAAC.

Figure 2.2: Delete minimum number of leaves to obtain the common sub-cladogram
MAAC(T1,T2)

T1 T2

MAAC(T1,T2)

The organization of the rest of this chapter is as follows: section 2.2 presents the basic

dynamic programming presented in [GGJ+05] by Ganapathy et al.; in section 2.4, we develop a

faster dynamic program for the MAAC problem and in the last section we prove that computing

the MAAC of k (k > 2) area cladograms is NP-hard.

2.2 Basic Dynamic Programming algorithm for MAAC

Overview: The basic algorithm for MAAC, presented by Ganapathy et al. in [GGJ+05] is based

on a dynamic programming algorithm for the phylogenetic rooted maximum agreement subtree

algorithm (called the MAST problem) from [SW93]. We present here the outline of the algorithm

and its correctness.

Throughout this presentation, we employ following definitions. We are given two area

cladograms T1 and T2 on the set of leaves L. We let n1, n2 be the respective number of leaves in

4

trees T1 and T2 , n = max{n1, n2} and A = {a1, a2, . . . , ak} be the set of areas with which the

leaves of T1 and T2 are labeled. More specifically, we let πi,j, j = 1, 2, be the number of leaves in

tree Tj which are labeled with ai; hence
k∑

i=1

πi,j = nj for j = 1, 2. For a given node v in a rooted

tree T , we let L(v) be the set of descendent leaves of v, p(v) be the parent of v, c(v) be the set of

children of v and dv = |c(v)| the degree of v. Also, we let V (T) be the set of internal nodes of the

tree T and T (v) be the rooted subtree of T at the node v. For simplicity, we denote MAAC(T1(v1),

T2(v2)) as MAAC(v1, v2).

Pseudocode ([GGJ+05]):

match(v1, v2)

1 Construct Gv1,v2

2 return MWBM (Gv1 ,v2)

diag(v1, v2)

1 t1 ← maxw∈c(v2){ MAAC (v1, w)}
2 t2 ← maxw∈c(v1){ MAAC (w, v2)}
3 return max{t1, t2}

algorithm maac(T1, T2)

1 Let O be an ordering of V (T1)× V (T2)

2 such that if (v1, v2) is before (w1, w2),

3 then v1 is not a parent of w1 and v2 is not a parent of w2.

4 for (v1, v2) in increasing order of O
5 do if v1 or v2 is a leaf

6 then MAAC (v1, v2) = L(v1) ∪ L(v2)

7 else MAAC (v1, v2) = max
{
match(v1, v2),diag(v1, v2)

}

8 return MAAC (r(T1), r(T2))

Analysis: The algorithm is a dynamic program based on the recursive recurrence relation on all

pairs of nodes from T1 and T2.

5

Theorem 1.

MAAC(v1, v2) =

L(v1) ∩ L(v2) , if v1, v2 ∈ L

max
{

maxx∈c(v1){MAAC(x, v2)},maxy∈c(v2){MAAC(v1, y)},U(MWBM)(Gv1,v2)
}

, otherwise

(2.1)

where Gv1,v2 is a weighted complete bipartite graph with bipartitions (c(v1), c(v2)) where the

weight of the edge (x, y) is the number of leaves in MAAC(T1(x), T2(y)) and MWBM(Gv1,v2) is the

maximum weighted bipartite matching of Gv1 ,v2 . Also, the operation U on the set of pairs of node

{(v1
1 , v

2
2), . . . , (vk1 , v

k
2} is the construction of the tree with a new root s such that MAAC(v i1, v

i
2) is

the ith children of s.

For completeness, I present my proof of equation 2.1. Note that this is not the original proof

presented in [GGJ+05].

Proof. We proceed by induction.

• Initial Step: If both v1 and v2 are leaves, the MAAC of them is either a singleton tree of

root v1 if v1 = v2 or an empty tree.

• Induction Hypothesis: To calculate the MAAC(v1, v2), assume that we have computed:

– MAAC(x, y) with x ∈ c(v1) and y ∈ c(v2).

– MAAC(x, v2) with x ∈ c(v1).

– MAAC(v1, y) with y ∈ c(v2).

• Inductive Step: Because of the definition of MAAC and the existence of MAAC(v1, v2)

there exits the leaf sets λ1 ∈ L(v1) and λ2 ∈ L(v2) such that the restriction of T1(v1) on λ1

and T2(v2) on λ2 are isomorphic. Consider the following cases:

1. λ1 ∈ L(x) with x is a child of v1: The restriction of T1(v1) on λ1 is exactly the restriction

of T1(x) on λ1. Therefore MAAC(v1, v2) = MAAC(x, v2).

2. λ2 ∈ L(y) with y is a child of v2: The restriction of T2(v2) on λ2 is exactly the restriction

of T2(y) on λ2. Therefore MAAC(v1, v2) = MAAC(v1, y).

6

3. Otherwise: The isomorphism between the two restrictions matches v1 to v2. Consider

the sets c(v1) = {v1
1 , v

2
1 , . . . , v

α
1 } and c(v2) = {v1

2 , v
2
2 , . . . , v

β
2 }. We define the two sets

S1 = {λ1(vi1) = λ1 ∩ c(vi1) for 1 ≤ i ≤ α} and S2 = {λ2(vi2) = λ2 ∩ c(vi2) for 1 ≤ i ≤ β}.

Because there is an isomorphism between the two restrictions, there must exist a one-to-

one matchingm from elements S1 and S2. Hence MAAC(v1, v2) = Ux∈c(v1){MAAC(x,m(x))}.

It is easy to see that m is one weighted matching of Gv1,v2 . And since the λ1 and λ2 are

of maximum cardinality, m is the MWBM(Gv1 ,v2).

The MAAC(v1, v2) would be the maximum value in all cases. Hence,

MAAC(v1, v2) = max
{

max
x∈c(v1)

{MAAC(x, v2)}, max
y∈c(v2)

{MAAC(v1, y)},U(MWBM)(Gv1,v2)
}

The correctness of the algorithm is followed from the correctness of the equation 2.1.

Running-time Analysis ([GGJ+05]). The MWBM computation is performed using the

Gabow-Tarjan algorithm [GT89]. This algorithm runs in O(
√
|V ||E| log |V |) on a graphG = (V,E).

Therefore, the running time of the algorithm is:

timeMAAC(n1, n2) =
∑

u∈T1

∑

v∈T2

O(dudv
√

(du + dv) log(du + dv))

= O(
√

(n1 + n2) log(n1 + n2))
∑

u∈T1

du
∑

v∈T2

dv

= O(n1n2

√
(n1 + n2) log(n1 + n2))

= O(n2.5 log n)

2.3 Implementation

We have implemented the basic MAAC algorithm in a JAVA package. The code uses the Hungarian

algorithm to solve the MWBM sub-problem. We have cooperated with biologists (Dr. Robert

Jansen and Barbara Goodson) to run the program on area cladograms containing areas of Canary

islands(Figure 2.3).

7

Figure 2.3: The map of Canary islands

Africa

Europe

The Macaronesian region

Tropic of Cancer

Cape Verde Islands
(10 islands)

Canary Islands
(7 islands)

Azores Islands
(9 islands)

Madeira Islands
(3 islands)

Selvagem Islands
(2 islands)

200 km

Canary Islands

Madeira Islands

Madeira (1)

Bugio (1)

Deserta Grande (1)

La Palma (2)

El Hierro (1)

La Gomera (3)

Tenerife (5)

Gran Canaria (3)

Fuerteventura (1)

Porto Santo (1)

100 km

25 km

Lanzarote

Two area cladograms for two families of organisms in the dataset and their MAAC are

shown in Figure 2.4.

2.4 Sparse Dynamic Program for MAAC

The MAAC algorithm given in Section 2.2 spends most of its time computing maximum weighted

bipartite matchings in complete bipartite graphs, where the weight of each edge in the bipartite

graph represents the size of a MAAC between some pair of rooted subtrees. For the MAST problem

a faster version of this algorithm is presented in [FCT94] by Farach and Thorup. The speed-up is

achieved by eliminating many edges in many of the bipartite graphs constructed by the algorithm.

In particular, observe that if two subtrees do not share any leaf label, the size of their MAAC is

zero. Thus, if there are only a few leaves with any given label, it is highly likely that many edge

weights are zero. Further, it turns out that several edges can be deleted in many of the bipartite

graphs without affecting the optimum solution. Farach and Thorup’s sparse dynamic programming

algorithm for MAST incorporates these feature into the Steel-Warnow algorithm, thereby achieving

8

Figure 2.4: An example of data in Section 2.3

+

=

9

a running time of O(n2) [FCT94].

In this section we adapt the Farach-Thorup MAST method [FCT94] to MAAC. As opposed

to Steel-Warnow MAST method, this method could not readily apply to the MAAC problem

because it assumes the uniqueness of leaf labels of the input trees. We show that as long as

the number of leaves with any given label is O(n1/2−ε), the algorithm runs in O(n2) time, which

matches the bound in [FCT94] for MAST, where there is only one leaf with a given label in each

tree. The worst case running time of our algorithm, however, is O(n2.5 log n), matching that of the

straightforward dynamic programming algorithm given in the previous section.

Key Lemmas. The following discussion uses notation from the straightforward MAAC algorithm

given in the previous section: for a given node v in a rooted tree T , we let A(v) be the set of all

labels of leaves that descend from v, p(v) be the parent of v, and c(v) be the set of children of v.

For a given rooted tree T , we let V (T) be the set of all nodes of a tree. Finally, let πi,j be the

number of leaves labeled with area ai in tree Tj.

For each internal node v of T1 and T2, among all children of v, we choose the child having

the most number of descendent leaves to be the “heavy” child, and all the remaining children are

“light” children. If there are many nodes that have the same maximum number of descendants, we

designate one of them as the heavy child arbitrarily. A node is “heavy” if it is the heavy child of

its parent, and otherwise it is “light”.

For vertices u1 ∈ T1, u2 ∈ T2, consider the weighted bipartite graph Gu1,u2 constructed by

the basic MAAC algorithm (see Section 2.2). In Gu1,u2 we will let h1 and h2 denote the heavy

child of u1 in T1 and the heavy child of u2 in T2 respectively. An edge in Gu1,u2 will be called

“heavy-heavy” if it is between h1 and h2; similarly we will refer to “heavy-light” and “light-light”

edges.

We will denote by M the set of all bipartite graphs encountered throughout the course of

the algorithm. Also from now on, we will assume that we have modified all the bipartite graphs in

M to get rid of all zero-weight edges.

We first bound the total number of light-light edges across all the bipartite graphs in M
in Lemmas 1 and 2. In Lemma 3 we show how to delete most of the heavy-light edges in each

bipartite graph inM without affecting the value of the MWBM solution. Thus we create for each

bipartite graph G in M a bipartite graph G′ with a fewer number of edges. We will call the set

10

of all such reduced bipartite graphs M′. All MWBM computations are performed only on these

reduced bipartite graphs in M′. Finally in Lemma 4 we bound the total number of edges across

all bipartite graphs in M′, and this helps us bound the total running time of the algorithm.

Lemma 1. Each leaf in trees T1 and T2 has O(log n) ancestors that are light nodes.

Proof. Consider a leaf l in T1. Let r be the root of T1. Suppose that l has more than log2(n)

ancestors that are light nodes. It is easy to see that if a node v is the light child of p(v) then

|L(p(v))| ≥ 2|L(v)|. Thus if a node has more than log2(n) ancestors that are light, we would have

|L(r)| > 2log2(n) or |L(r)| > n, which is a contradiction. Therefore, l has at most log2(n) light

ancestors. The same argument holds for a leaf l in T2.

Lemma 2. Across all bipartite graphs inM, the total number of light-light edges is O
(
(
∑

ai∈A πi,1πi,2) log2 n
)
.

Proof. The weight of an edge (x, y) is non-zero if and only if the two sets of descendent leaves L(x)

and L(y) intersect. Consider a label ai ∈ A, and let S1 and S2, respectively, be the sets of leaves

of T1 and T2 which are labeled with ai. Note that |Sj| = πi,j, j = 1, 2. A light ancestor of a pair of

leaves, one in S1 and one in S2, accounts for one light-light edge across all graphs inM. By Lemma

1, there are O(πi,j log n) ancestors of elements of Sj, j = 1, 2, that are light. Therefore, there are at

most O(πi,1πi,2 log2 n) light-light edges produced by elements of S1 and S2. Summing the quantity

over all labels ai, we get the desired upper bound on the number of light-light edges.

Lemma 3. For each bipartite graph G = (V,E) in M with α light-light edges, we can reduce the

number of edges in G to get G′ = (V,E′) such that MWBM(G) = MWBM(G′) and |E′| ≤ 3α+3.

Proof. Let V1 and V2 be the two parts of V and let h1 and h2 be the heavy nodes in V1 and V2

respectively. Let E∗ be the set of light-light edges, with |E∗| = α. We partition the sets V1 \ {h1}
and V2 \ {h2} into two disjoint subsets as follows: V1 \ {h1} = V α

1 ∪ V β
1 and V2 \ {h2} = V α

2 ∪ V β
2

such that v ∈ V α
j iff there exists no edge e ∈ E∗ such that v is in e. Among all edges connecting

h1 and an element of V α
2 , we can delete all except the heaviest edge since no maximum matching

can contain them. The same reasoning applies for h2 and an element of V α
1 . So we can construct

a new graph G′ with the same set of vertices: the new set of edges E ′ contains α light-light edges;

one possible edge between h1 and h2; two possible edges between h1 and V α
2 , and h2 and V α

1 ; and

at most |V β
1 | + |V

β
2 | ≤ 2α edges between h1 and V β

2 , and h2 and V β
1 . Therefore, |E ′| ≤ 3α + 3 or

the graph G′ contains at most 3α+ 3 edges.

11

We now present SP-MAAC, our sparse dynamic programming algorithm for the MAAC

problem. The differences between this algorithm and the earlier MAAC algorithm are italicized.

sp-match(v, w)

1 Construct Gv,w

2 Remove all zero-weight edges from G

3 For each heavy child, remove all edges incident to it except for the heaviest one.

4 Construct E0 = MWBM(Gv,w)

5 Let E0 = {(v1, w1), (v2, w2), . . . , (vk, wk)}
6 Construct tree M with root s such that SP-MAAC(Tvi , Twi) is the i-th child of s.

7 return M

diag(v, w)

1 t1 ← largest SP-MAAC(Tv , Tx) such that x ∈ c(w)

2 t2 ← largest SP-MAAC(Ty , Tw) such that y ∈ c(v)

3 return the larger of t1 and t2

algorithm SP-MAAC(T1, T2)

1 Choose a heavy child for each internal node of T1 and T2

2 Let O be an ordering of V (T1)× V (T2)

3 such that if (v1, w1) is before (v2, w2),

4 then v1 is not an ancestor of v2 and w1 is not an ancestor of w2.

5 for (v, w) in increasing order of O
6 do if v or w is a leaf

7 then SP-MAAC(Tv , Tw) ← a node with label in S = A(v) ∩A(w) if S 6= ∅; else ∅
8 else SP-MAAC(Tv , Tw) ← larger of sp-match(v, w) and diag(v, w)

9 return SP-MAAC(Tr1 , Tr2) ; r1 is the root of T1 and r2 is the root of T2.

Lemma 4. Across all graphs inM′, the total number of edges is O
(

min
{

(
∑

ai∈A πi,1πi,2) log2 n, n2
})

.

Proof. By lemmas 2 and 3, the total number of edges across all graphs inM′ is O((
∑

ai∈A πi,1πi,2) log2 n).

This summation can be shown to be Ω(n2 log2 n) in worst case. However, the total number of edges

12

is at most the number of edges in all complete bipartite graphs, which is

∑

x∈V (T1)

∑

y∈V (T2)

|c(x)| · |c(y)| = O(n1n2)

= O(n2)

Hence, the total number of edges across all graphs inM′ isO
(

min
{

(
∑

ai∈A πi,1πi,2) log2 n, n2
})

.

As presented, the algorithm uses O(n2) time to remove all zero-weight edges from the

bipartite graphs. However, it is not difficult to maintain |V (T2)| queues of non-zero edges incident

to each internal node of T2 and update this queue as we compute the MAAC in the ordering of O.

Running-time Analysis.

Theorem 2. Algorithm SP-MAAC computes the MAAC in

O
(
(
√
n log n) min

{
(
∑

ai∈A
πi,1πi,2) log2 n, n2

}
+ n2

)

Proof. Let the total running time of SP-MAAC be timeSP-MAAC. The algorithm spends a total

of O(n) time in step 1 choosing a heavy child for each node, and it spends a total of O(n2) time

computing the ordering O. Each call to DIAG(v, w) takes O(|c(v)|+ |c(w)|) time. Over all the calls

to DIAG, the total running time is therefore O(n2). Let the time spent in all calls to SP-MATCH

be timeSP-MATCH. Therefore,

timeSP-MAAC = O(n2) + timeSP-MATCH

We now show how to bound timeSP-MATCH. We let timeMWBM be the running time of a single call

to procedure MWBM in SP-MATCH. The MWBM computation is performed using the Gabow-

Tarjan algorithm [GT89]. This algorithm runs in O(
√
|V ||E| log |V |) on a graph G = (V,E). We

have:

13

timeSP-MATCH =
∑

G=(V,E)∈M′
timeMWBM(G)

=
∑

G=(V,E)∈M′
O(
√
|V ||E| log |V |)

=
∑

G=(V,E)∈M′
O(
√
n|E| log n)

= O(
√
n log n

∑

G=(V,E)∈M′
|E|)

= O
(
(
√
n log n) min

{
(
∑

ai∈A
πi,1πi,2) log2 n, n2

})
from Lemma 4

Hence,

timeSP-MAAC = O
(
(
√
n log n) min

{
(
∑

ai∈A
πi,1πi,2) log2 n, n2

}
+ n2

)

Lemma 5. If every πi,j is O(n1/2−ε), then timeSP-MAAC = O(n2).

Proof.

∑

ai∈A
πi,1πi,2 ≤

1

2

∑

ai∈A
π2
i,1 + π2

i,2

=
1

2
(
∑

ai∈A
π2
i,1 +

∑

ai∈A
π2
i,2)

For any a, b ≥ 0, (a+ b)2 ≥ a2 + b2. Hence if every πi,j is O(n1/2−ε) , then for j = 1, 2

∑

ai∈A
π2
i,j ≤ d

n

n1/2−ε e(O(n1/2−ε))2

= O(n3/2−ε)

14

Together,

∑

ai∈A
πi,1πi,2 = O(n3/2−ε)

Therefore, by theorem 2, timeSP-MAAC = O(n2).

Finally, we summarize the following two bounds for the running time of the algorithm.

• If every πi,j is O(n1/2−ε), then timeSP-MAAC = O(n2). Thus, as long as no leaf label occurs

a huge number of times, the algorithm is as efficient as the Farach-Thorup MAST algorithm,

where it is assumed that every leaf label occurs exactly once.

• In the worst case, the running time timeSP-MAAC remains O(n2.5 log n), matching the time

bound of the basic MAAC algorithm given in the previous section.

2.5 MAAC for k Trees.

In this section, we study the complexity of computing the MAAC of many area-labeled trees.

Amir and Keselman [AK97] show that computing the MAST of just three trees with unbounded

degrees is NP-hard. They present a reduction from the 3-Dimensional Matching problem (3DM)

to 3-HUT, which is the decision problem version of the MAST problem on three unbounded degree

trees (the Homeomorphic Agreement Subtree of three unbounded degree Trees). Since the MAAC

problem is a less restricted version of the MAST problem, computing the MAAC of more than

three unbounded degree trees is also NP-hard.

We prove a new result. We show that computing the MAAC of a set of k binary trees is NP-

hard (recall that the corresponding problem for MAST is solvable in polynomial time). Therefore,

it seems that most natural generalizations of the approaches used in computing the MAST of two

trees and k trees with maximum degree d (in [AK97] and [FCPT95]) would run in time exponential

in both k and d.

NP-completeness of k-tree MAAC. The proof of NP-completeness will be by reduction of the

VERTEX-COVER problem. The proof ideas come from the NP-completeness proof of the Largest

15

Common Subsequences (LCS) problem presented by David Maier in [Mai78]. We will use the

following description of VERTEX-COVER.

• VERTEX-COVER

• Input: Graph G = (V,E) and an integer k

• Question: is there a subset S ⊆ V of at most k vertices, such that for every edge e = (x, y) ∈
E, {x, y} ∩ S 6= ∅?

We state here a decision problem of computing the MAAC of many binary area-labeled

trees, which we call BIN-MAAC.

• BIN-MAAC

• Input: set T of binary area-labeled trees, and an integer k.

• Question: is |MAAC(T)| ≥ k?

Theorem 2.5.1. BIN-MAAC is NP-complete.

Proof. BIN-MAAC is in NP since a naive algorithm can simply guess a subset of leaves of each

tree in T , and check if all induced trees are isomorphic in polynomial time. Hence it will suffice to

show that VERTEX-COVER reduces to BIN-MAAC.

Consider an instance (G = (V,E), k) of VERTEX-COVER. Let V = {v1, v2, . . . , vn} and

E = {e1, e2, . . . , em}. We will construct a set T = {T0, T1, . . . , Tm} of (m+ 1) binary area-labeled

trees such that G has a vertex cover of size k if and only if |MAAC(T)| ≥ n− k.

The set of areas with which the leaves of tree are labeled is A = {v1, v2, . . . , vn}.
The tree T0 is a binary tree on leaf set v1, v2, . . . , vn, with no non-trivial left subtrees. Thus,

T0 is a rooted “caterpillar” tree defined by the ordering on its leaves, which we will assume is given

by v1, v2, . . . , vn. We use the notation T0 \X to denote the tree obtained by deleting the leaves in

X from the tree T0, and suppressing nodes with only one child.

Now consider an edge e = (vx, vy) in the graph G. We will define the tree Te as follows.

Te is obtained by “concatenating” the trees T0 \ {vx} and T0 \ {vy}, where by “concatenation” we

mean replacing the deepest leaf of the first tree by a branching node whose children are the second

tree and the old leaf. Figure 2.5 illustrates this construction.

16

Figure 2.5: Tree T0 and Te corresponding to e = (vx, vy)

v1

v2

vn−2

vn−1 vn

v1

vx−1

vx+1

vn
v1

vy−1

vy+1

vn−1 vn

Now, we show that G has a vertex cover of size k if and only if |MAAC(T)| ≥ n− k:

• (only if:) Suppose G has a vertex cover S of size k. Let T ∗ = T0 \ S. It is clear that

|L(T ∗)| = n− k. Therefore it is enough to show that T ∗ is an agreement subtree. Obviously

T ∗ is a subtree of T0. For each tree Tei corresponding to the edge ei = (vx, vy), x < y, which

is the concatenation of T0 \ {vx} and T0 \ {vy}, T ∗ is either a subtree of the first upper half

or the second lower half of Ti because either vx or vy is in S, hence both of them cannot be

labels of leaves of T ∗.

• (if:) If |MAAC(T)| ≥ n−k, then let S = V \L(MAAC(T)). Because MAAC(T) is a subtree

of T0, every vi labels only one leaf. That implies |S| = |V |−|L(MAAC(T)| ≤ k. It is sufficient

to show that S is a vertex cover of G in order for G to have a vertex cover of size k. Consider

any edge ei = (vx, vy), x < y, and assume that both vertices are not in S, or that both are

labels of leaves of MAAC(T). In the trees T0 and Ti, there is only one instance of label vx

and one instance of label vy. Because of the structure of T0, the leaf labeled vx is above the

leaf labeled vy. However, in Ti, the leaf labeled vx is strictly below the leaf labeled vy. By

that reason, both labels cannot coexist in L(MAAC(T)).

This contradicts the initial assumption. Therefore, for every edge e, S contains at least one

of its vertices. In other words, S is a vertex cover of G.

17

18

Chapter 3

Median Alignment of Three

Sequences: Theory

3.1 Preliminaries

Multiple sequence alignment is a crucial step in phylogenetic analysis to infer relationships of a set

of organisms. In sequence alignment, the task is to place the sequences into a data matrix where

the rows represent the sequences and the columns represent positional homology, which implies the

evolution of these sequences from a common ancestor. Evolution can happen from deletion,insertion

and substitution events. Insertion and deletion events are called indels. The matrix represents this

evolution process and therefore is an important step in phylogenetic analysis. Figure 3.1 shows an

example of how the three related sequences are placed into the the data matrix.

Figure 3.1: An example of three sequences alignment
Sequences Data matrix

CATTTCCTAGAA CATTTCCTAGAA-

ATATCAGAGG -ATATC--AGAGG

ATCGCTTAA -ATCGC--TTAA-

The evolution model has three operations: insertion, deletion and substitution. An edit

transformation from a sequence A to a sequence B is a sequence of operations transforming A to

B. The cost of a transformation is calculated based on the cost of each operation and a function

to score the indels. In phylogenetic analysis, the relationship between two sequences A and B is

19

expressed by the edit distance, which is a minimum cost (or optimal) transformation from A to B.

For the sequence alphabet Σ = {σ1, . . . , σk} of size k, the cost of substitution is described

by a k× k matrix M , where M [ai, aj] is the cost of substituting ai with aj . Normally, the diagonal

of the matrix, i.e entries M [ai, ai] are 0. For the events of insertion and deletions, there are two

common models to score the alignment: the linear and affine gap model. In the linear gap model,

each insertion and deletion incurs one constant cost c. Hence, the total cost for a transformation

with l insertions and deletions is G(l) = c× l. The affine gap model considers the relative positions

of the indels in the matrix and more realistically models the evolution. The cost of indels is based

on a gap introduction cost (gi > 0) and a gap extension cost (ge > 0), giving the total cost of

G(l) = gi + gel for a gap of length l. This new cost function distinguishes long gaps from short

gaps and therefore, yields more accurate alignments since it is more likely to have a long gap than

many short gaps in real sequences.

Formally, for an optimal transformation from a sequence A to a sequence B with ng gaps

of length l1, l2, . . . , lng , and the number of substitutions of ai with aj N [ai, aj], the edit distance

could be defined as:

d(A,B) =

ng∑

i=1

G(li) +
∑

i,j∈[1..k]

N [ai, aj]M [ai, aj]

For the rest of this chapter, we consider a special type of multiple alignment of three se-

quences, called the median alignment with affine gap cost. The median alignment assume the

evolutionary tree connecting the sequences is a Steiner or star tree, where the sequence X at the

internal node is called the median sequence(see Figure 3.2). The method computes the optimal

alignment cost as well as the median sequence. The cost of the median alignment is the sum of the

edit distances of the three sequences to the median sequence.

Knudsen [Knua] presented a dynamic program to find multiple alignment of N sequences,

each of length n in O(16.81NnN) time and O(7.442NnN) space. It is also mentioned in [Knua] that

the Hirschberg memory reduction technique ([Hir75]) can be used to improve the space complexity

of the algorithm by a factor of n. For the median problem, this gives an O(n3) time, O(n2) space

algorithm. Powell et al. [DRPD00] presented an Ukkonen-based algorithm, which performs well

especially for sequences whose (three-way) edit distance d is small. On average, it requires O(d3+n)

time and O(d3 + n) space to compute the alignment [DRPD00]. In section 3.2, we describe the

20

Figure 3.2: Steiner tree

X

A

B C

Knudsen’s algorithm without going into the details of its correctness. Section 3.3 outlines the

Hirschberg memory reduction technique and discusses the new algorithm MED-H. Finally, in the

last section we show our I/O efficient algorithm MED-CO.

3.2 Knudsen’s Dynamic Programming algorithm MED-Knudsen

Overview: We assume three sequences A = a1a2 . . . ana , B = b1b2 . . . bnb and C = c1c2 . . . , cnc

and the sequence alphabet Σ of size k, the gap introduction gi, the gap extension cost ge and

the matching cost matrix M [1..k, 1..k]. Knudsen’s algorithm [Knua] is a dynamic program over a

three-dimensional matrix C. The value of each entry C[i, j, k] of the matrix is the optimal alignment

cost of the three subsequences A[1..i], B[1..j] and C[1..k].

Residue and Indel Configurations: Recall that an alignment of the sequences is equivalent

to a data matrix whose rows represent sequences and column entry is either a sequence character,

called a residue or an indel. Therefore, for the median alignment we are filling a table of 4 rows

correspondent to the sequences A, B, C and the median sequence X. A column configuration is

called a residue configuration e =< eA, eB , eC , eX > where each index could be either a 0 for an

indel or an 1 for a residue. Out of 16 possible such configurations, only 10 are acceptable, due to

the biological interpretation of the indels(see [Knua]).

In order to keep track of the ongoing indels, each entry of C has 23 fields. Each field, called

an indel configuration is a triple < IA, IB , IC > with IA, IB , IC ∈ {M, I,D}. For S ∈ {A,B,C}, IS
represents the matching state of the sequence S with the median sequence X. M denotes that the

last characters of the two sequences are matched; I denotes an insertion in the median sequence

21

and D denotes a deletion in the median sequence. Knudsen explained in his paper why there are

only 23 acceptable configurations.

In summary, the residue configuration represents the state of the next column while the

indel configuration represents the ongoing matching state between input sequences and the median

sequence. Table 3.1 lists the acceptable residue and indel configurations.

Table 3.1: Acceptable residue and indel configurations
Residue Configurations Indel Configurations

Acceptable

< 1, 0, 0, 0 >,< 0, 1, 0, 0 >,< 0, 0, 1, 0 > < D,M,M >,< M,D,M >,< M,M,D >
< 0, 0, 1, 1 >,< 0, 1, 0, 1 >,< 1, 0, 0, 1 > < I,M,M >,< M, I,M >,< M,M, I >
< 1, 1, 0, 1 >,< 0, 1, 1, 1 >,< 1, 0, 1, 1 > < D,D,M >,< D,M,D >,< M,D,D >

< 1, 1, 1, 1 > < I,D,M >,< M, I,D >,< I,M,D >
< D, I,M >,< M,D, I >,< D,M, I >
< I, I,M >,< M, I, I >,< I,M, I >
< D, I,D >,< D,D, I >,< I,D,D >

< D,D,D >,< M,M,M >

Non-acceptable

< 1, 1, 0, 0 >,< 1, 0, 1, 0 >,< 0, 1, 1, 0 > < I, I, I >,< I, I,D >,< D, I, I >
< 0, 0, 0, 1 >,< 1, 1, 1, 0 >,< 0, 0, 0, 0 > < I,D, I >

Notation:
Each residue configuration is a 4-tuple < eA, eB , eC , eX >, each field is :

0: an indel ; 1: a residue.
Each residue configuration is a triple < IA, IB , IC >, where IS , S ∈ {A,B,C} is:

M: matching state ; D: deletion state ; I: insertion state

The recursion: The algorithm initializes the “empty” indel configuration < M,M,M > of

C[0, 0, 0] to 0 while the remaining indel configurations of C[0, 0, 0] are ∞. The recursive step builds

the data matrix column by column and keeps track of the ongoing indel configurations.

The recurrence relation: We define next(e, d) = d′ for applying the residue configuration

e =< eA, eB , eC , eX > to the indel configuration d =< IA, IB , IC >. For t = {A,B,C}, the value

of d′ =< I ′A, I
′
B , I

′
C > is shown in the table 3.2.

Hence, the recurrence relation of Knudsen’s algorithm is:

C[i, j, k]d =

0 ,if i, j, k = 0; d = do

min
e,d′ s.t. d=next(e,d′)

{
C[i′, j′, k′]d′ + Ge,d +M(i′,j′,k′)→(i,j,k)

}
, otherwise.

(3.1)

22

Table 3.2: Values of I ′t from eT and eX
et eX I ′t

(0 = gap, 1 = residue) (0 = gap, 1 = residue)

0 0 It
0 1 I
1 0 D
1 1 M

where do =< M,M,M >, i′ = i− e1, j′ = j − e2 and k′ = k − e3, M(i′,j′,k′)→(i,j,k) is the matching

cost between characters of the sequences, and Ge,d is cost for introducing or extending the gap.

Note that both M and G do not depend on the value of C[i, j, k]d but depend on e, d and

d′. Hence, the values of M and G can be pre-processed before the execution of the program.

We show here our pseudocode developed based on Knudsen’s description of his algorithm.

Pseudocode:

MED-Knudsen(cost)(A[1..na], B[1..nb], C[1..nc])

1 Pre-compute the arrays M and G.

2 C[0, 0, 0]<M,M,M> ← 0;∀d 6=< M,M,M >, C[0, 0, 0]d ←∞
3 for i← 0 to na

4 do for j ← 0 to nb

5 do for k ← 0 to nc

6 do if i 6= 0 or j 6= 0 or k 6= 0

7 then Compute C[i, j, k]d,∀d based on equation 3.1.

8 return (δ, C[n, n, n]δ) such that C[n, n, n]δ = max∀d C[n, n, n]d

MED-Knudsen(A[1..na], B[1..nb], C[1..nc])

1 (δ, cost)←MED-Knudsen(cost)(A,B,C)

2 i← na, j ← nb, k ← nc

3 X (the median sequence) ← NIL

4 while i 6= 0 or j 6= 0 or k 6= 0

5 do Add a character to X accordingly.

6 (i, j, k, δ) ← (i′, j′, k′, d′) such that
{
C[i, j, k]δ = C[i′, j′, k′]d′ + Ge,d +M(i′,j′,k′)→(i,j,k)

}

7 return (X, cost)

23

The algorithm computes the matrix C to find the optimal alignment cost at C[na, nb, nc]. To

compute the median sequence, the algorithm traces back from C[na, nb, nc] to C[0, 0, 0] by the same

recurrence relation. Therefore, Knudsen’s algorithm runs in O(n3) time and O(n3) space.

3.3 Hirschberg’s space reduction technique and MED-H

Quadratic-space cost computation: For just computing the optimal alignment cost, it is

straight-forward to reduce the space complexity of Knudsen’s algorithm to O(n2). Since the compu-

tation of C[i, j, k] in the Knudsen’s algorithm depends on C[(i−1)..i, (j−1)..j, (k−1)..k]. instead of

a 3-dimensional array C, we can use two 2-dimensional arrays CC[1..na, 1..nb] and CC ′[1..na, 1..nb].

CC ′ and CC entries are the (k − 1)-surface and k-surface of the cuboid C.

CC ′[i, j]d = C[i, j, k − 1]d

CC[i, j]d = C[i, j, k]d

Hence, the equation 3.1 can be rewritten as:

CC[i, j]d = min
e,d′ s.t. d=next(e,d′)

{

CC ′[i′, j′]d′ , if eC = 1

CC[i′, j′]d′ , otherwise

+ Ge,d +M(i′,j′,k′)→(i,j,k)

}
(3.2)

Given the three subsequences A[xa..ya], B[xb..yb], C[xc..yc] , the procedure Compute Cost

computes the yc surface of C, i.e entries C[i, j, yc], xa − 1 ≤ i ≤ ya, xb − 1 ≤ j ≤ yb of the cuboid

space and returns CC[0..(ya−xa + 1), 0..(yb − xb + 1)] . The procedure also takes a value co as the

initial value for entry C[xa − 1, xb − 1, xc − 1]. This additional flexibility will be helpful in the next

discussion of MED-H.

Compute Cost(A[xa..ya], B[xb..yb], C[xc..yc], co)

1 CC[0, 0]← co

2 for k ← 0 to (yc − xc + 1)

3 do for i← 0 to (ya − xa + 1)

4 do for j ← 0 to (yb − xb + 1)

24

5 do if i 6= 0 or j 6= 0 or k 6= 0

6 then Compute CC[i, j]d,∀d based on equation 3.2.

7 Swap CC and CC ′.

8 return CC

Hirschberg’s technique and its adaption to MED-Knudsen: Unfortunately, with only

CC and CC ′, it is not possible to compute the median sequence since we do not have information

about the trace-path from C[na, nb, nc] to C[0, 0, 0]. Hirschberg [Hir75] presented a recursive divide-

and-conquer technique to compute the maximum common subsequence of two strings in linear

space. Hirschberg’s insights are that computing the score could be done in linear space easily and

that the common subsequence could be broken into two parts: one part is the common subsequence

of string 1 and the first half of string 2, one part is the common subsequence of string 1 the second

half of string 2. However, the original formula of Hirschberg is too restrictive to apply to the context

of sequence alignment directly. Myer and Miller [MM88] later took the ideas and extended it into

the pairwise sequence alignment using linear space ([Got82]). The maximum slow-down of the

new algorithm is at most two times the traditional algorithm. Since then, the technique has been

adapted to many dynamic programs to reduce the space complexity ([CHM94], [GHS97]). Knudsen

mentioned briefly in [Knua] that the technique reduces the space complexity of MED-Knudsen to

O(n2). In the rest of this section, we elaborate on this idea and describe formally the equations and

pseudocode of the new algorithm, called MED-H. However, we omit the formal proof of correctness.

The recurrence relation for MED-H:

MED-H is a recursive algorithm, whose recursive step calls the procedure Compute Cost

twice to compute the optimal cost for the “forward” and “backward” halves of the cuboid space C,
and calculates the optimal alignment from the intersection of the two outputs.

More formally, suppose we compute the alignment of A[xa..ya], B[xb..yb] and C[xc..yc] start-

ing with indel d1 and ending with indel d2. For a sequence S, let S∗ be the reverse of S and S[i..j]

be the subsequence of S if i < j or the empty sequence if i ≥ j. Let mid = (xc + yc)/2. Also

let Fα,β(i, j, k) be the optimal cost to align {A[xa..i], B[xb..j] and C[xc..k]} starting with indel α

and ending with indel β. and let F ∗α,β(i, j, k) be the optimal cost to align {A∗[i..ya], B∗[j..yb] and

C∗[k..yc]} starting with indel α and ending with indel β, Therefore, we want to find Fd1,d2(ya, yb, yc).

25

Figure 3.3: CC1, CC2 arrays and the optimal midpoint mentioned in Observations 1 and 2.

z

y

x

CC1

CC2

mid,mid+ 1

Optimal midpoint

In the “forward” part, we compute optimal cost alignment of {A[xa..ya], B[xb..yb], C[xc..mid]}
starting at indel configuration d1 with the procedure Compute Cost. The entries of the output

CC1 are:

CC1[i, j] =< Fd1,β(xa+ i−1, xb+j−1,mid), ∀β > 0 ≤ i ≤ ya−xa+1, 0 ≤ j ≤ yb−xb+1 (3.3)

Similarly, optimal alignment cost of {A∗[xa..ya], B∗[xb..yb], C∗[(mid + 1)..yc]} starting at

indel d2 is obtained in CC2 in the “backward” part. The entries of the output CC2 are:

CC2[i, j] =< F ∗d2,β(ya−i+1, yb−j+1,mid+1), ∀β >, 0 ≤ i ≤ ya−xa+1, 0 ≤ j ≤ yb−xb+1 (3.4)

26

Given the CC1 and CC2, the overall optimal cost can be computed by the following two

observations.

Observation 1:

An alignment A[xa..ya], B[xb..yb] and C[xc..yc] starting with indel d1 and ending with indel

d2 can be broken down (for some (xa − 1) ≤ i ≤ ya, (xb − 1) ≤ j ≤ yb) into two alignments of

{A[xa..i], B[xb..j], C[xc..mid]} starting at indel d1 and {A∗[i+ 1..ya], B
∗[j + 1..yb], C

∗[mid+ 1..yc]}
starting at indel d2.

Moreover, the alignment cost is Fd1,d2(ya, yb, yc), as given in Observation 2 below.

Observation 2:

Fd1,d2(ya, yb, yc) =

min(xa−1)≤i≤ya,(xb−1)≤j≤yb,β1,β2

{
Fd1,β1(i, j,mid) + F ∗d2,β2

(i+ 1, j + 1,mid + 1) + indel-diff(β1, β2)
} (3.5)

where indel-diff is defined in table 3.3.

Table 3.3: indel-diff(d1, d2)

indel-diff(d1 =< I1, I2, I3 >, d2 =< I ′1, I
′
2, I
′
3 >) =

∑3
i=1 diff(Ii, I

′
i)

Ii I ′i diff(Ii, I
′
i)

I I ge − gi
I D 0
I M 0
D D ge − gi
D M 0
M M 0

The justification for indel-diff is that the gap introduction is counted twice in the sum

and one gap extension cost needed to be added in the case that both alignment ends with a gap.

From equations 3.3, 3.4 and 3.5 we have:

Fd1,d2(ya, yb, yc) =

min0≤i≤(ya−xa+1),0≤j≤(yb−xb+1),β1,β2

{
CC1,β1(i, j) + CC2,β2(ya − i+ 1, yb − j + 1) + indel-diff(β1, β2)

} (3.6)

Pseudocode We are ready to show the pseudo-code of MED-H.

MED-H(helper)(A[xa..ya], B[xb..yb], C[xc..yc], co, c
′
o)

27

1 if yc = xc

2 then CC1 ← Compute Cost(A[xa..ya], B[xb..yb], C[xc..yc], co)

3 X ← nil

4 Compute X by tracing from CC1[ya − xa + 1yb − xb + 1] back to co.

5 mid← (xc + yc)/2

6 CC1 ← Compute Cost(A[xa..ya], B[xb..yb], C[xc..mid], co)

7 CC2 ← Compute Cost(A∗[xa..ya], B∗[xb..yb], C∗[mid+ 1..yc], c
′
o)

8 cost←∞, ni← 0, nj ← 0

9 for i← 0 to (ya − xa + 1)

10 do for j ← 0 to (yb − xb + 1)

11 do for All indels d1

12 do for All indels d2

13 do tmp← CC1[i, j] +CC2[ya − i+ 1, yb − j + 1]+

14 indel-diff(d1, d2)

15 if tmp < cost

16 then cost← tmp, ni← i, nj ← j

17 return MED-H(helper)(A[xa..ni], B[xb..nj], C[xc..mid], co, CC2[ya − ni+ 1, yb − nj + 1])+

18 MED-H(helper)(A[ni+ 1..ya], B[nj + 1..yb], C[mid+ 1..yc], CC1[ni, nj], c′o)

MED-H(A[1..n], B[1..n], C[1..n])

1 Pre-compute the arrays M and G.

2 c<M,M,M>← 0;∀d 6=< M,M,M >, cd ←∞
3 return MED-H(helper)(A[1..na], B[1..nb], C[1..nc], c, c)

Remarks:

In recursive subproblem calls, we restrict the alignment to start and end at specific indel con-

figurations by passing the correct initial values for co and c1. This step is critical to ensure the consis-

tency between many subproblem alignments. An optimal alignment of {A[1..na], B[1..nb], C[1..nc]}
is equivalent to an alignment starting and ending both at < M,M,M >.

28

3.4 Cache-Oblivious Method and the Cache-Oblivious algorithm

MED-CO

Two-level I/0 and cache-oblivious memory model:

In modern computer architecture, the storage is organized into many levels. This organiza-

tion is called the memory hierarchy. Each level of the hierarchy is faster and smaller than lower

levels. Moreover, data in one level is the cache of lower levels. Computer programs are designed

to take advantage of this caching and minimize memory transfers between levels of the hierarchy.

With the development of modern computers, the size of dataset becomes much larger than before.

Therefore, the memory hierarchy becomes the performance bottleneck, which limits the potential

of processing power.

It is however difficult to work with this multi-level memory model because of many config-

uration possibilities. Aggarwal and Vitter [AV88] proposed the two-level I/0 or external-memory

model. The model organizes the computer storage into two levels:

1. the cache or internal memory close to the processor, which is fast but has a limited size M.

2. the arbitrarily large but costly to access external memory partitioned into blocks of size B.

Traditionally, many algorithms have been developed in this model. The model is simple and

captures a variety of other memory models. However, algorithms relies crucially on B and M.

Therefore, these algorithms are called cache-aware . The model also lacks the transfer management

of data between two levels and hence algorithms needs to make explicit data requests.

The cache-oblivious model was introduced by Frigo et al. in [FLPR99] to accommodate the

in-flexibilities of the two-level model. As before, the model has 2 levels but algorithms designed in

the cache-oblivious do not know the block B and the cache M sizes. Therefore they are flexible and

adapt well to any two levels of the multi-level memory hierarchy. Moreover, the model assumes an

optimal page replacement strategy, which specifies that the evicted page will be accessed farthest

in the future. Algorithms in this model, called cache-oblivious algorithms do not have to explicitly

manage the cache. The advantage of this model comes from the fact that optimal cache-oblivious

algorithms are also optimal in multi-level memory model ([Pro99], [FLPR99]).

Cache-aware algorithms often require fine-tuning of cache parameters for performance on

different architectures. In contrast, cache-oblivious algorithms work well on most machines without

29

modifications. Of course, the code still requires some tuning, e.g different base-case size of a

recursion, ... but these optimizations are not results of cache configurations ([Dem], [Pro99]).

Cache-Oblivious method for dynamic program: A methodology to develop efficient

cache-oblivious algorithms for several fundamental dynamic programs was proposed by R. Chowd-

hury and V. Ramachandran ([CR06], [CR05]). In the rest of this section, we will describe our work

on applying this method to MED-Knudsen to yield the cache-oblivious algorithm MED-CO for the

median alignment of three sequences problems.

We first present the two helper procedures Compute Boundary and Trace Path, then

later we show how to use them in the pseudocode of MED-CO.

Procedure Compute Boundary: Recall from the previous sections that the computation of

the entry C[i, j, k] in the Knudsen’s algorithm depends only on C[(i − 1)..i, (j − 1)..j, (k − 1)..k].

Accordingly, we could compute all the entries in the cuboid C[i, j, k], for xa < i ≤ xb, xa < j ≤
xb, xa < k ≤ xb provided that following entries are available:

1. C[xa − 1, j, k] for xb − 1 ≤ j ≤ yb, xc − 1 ≤ k ≤ yc.

2. C[i, xb − 1, k] for xa − 1 ≤ i ≤ ya, xc − 1 ≤ k ≤ yc.

3. C[i, j, xc − 1] for xa − 1 ≤ i ≤ ya, xb − 1 ≤ j ≤ yb.

We refer to these three sets of entries as the front F , top T and left L boundaries respectively.

The procedure take the three sequences and the three boundaries F, T, L and returns the B (back),

D (down), R (right) boundaries, which are following entries:

1. C[ya, j, k] for xb ≤ j ≤ yb, xc ≤ k ≤ yc.

2. C[i, yb, k] for xa ≤ i ≤ ya, xc ≤ k ≤ yc.

3. C[i, j, yc] for xa ≤ i ≤ ya, xb ≤ j ≤ yb.

Figure 3.4 shows how the boundaries are laid out and used in the procedure. For clarity of presen-

tation, the rest of this section assumes the three sequences have the same length n = 2p.

The procedure Compute Boundary computes recursively by dividing the space into sub-

sequently smaller-size cuboid, specifically s/2 × s/2 × s/2 size. Intuitively, the advantage of this

divide-and-conquer approach is that in subsequent calls of the procedure, computation is confined

30

Figure 3.4: F ,T ,L,B,D,R boundaries of procedures Compute Boundary and Trace Path

F
1
0,0

F
1
0,1

F
1
1,0

F
1
1,1

L1
0,0

L1
0,1

L1
1,0

L1
1,1

z

y

x

T 1
0,0

T 1
0,1

T 1
1,0

T 1
1,1

F
2
0,0

F
2
0,1

F
2
1,0

F
2
1,1

L2
0,0

L2
0,1

L2
1,0

L2
1,1

z y

x

T 20,0

T 20,1
T 21,0

T 21,1

F
0
0,0

F
0
0,1

F
0
1,0

F
0
1,1

L0
0,0

L0
0,1

L0
1,0

L0
1,1

z y

x

T 00,0

T 00,1
T 01,0

T 01,1

within a smaller space, and if data is laid out in memory so that these entries are contiguous in

memory, the spatial locality of memory takes full advantage of the cache.

Procedure Trace Path:

Procedure Trace Path computes an optimal alignment and the median sequence by tracing

31

along the trace-path. Similarly to Compute Boundary, the procedure is a divide-and-conquer

method with the computing space divided into 8 smaller cuboides. The main difference is in the

base case where we extract a character to the median sequence X.

Pseudocode: Pseudo code of Compute Boundary, Trace Path and MED-CO are shown

below.

Compute Boundary(A[xa..(xa + s)], B[xb..(xb + s)], C[xc..(xc + s)], s, F, T, L)

1 if s = 1

2 then Using the equation 3.1 to compute the entry c from F, T, L.

3 return < c, c, c >

4 Extract F 0
i,j , T

0
i,j, L

0
i,j for 0 ≤ i, j ≤ 1 from F, T, L respectively.

5 ε[1..8] = {< 0, 0, 0 >,< 0, 0, 1 >,< 0, 1, 0 >,< 1, 0, 0 >,< 0, 1, 1 >,< 1, 0, 1 >,< 1, 1, 0 >,< 1, 1, 1 >}
6 for l← 1 to 8

7 do < i, j, k >← ε[l]

8 < F k+1
i,j , T i+1

j,k , L
j+1
i,k >← Compute Boundary(Ai, Bj , Ck, s/2, F

k
i,j , T

i
j,k, L

j
i,k)

9 Combine F 2
i,j , T

2
i,j, L

2
i,j for 0 ≤ i, j ≤ 1 into B,D,R respectively.

10 return < B,D,R >

Trace Path(A[xa..(xa + s)], B[xb..(xb + s)], C[xc..(xc + s)], s, F, T, L,< ti, tj, tk, δ >,X)

1 if s = 1

2 then Add a character to X accordingly.

3 (ti, tj, tk, δ) ← (i′, j′, k′, d′) where (i′, j′, k′, d′) is the preceding index in the trace-path.

4 return < ti, tj, tk, δ >

5 Extract F 0
i,j , T

0
i,j, L

0
i,j for 0 ≤ i, j ≤ 1 from F, T, L respectively.

6 ε[1..8] = {< 0, 0, 0 >,< 0, 0, 1 >,< 0, 1, 0 >,< 1, 0, 0 >,< 0, 1, 1 >,< 1, 0, 1 >,< 1, 1, 0 >,< 1, 1, 1 >}
7 for l← 1 to 7

8 do < i, j, k >← ε[l]

9 < F k+1
i,j , T i+1

j,k , L
j+1
i,k >← Compute Boundary(Ai, Bj , Ck, s/2, F

k
i,j , T

i
j,k, L

j
i,k)

10 if δ = nil

11 then Initialize δ such that the optimal cost is at the indel configuration δ.

12 for l← 8 to 1

32

13 do < i, j, k >← ε[l]

14 if < ti, ti, tk > lies on one of the boundaries F k+1
i,j , T i+1

j,k , L
j+1
i,k

15 then < ti, tj, tk, δ >← Trace Path(Ai, Bj , Ck, s/2, F
k
i,j , T

i
j,k, L

j
i,k, < ti, tj, tk, δ >,X)

16 return X

MED-CO(A[1..n], B[1..n], C[1..n])

1 Pre-compute the arrays M and G.

2 Initialize F, T, L based on equation 3.1.

3 return Trace Path(A[1..n], B[1..n], C[1..n], n, F, T, L,< n, n, n,nil >,nil)

Analysis: The correctness of the procedure Compute Cost and Trace Path could be shown by

induction. We do not go into details of the proofs since the proofs are mechanic. Both procedures

take O(n3) time and O(n2) space. Therefore, the time and space complexities of MED-CO are

O(n2) and O(n3) respectively.

Theorem 3. The cache complexity of MED-CO is O(n3/M + n3/(B
√
M)).

For completeness, we provide the steps to prove this result. This proof is the work of Rezaul

Chowdhury and we thank him for this representation.

Proof. Let I1(n) be the cache-complexity of Compute Cost on an n× n input. Then

I1(n) =

O(1 + n2

B) if n2 ≤ αM ,

8I1

(
n
2

)
+O(1 + n2

B) otherwise;

where α is the largest constant sufficiently small that computation on an input of size
√
αM ×

√
αM can be performed completely inside the cache. Solving the recurrence we obtain I1(n) =

O((n3/M) + (n3/(B
√
M))).

Let I2(n) be the cache-complexity of Trace Path on an input of size n× n (n = 2p). We

observe that though the algorithm calls itself recursively 8 times in the backward pass, at most 4 of

those recursive calls will actually be executed since the traceback path cannot intersect more than

4 sub-cubes. Then,

I2(n) = 4I2

(n
2

)
+ 7I1

(n
2

)
+O(1 +

n2

B
)

33

with I2(n) = O(1 + n2/B) if n2 ≤ βM , where β is the largest constant sufficiently small that

computation on an input of size
√
βM × √βM can be performed completely inside the cache.

Solving the recurrence we obtain I2(n) = O((n3/M) + (n3/(B
√
M))).

Therefore, The cache complexity of MED-CO is O(n3/M + n3/(B
√
M)).

34

Chapter 4

Median Alignment of Three

Sequences: Experiments

This chapter discusses the performance of 5 programs solving the median alignment of three se-

quences problem. Existing implementations include Knudsen’s program ([Knub]) and David Powell

’s implementation of two Ukkonen-based algorithms ([Pow]). We coded programs in C++ of two

algorithms MED-H(section 3.3) and MED-CO(section 3.4). Performance of these 5 programs are

compared on dataset of both random sequences and synthetic sequences. In section 4.2, we consider

options in implementing MED-H and MED-CO. We also talk about our design and our experience

in writing the code. Section 4.1 gives an overview of computing medium for performance compari-

son of these programs. Finally, sections 4.2 summarizes the results. Briefly, MED-CO outperforms

other programs dramatically (by more than 50%) on most of the experiments. It also works and

scales with larger dataset much better than Knudsen and Powell ’s programs.

4.1 Experimental set-up

We ran our experiments on the following three architectures:

• Intel Xeon. A dual processor 3.06 GHz Intel Xeon shared memory machine with 4 GB of

RAM and running Ubuntu Linux 5.10. Each processor had an 8 KB L1 data cache (4-way

set associative) and an on-chip 512 KB unified L2 cache (8-way). The block size was 64 bytes

for both caches.

35

• AMD Opteron. A dual processor 2.4 GHz AMD Opteron shared memory machine with 4

GB of RAM and running Ubuntu Linux 5.10. Each processor had a 64 KB L1 data cache

(2-way) and an on-chip 1 MB unified L2 cache (8-way). The block size was 64 bytes for both

caches.

• SUN Blade. A 1 GHz Sun Blade 2000/1000 (UltraSPARC-III+) with 1 GB of RAM and

running SunOS 5.9. The processor had an on-chip 64 KB L1 data cache (4-way) and an

off-chip 8 MB L2 cache (2-way). The block sizes were 32 bytes for the L1 cache and 512 bytes

for the L2 cache.

The caching data on the Sun Blade was obtained using the cputrack utility that keeps track of

hardware counters. All our algorithms were implemented in C++ using a uniform programming

style and compiled using g++ 3.3.4 with optimization parameter -O3. Implementations of all

algorithms we collected for comparing against our algorithms were written in C, and we compiled

them using gcc 3.3.4 with optimization level -O3. Each machine was exclusively used for experiments

(i.e., no other programs were running on them), and on multi-processor machines only a single

processor was used.

4.2 Implementation

We refer to our implementations of algorithms in section 3.3 and 3.4 simply as MED-H and MED-

CO. We performed experimental evaluations of the following algorithms for finding the median of

the three sequences. We used gi = 3, ge = 1 and a mismatch cost of 1 in all experiments.

1. MED-Knudsen: Knudsen’s implementation of his O(n3) time & space algorithm [Knub].

2. MED-ukk.alloc & MED-ukk.checkp: Two Ukkonen-based algorithms [DRPD00] au-

thored by David Powell [Pow]: ukk.alloc (denoted MED-ukk.alloc) and ukk.checkp (denoted

MED-ukk.checkp). The time and space complexities of MED-ukk.alloc are O(n+ d3) (avg.)

and O(n + d3), respectively, while for MED-ukk.checkp they are O(n log d + d3) (avg.) and

O(d2), respectively, where d is the edit distance of the sequences.

3. MED-H: Our implementation of Knudsen’s algorithm using Hirschberg’s technique to reduce

the space complexity to O(n2).

4. MED-CO: Our cache-oblivious median-finding algorithm.

36

MED-H and MED-CO implementation:

The programs compose of the driver to read,write input/output and C++ classes that

encapsulates the algorithms.

Pre-computation of G and M: MED-H and MED-CO share the same code snippet to pro-

grammatically generate the 2-d array next(e, d) based on table 3.2. Using next(e, d), two arrays

G(e, d) andM based on the cost constants, i.e gi, ge,M are computed.

Command-line support and input/output sequence formats: The code supports

command-line options following the standard UNIX format. There are options to either read input

sequences from standard input (stdin) or from a specific file. Three standard sequence formats

was supported by current implementations: FASTA, PHYLIP INTERLEAVED , PHYLIP SEQUENTIAL.

Users can also specify the cost constants through the command-line options. The programs can

either just compute the optimal alignment cost or compute the median sequence.

Most of the code for parsing command-line options, reading the input and writing the output

was written by Rezaul Chowdhury in a driver file. I glued the driver with my implementation.

Base-case procedure of the recursion: The pseudocode of MED-CO (section 3.4) stops

the recursion at base-case s = 1. Our implementation allows user to specify the base-case size

BASE-SIZE. However, we restrict the value to be a power of 2. The rationality is simply that it is

easier to code and faster to compute the index of data, which we will go into more details later.

We believe that this restriction does not hinder any potential performance gain.

Different base-case sizes have pros and cons. On one hand, overhead in recursive calls, pa-

rameter passing, stack pushes and pops could potential slowdown recursive algorithms. Therefore,

for smaller BASE-SIZE, MED-CO will take more space on the stack, more overhead for function

calls. However, it is simpler for coding and optimizing. We could make the base-case as efficient

as possible as well as taking advantage of compiler options such as loop-unrolling. Another pro is

that the memory-footprint of small base-case size is small hence the cache efficiency is high. On the

other hand, large BASE-SIZE reduces the number of recursive calls, hence includes less overhead.

However, if BASE-SIZE is too large, the code would incur more cache misses since it uses much

more memory. So it is best to find a value of BASE-SIZE so that the memory-footprint could fit

into the cache.

37

It is clear that the base-case procedure is the computational core of MED-CO. Each ar-

chitecture may have different best value of BASE-SIZE to balance listed pros and cons. We spent

much time experiment with different BASE-SIZE values. The summary of the result is represented

in figure 4.1. On both Intel Xeon and AMD Opteron, the best value is 64; on SUN Blade it is 32.

Figure 4.1: Running time of MED-CO with different BASE-SIZE values

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600 700 800 900 1000 1100

Ti
m

e(
se

co
nd

s)

Sequence length

MED-CO 32
MED-CO 64

MED-CO 128

 10

 100

 1000

 10000

 100 1000

Ti
m

e(
se

co
nd

s)

Sequence length

MED-CO 32
MED-CO 64

MED-CO 128

(a) (b) Log-log scaled graph

On AMD Opteron machines

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100 200 300 400 500 600 700 800 900 1000 1100

Ti
m

e(
se

co
nd

s)

Sequence length

MED-CO 32
MED-CO 64

MED-CO 128

 10

 100

 1000

 10000

 100 1000

Ti
m

e(
se

co
nd

s)

Sequence length

MED-CO 32
MED-CO 64

MED-CO 128

(c) (d) Log-log scaled graph

On Intel Xeon machines

Moreover, the flexility of different BASE-SIZE allows us to have many options for the base-

case procedure. Our initial implementation uses a 3-dimensional arrays of size BASE-SIZE3 and

computes the entire array using the traditional MED-Knudsen procedure (three nested for loops,...).

It is fast and simple but consumes memory space. We tried next to adapt MED-H into the

38

procedure. However, it is quite tricky to do so because the original MED-H, at each recursive

step, knows exactly the starting indel and ending indel for the alignment(recall that we pass these

information in term of co and c′o in calls to MED-H (helper)). This information however is hard

to extract from recursive calls of MED-CO. We managed to get this working. Unfortunately, the

code does not perform better as we expected. We believe that because the code is too complicated,

both in term of code size and expensive instructions, these extra complexities swallow our expected

performance gain. In future, we could investigate on fine-tuning this code and probably trying

advanced compiler options.

Data layout of F, T, L and B,D,R boundaries: In the pseudocode, all boundaries are

regarded as a 2-d arrays. At each recursive step, the code divides each boundaries into four sub-

arrays and passes each sub-arrays to the recursive calls. It is totally not cache-efficient to use a

simple 2-d arrays in the implementation. Therefore, we linearize all boundaries into one-dimensional

arrays and use index/pointer to access individual data fields. We consider two ways to layout data,

illustrated in Figure 4.2:

Figure 4.2: Data layout

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35

36 37 38

39 40 41

42 43 44

45 46 47 48

49 50 51 52

53 54 55 56

57 58 59 60

61 62 63 64

65 66 67 68

69 70 71 72

73 74 75 76

77 78 79

80 81 82

83 84 85

86 87 88

89 90 91 92

93 94 95 96

97 98 99 100

101102103104

105106107

108109110

1 2

3 4

5

6

7 8 9

10 11

12 13

14

15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32

33 34

35

36

37 38 39

40 41

42 43

44 45

46 47 48

49 50 51

52 53

54 55

56 57

58 59

60

61

62 63 64

65 66

67 68

69

70

71 72 73

74 75 76

77 78 79

80 81 82

83 84 85

86 87

88 89

90

91

92 93 94

95 96

97 98

99 100

101102103

104105106

107108

109110

(a) 4x4 blocked layout (b) Bit-interleaved layout

• BASE-SIZE x BASE-SIZE blocked layout: The 2-d array is divided into blocks of size

BASE-SIZE x BASE-SIZE. Data in each block is contiguous in memory. This is simple to

calculate the data index and we need not use pointers but an integer for the index. To han-

dle non-power of 2 array size, we consider blocks on right and bottom edges incomplete and

ignore the missing entries. This layout requires many tuning parameters in recursive calls.

39

• Bit-interleaved layout: Data is recursively laid out in the array such that data in each

sub-arrays is contiguous in memory. We could use pointers to directly offset into the data

arrays and hence no extra tuning parameters are required. One of the practical advantages

of bit-interleaved layout is that pointer calculations on conventional microprocessors can be

costly.

Both layouts has the advantage that data in base-case procedure is contiguous in memory. Our code

uses the blocked layout. We made this decision because our previous experience with cache-oblivious

algorithm implementation suggests that for the computer architectures we run experiments on, the

bit-interleaved layout does not perform better.

Programming experience:

Experience from both implementations convinces us that MED-CO is more programming-

friendly than MED-H. Even though MED-CO ’s code is longer, the algorithm has a nice recursive

structure. It is somehow tricky to implement the Trace Path but MED-H has quite many

cumbersome corner cases. We also believe that MED-CO is more compiler-friendly due to its

“balanced” recursion: at each step, the cube is evenly divided while each step of MED-H may

divide the space into unequal sub-spaces.

4.3 Results

Overall MED-Knudsen ran about 30%-80% slower than MED-CO on Intel Xeon, but there was

virtually no slowdown on SUN Blade for problem sizes it could handle. However, MED-Knudsen,

MED-ukk.alloc and MED-ukk.checkp crashed for sequences longer than 256. We summarize our

results below.

Random Sequences We ran all implementations on random (equal-length) sequences of length

l = 64k for 1 ≤ k ≤ 16. Running time on Intel Xeon and AMD Opteron is plotted in Figure 4.3.

Selected data points for length 2i, 6 ≤ i ≤ 10 on Intel Xeon are shown in Table 4.1 and on SUN

Blade in Tables 4.2 and 4.3.

Due to lack of memory space MED-Knudsen, MED-ukk.alloc and MED-ukk.checkp crashed

on both machines for sequences longer than 448, 256 and 640, respectively.

On Intel Xeon and AMD Opteron, MED-CO was the fastest. It ran 1.79 times on Intel Xeon

40

and 2.5 times on AMD Opteron faster than MED-Knudsen for length 256. It also outperformed

MED-H by 58% for length 1024 and even more for smaller sequence lengths. Both MED-ukk.alloc

and MED-ukk.checkp ran 4− 5 times slower than MED-CO for length 256.

On SUN Blade, the difference in running times of MED-Knudsen and MED-CO was insignif-

icant while MED-Knudson incurred significantly more L2 cache misses than MED-CO. We believe

this happens because MED-Knudsen’s code is much simpler, hence it executed less instructions.

MED-CO ran dramatically faster than MED-ukk.alloc and MED-ukk.alloc since it incurred far

fewer cache misses. Though MED-CO incurred more cache misses than MED-H for smaller lengths

and it incurred significantly fewer cache misses than MED-H for lengths larger than 128. This

happens because for small lengths, the entire space fits in the L2-cache but for large sequences, it

does not.

Synthetic Sequences We used ROSE [SEM98] to generate a set of 100 sequences of average

length 200 under the HKY evolutionary model [HKaY85] with equal probability for A, C, G and

T. We then ran all implementations on three sequences randomly selected from the set. Table 4.4

shows the results of 5 such runs.

MED-CO was the fastest implementation in all runs except for Run 5. It outperformed

both MED-Knudsen and MED-H by at least 30%, even by 80% on Run 5. MED-ukk.alloc and

MED-ukk.checkp again performed quite badly except for the last run. The score of the alignment

of Run 5 is 106 which explains why Ukkonen-based algorithms ran faster than MED-CO.

Running Times (in sec) for Random Sequences on Intel Xeon (runtime w.r.t. MED-CO)

Length (n) MED-Knudsen MED-H MED-ukk.alloc MED-ukk.checkp MED-CO

64 3.727 (1.65) 6.115 (2.70) 6.288 (2.78) 7.602 (3.36) 2.264 (1.00)

128 29.171 (1.70) 34.090 (1.99) 46.379 (2.70) 55.377 (3.23) 17.157 (1.00)

256 215.392 (1.79) 213.104 (1.77) 501.385 (4.16) 613.717 (5.10) 120.404 (1.00)

512 − (−) 1, 493.426 (1.62) − (−) 4, 724.386 (5.13) 921.250 (1.00)

1, 024 − (−) 10, 847.156 (1.58) − (−) − (−) 6, 850.470 (1.00)

Table 4.1: Each figure is the average of 3 independent runs on randomly generated strings over
{ A, T,G,C }. The ratio of the runtime of the implementation to that of MED-CO is within
parentheses.

41

Running Times (in sec) for Random Sequences on SUN Blade (runtime w.r.t. MED-CO)

Length (n) MED-Knudsen MED-H MED-ukk.alloc MED-ukk.checkp MED-CO

32 1.194 (1.37) 2.046 (2.34) 5.782 (6.62) 6.063 (6.95) 0.873 (1.00)

64 8.814 (1.08) 14.614 (1.79) 53.262 (6.52) 57.920 (7.09) 8.165 (1.00)

128 69.400 (1.04) 112.801 (1.68) 394.553 (5.89) 419.371 (6.26) 67.012 (1.00)

256 549.787 (1.01) 893.426 (1.63) − (−) 4, 569.631 (8.36) 546.480 (1.00)

512 − (−) 7, 112.395 (1.49) − (−) − (−) 4, 781.163 (1.00)

1, 024 − (−) 56, 678.730 (1.47) − (−) − (−) 38, 567.742 (1.00)

Table 4.2: Each figure is the average of 3 independent runs on randomly generated strings over
{ A, T,G,C }. The ratio of the runtime of the implementation to that of MED-CO is within
parentheses.

Ratios of L2 Misses (w.r.t. MED-CO) for Random Sequences on SUN Blade

Length (n) MED-Knudsen MED-H MED-ukk.alloc MED-ukk.checkp

32 0.59 0.24 5.86 4.78

64 2.44 0.27 28.47 26.92

128 3.74 0.57 47.66 50.79

256 4.08 4.24 − 88.20

512 − 5.13 − −
1, 024 − 5.65 − −

Table 4.3: Each figure is the average of ratios obtained from 3 independent runs.

Running Times (in sec) for Synthetic Sequences on Intel Xeon (runtime w.r.t. MED-CO)

Run Lengths Score MED-Knudsen MED-H MED-ukk.alloc MED-ukk.checkp MED-CO

1 154 174 203 224 72.165 (1.30) 80.657 (1.45) 161.822 (2.92) 207.401 (3.74) 55.439 (1.00)

2 236 152 152 247 76.961 (1.49) 82.321 (1.59) 186.236 (3.60) 227.118 (4.39) 51.731 (1.00)

3 154 235 238 279 111.771 (1.45) 116.387 (1.51) 280.726 (3.64) 670.455 (8.69) 77.161 (1.00)

4 219 151 282 295 121.148 (1.44) 125.484 (1.49) 307.207 (3.66) 392.977 (4.68) 83.965 (1.00)

5 167 146 146 106 46.695 (1.60) 53.435 (1.84) 13.633 (0.47) 16.965 (0.58) 29.098 (1.00)

Table 4.4: Each figure is a run on three strings chosen randomly from a set of 100 strings of average
length 200 generated using ROSE [SEM98]. The ratio of the runtime of the implementation to that
of MED-CO is given within parentheses.

42

Figure 4.3: Running time of MED-CO, MED-Knudsen, MED-H, MED-ukk.alloc and MED-
ukk,checkp

 10

 100

 1000

 10000

 100000

 100 1000

Ti
m

e(
se

co
nd

s)

Sequence length

MED-H
MED-Knudsen
MED-ukk.alloc

MED-ukk.checkp
MED-CO 64

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 100 200 300 400 500 600 700 800 900 1000 1100

R
at

io
Sequence length

MED-H
MED-Knudsen

MED-ukk.alloc
MED-ukk.checkp

(a) Log-log scaled graph (b) Ratio of running time w.r.t MED-CO

On AMD Opteron machines

 10

 100

 1000

 10000

 100000

 100 1000

Ti
m

e(
se

co
nd

s)

Sequence length

MED-H
MED-Knudsen
MED-ukk.alloc

MED-ukk.checkp
MED-CO 64

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600 700 800 900 1000 1100

R
at

io

Sequence length

MED-H
MED-Knudsen

MED-ukk.alloc
MED-ukk.checkp

(c) Log-log scaled graph (d) Ratio of running time w.r.t MED-CO

On Intel Xeon machines

43

Chapter 5

Conclusion

This thesis has presented two approaches to speed up dynamic programs: one for computing

the MAAC of two area cladograms and the other for computing the median alignment of three

sequences. In the first approach, we reduced the complexity of the bottle-neck subproblem by

sparsifying the weighted graph. In the latter, we reduced the I/O complexity without degrading

the space and time complexity of the old algorithm. Besides theoretical work, we implemented the

new algorithms and experimentally show the performance win. For the median alignment problem,

the speed-up over traditional algorithms is significant. The new cache-oblivious algorithm could

also handle much larger datasets and scales well with different architectures.

There are many avenues for further research. The MAAC metric of Ganapathy et al.([GGJ+05],

[GGJ+06]) is the first rigorous method to identify patterns in biogeography. It will be fruitful to

explore this further. As we mentioned before, we have implemented a JAVA package for computing

the MAAC of two area cladograms and conducted some experiments. However, much still remains

to be done.

Our new algorithm for the median alignment problem opens the possibility of using the

median alignment as a tuning step in heuristics to solve computationally hard problems in bioin-

formatics. This was not possible before because of the limit on the size of input that could be

handled by previous methods and the running time of existing implementations. Moreover, we

believe the speed-up of the cache oblivious can be even larger with more fine-tuning and optimiza-

tion of the code. We also think that MED-CO can potentially be multi-threaded, therefore taking

advantage of multi-processor machines.

44

Bibliography

[AK97] A. Amir and D. Keselman. Maximum Agreement Subtrees in a Set of Evolutionary

Trees: Metrics and Efficient Algorithms. SIAM Journal of Computing, 26(6):1656–

1669, 1997. A preliminary version of this paper appeared in FOCS ’94.

[AV88] Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of sorting and

related problems. Commun. ACM, 31(9):1116–1127, 1988.

[CHM94] Kun-Mao Chao, Ross C. Hardison, and Webb C. Miller. Recent developments in linear-

space alignment methods: a survey. J. Computational Biology, 1:271–291, 1994.

[CR05] Rezaul Alam Chowdhury and Vijaya Ramachandran. External-memory exact and ap-

proximate all-pairs shortest-paths in undirected graphs. In SODA ’05: Proceedings of

the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 735–744,

Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

[CR06] Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-oblivious dynamic pro-

gramming. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM symposium

on Discrete algorithm, pages 591–600, New York, NY, USA, 2006. ACM Press.

[Dem] Erik D. Demaine. Cache-oblivious algorithms and data structures. in Lecture Notes from

the EEF Summer School on Massive Data Sets, Lecture Notes in Computer Science,

BRICS, University of Aarhus, Denmark, June 27-July 1, 2002, to appear.

[DRPD00] Lloyd Allison David R. Powell and Trevor I. Dix. Fast, optimal alignment of three

sequences using linear gap cost. Journal of Theoretical Biology, pages 207(3):325–336,

2000.

45

[FCPT95] M. Farach-Colton, T.M. Przytycka, and M. Thorup. On the Agreement of Many Trees.

Information Processing Letters, 55:297–301, 1995.

[FCT94] M. Farach-Colton and M. Thorup. Fast Comparison of Evolutionary Trees. In Proc. of

the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 481–488, 1994.

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-

oblivious algorithms. page 285, 1999.

[GGJ+05] Ganeshkumar Ganapathy, Barbara Goodson, Robert Jansen, Vijaya Ramachandran,

and Tandy Warnow. Pattern identification in biogeography. Lecture Notes in Computer

Science, 3692:116–127, October 2005.

[GGJ+06] Ganeshkumar Ganapathy, Barbara Goodson, Robert Jansen, Hai son Le, Vijaya Ra-

machandran, and Tandy Warnow. Pattern identification in biogeography. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 3(4):334–346, 2006.

[GHS97] J. Grice, R. Hughey, and D. Speck. Reduced space sequence alignment, 1997.

[Got82] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal of

Molecular Biology, pages 162:705–708, 1982.

[GT89] H. Gabow and R. R. Tarjan. Faster Scaling Algorithms for Network Problems. SIAM

Journal of Computing, 18(5):1013–1036, 1989.

[Hir75] D. S. Hirschberg. A linear space algorithm for computing maximal common subse-

quences. Commun. ACM, 18(6):341–343, 1975.

[HKaY85] Masami Hasegawa, Hirohima Kishino, and Taka aki Yano. Dating of human-ape split-

ting by a molecular clock of mitochondrial dna. Journal of Molecular Evolution, pages

22:160–174, 1985.

[Knua] Bjarne Knudsen. Optimal multiple parsimony alignment with affine gap cost using a

phylogenetic tree. 2812/2003:433–446.

[Knub] Bjarne Knusen. Multiple parsimony alignment with “affalign”. Software package

multalign.tar containing files: affalign.cc, readme.txt and codon dist.

46

[Mai78] D. Maier. The Complexity of Some Problems on Subsequences and Supersequences.

Journal of the ACM, 25(2):322–336, 1978.

[MM88] Eugene W. Myers and Webb Miller. Optimal alignments in linear space. pages 4(1):11–

17, 1988.

[Pow] David R. Powell. Software package align3str checkp.tar.gz. Containing 4 programs:

ukk.dpa, ukk.noalign, ukk.alloc and ukk.checkp.

[Pro99] Harald Prokop. Cache-oblivious algorithms, 1999.

[SEM98] J. Stoye, D. Evers, and F. Meyer. Rose: generating sequence families, 1998.

[SW93] M. Steel and T. Warnow. Kaikoura Tree Theorems: Computing the Maximum Agree-

ment Subtree. Information Processing Letters, 48:77–82, 1993.

47

