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Abstract

The priority queue is a very important and widely used data struc-
ture in computer science, with a variety of applications including Di-
jkstra’s Single Source Shortest Path algorithm on sparse graph types.
This study presents the experimental results of a variety of priority
queues. The focus of the experiments is to measure the speed and
performance of highly specialized priority queues in out-of-core and
memory intensive situations. The priority queues are run in-core on
small input sizes as well as out-of-core using large input sizes and re-
stricted memory. The experiments compare a variety of well-known
priority queue implementations such as Binary Heap with highly spe-
cialized implementations, such as 4-ary Aligned Heap, Chowdhury and
Ramachandran’s Auxiliary Buffer Heap, and Fast Binary Heap. The
experiments include Cache-Aware as well as Cache-Oblivious prior-
ity queues. The results indicate that the high-performance priority
queues easily outperform traditional implementations. Also, overall
the Auxiliary Buffer Heap has the best performance among the prior-
ity queues considered in most in-core and out-of-core situations.
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1 Introduction

Due to revolutionary advances in hard disk drive technology over the past
ten years, hard drives are larger, faster, and cheaper than ever before. As a
result, institutions and corporations are storing massive amounts of informa-
tion. Major institutions store petabytes of information in data warehouses
at low costs. Therefore, scientists are striving to solve problems on massive
datasets that reside primarily on hard disks. At the same time, CPU speeds
are still many times faster than the speeds of hard disks. Delivering data
to the CPU has developed into one of the major bottlenecks in computer
hardware performance. Consequently, computer hardware employs a mem-
ory hierarchy that places small, fast memory close to the CPU, while larger,
slower disk drives are placed further away. Most memory hierarchies contain
multiple levels, where data is transferred between levels when needed. Since
new hard disk technology is providing the infrastructure for huge datasets, it
is crucial that algorithms applied to solve common problems use the memory
hierarchy efficiently. On large datasets, the performance of the algorithm can
be dominated by accesses to the memory hierarchy. This research examines
the priority queue data structure, which is commonly applied to the Sin-
gle Source Shortest Path problem and Dijkstra’s SSSP algorithm on sparse
graphs.

This study presents the experimental performance of a variety of high-
performance priority queues, including the 4-ary Aligned Heap [6], Chowd-
hury and Ramachandran’s Auxiliary Buffer Heap [2], and Fast Binary Heap
[6]. The experiments include well-known priority queues, such as Binary
Heap [3], as well as high-performance implementations, such as the Sequence
Heap [6]. The goal of the experiments is to measure the performance of
the priority queues in situations that are memory intensive and require the
priority queue to execute out-of-core. To accomplish this goal, large se-
quences of priority queue operations are generated using Dijkstra’s Single
Source Shortest Paths algorithm on sparse graph types. The experiments
use the sequences as input where the amount of cache memory available to
the priority queues is restricted.

The results of the experiments indicate that the Sequence Heap [6], Aux-
iliary Buffer Heap [2], and 4-ary Aligned Heap [6] are the best performing
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priority queue in the in-core experiments. Auxiliary Buffer Heap, Fast Bi-
nary Heap [6], and 4-ary Aligned Heap have the best overall performance
in out-of-core experiments among the priority queues included. These three
priority queues performed approximately 100 times faster than traditional
priority queues such as the Binary Heap. Also, the Auxiliary Buffer Heap
has slightly better performance out-of-core than the Fast Binary Heap and
4-ary Aligned Heap.

Before displaying the results, background information is presented over
the cache-oblivious model, Dijkstra’s algorithm, and the priority queue data
structure. Then, we introduce the different priority queues used in the exper-
iments as well as STXXL, the tool used to measure out-of-core performance.
In-core and out-of-core experimental results are then presented and analyzed.

Finally, a detailed analysis of Sleator and Tarjan’s Splay Heap [8] is pre-
sented with emphasis on the challenges of creating efficient decrease-key and
delete operations. Since the Splay Tree, which is also self-adjusting, made a
huge impact on the binary tree, it will be interesting to see if the Splay Heap,
which has a number of open questions, can make an impact on the priority
queue.

2 Background

2.1 Memory Hierarchy

Modern computer architecture employs a memory hierarchy in order to de-
liver data to the CPU in an efficient manner. A typical memory hierarchy has
multiple levels where the level closest to the CPU is the smallest and fastest,
and each progressive level moving away from the CPU becomes larger, but
slower. A typical memory hierarchy has registers closest to the CPU, an
on-die Level 1 cache, an on-die Level 2 cache, a Level 3 cache, main memory
(RAM), and finally a hard disk. While most memory hierarchies follow this
structure, it is important to note that exact sizes and speeds of each level in
the memory hierarchy vary significantly between different architectures.
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When the CPU requests a piece of data, the architecture searches for it
in the memory hierarchy. If the data is not present in the highest parts of
the memory hierarchy, a cache miss occurs and the data must be fetched
from deeper within the hierarchy. When data is requested from one level of
a memory hierarchy to another level, an entire section of data, known as a
block, is transferred between the levels. Therefore, levels within the memory
hierarchy are comprised of blocks of data. The size of a block is dependent
on the architecture. Moving data between levels of the memory hierarchy is
very costly compared to the speed of the CPU.

For the purpose of analyzing the priority queues, we assume a two-level
memory hierarchy with a fast but limited-size cache and a slow but infinite-
size disk. The out-of-core experiments in the study also use a tool that
simulates a two-level structure for the memory hierarchy. Using the two-
level model, one can predict and measure how many times an algorithm
incurs a block transfer. The number of block transfers, or I/O operations,
an algorithm uses is a measure of I/O efficiency, or how well the algorithm
takes advantage of locality within a given memory hierarchy.

2.2 Cache-Oblivious versus Cache-Aware Algorithms

To reduce the number of cache misses and associated transfers between cache
levels, algorithms strive to take advantage of spatial and temporal locality.
Spatial locality is the concept that a piece of data has a higher chance of
being accessed if a piece of data near it has been accessed. Spatial locality
dictates that data that will be accessed consecutively should be stored in the
same block within the memory hierarchy. Temporal locality is the idea that
data is likely to be accessed if it has been accessed in the recent past. Tem-
poral locality implies that recently requested blocks have higher probability
of being requested again, and so should be kept higher in the hierarchy. Per-
formance of an algorithm or application can be reduced significantly if the
CPU must stall in order to wait for data to arrive from the memory hierarchy.
How efficient an algorithm is with regards to the memory can be measured
using the two-level memory hierarchy.

When developing algorithms that are targeted to be I/O efficient, there
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are two major models: the Cache-Aware and Cache-Oblivious models. In the
cache-aware model, the algorithm possesses information about the memory
hierarchy. For example, an algorithm could know the block size, number of
blocks in a particular cache, and replacement strategy that the memory hier-
archy utilizes. Using the information about the memory hierarchy to maxi-
mize locality strategies, cache-aware algorithms possess the strength of being
highly optimized for that particular cache structure. However, the cache-
aware algorithm may only be optimized for a certain part of a multi-level
memory hierarchy, and not for the overall structure. Also, the cache-aware
algorithms are not portable due to varying memory attributes of different
computer architectures.

Conversely, the cache-oblivious model does not allow the algorithms to
have information regarding a specific memory hierarchy. The algorithms
are designed to be efficient on any size cache, with any block size. The
cache-oblivious design principle makes highly optimized algorithms difficult
to achieve, but allows for algorithm design that is more flexible over different
architectures. In addition, cache-oblivious algorithms can be I/O efficient
for all levels of a multi-level memory hierarchy, instead of specialized for just
one level [2]. It is important to note that the performance expected from a
cache-oblivious algorithm assumes an optimal cache replacement strategy [2].
The experiments in the study include both cache-aware and cache-oblivious
priority queues.

2.3 Priority Queue

The priority queue is an extremely important data structure that has a vari-
ety of applications including graph algorithms, operating system schedulers,
and router software. A priority queue is an abstract data structure that holds
a set of elements and each element has a corresponding key value. Priority
queues are built to support finding and removing the element in the set with
either the minimum or maximum key value. For all of the experiments, only
the min-priority queue is considered. The min-priority queue is required to
support the following operations [3]:
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Delete-Min(): This operation returns the element with the smallest key
value and removes this entry from the priority queue. The key value is com-
monly returned in addition to the element.

Find-Min(): This operation returns the element with the smallest key
value. The key value is commonly returned in addition to the element.

Insert(x,k): This method creates an entry with k as the input key value
and an associated element x and inserts this entry into the priority queue.

In addition to these required operations, a priority queue can optionally
support the following operations:

Decrease-Key(x,k): This operation will replace the key value of the
entry pointed to by x with the value k inside the priority queue. The new
key value k is assumed to be smaller than the key value currently associated
with the entry x in the priority queue.

Delete(x): This method removes the entry in the priority queue referred
to by x.

Many common graph algorithms employ these optional operations, in-
cluding Dijkstra’s algorithm. Therefore, the experimental study includes
priority queue implementations that support decrease-key and delete as well
as implementations that do not include these optional operations.

2.4 Dijkstra’s Single Source Shortest Path Algorithm

Although there are many important applications of the priority queue data
structure, the task examined in this study is the Single Source Shortest Path
problem on a graph containing edges with nonnegative weights. The problem
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states that given a graph and a source vertex s within that graph, the solution
must give the weight of the shortest path, called d, through the graph from
the source vertex s to each vertex v in the graph [3].

Dijkstra’s algorithm is a very well-known, well-studied algorithm to solve
this problem. In Dijkstra’s algorithm, the vertices of the graph and their
associated shortest paths are stored in a priority queue. The study uses two
versions of Dijkstra’s algorithm, one where the priority queue employs the
decrease-key operation and one where the priority queue uses only delete-
min and insert operations. In the version of Dijkstra’s algorithm employing
decrease-key, called DIJKSTA-DEC [1], vertices are stored in the priority
queue with their shortest path from s seen so far, d, as the key value. If a
shorter path is found, the key value d is updated using decrease-key until
that vertex is removed using a delete-min operation.

In the version of Dijkstra’s algorithm that does not use decrease-key,
called DIJKSTRA-NODEC [1], vertices are still stored in the priority queue
with the shortest path from s, i.e. d, as the key value. Instead of using
the decrease-key operation to update the shortest path for a node, a brand
new entry is inserted into the priority queue. When a shorter path from s
to a vertex v is found at a later time, another entry for same vertex v is
inserted into the priority queue. This strategy results in the priority queue
containing multiple entries for the same vertex, but with different key values
representing d. When the delete-min operation occurs, DIJKSTRA-NODEC
[1] must maintain a record of which nodes have already finalized their shortest
path from s and discard any unnecessary entries leaving the priority queue.

It is important to note that when the graph is sparse, the performance of
the priority queue dominates the overall performance of Dijkstra’s algorithm
[3]. Thus, the faster the amortized running time of the priority queue imple-
mentation, the faster the overall performance. Furthermore, the performance
of Dijkstra’s algorithm on large datasets will be determined by the memory
efficiency of the priority queue used.
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3 Priority Queues Used in Experimental Study

A number of different priority queues are part of the experimental study. In
general, the study contains traditional priority queues, such as the Binary
Heap, as well as high-performance priority queues such as the 4-ary Aligned
Heap. Each priority queue implementation was included in the study for
a reason and has amortized running times and I/O bounds that will help
predict their performance. The study introduces the Buffer Heap and Aux-
iliary Buffer Heap, traditional implementations, as well as high-performance
implementations.

3.1 Traditional Priority Queues

3.1.1 Binary Heap

The Binary Heap is a very well-understood implementation of a priority
queue. The Binary Heap is intuitive and easily implemented. The Binary
Heap supports insert, delete-min, and decrease-key in O (log N) worst-case
time [3]. The Binary Heap is the benchmark that will be used to measure
the performance of the other, more optimized priority queues.

3.1.2 Fibonacci Heap

The Fibonacci Heap is a classic implementation of a priority queue that is
commonly used in Dijkstra’s algorithm using decrease keys. The Fibonacci
Heap supports the delete-min and delete operations in amortized O (log N)
time while the insert and decrease-key operation executes in amortized O (1)
time [3]. The structure of the Fibonacci Heap can be described as a group-
ing of unordered min-heap trees that are linked together at the roots. The
development of the Fibonacci Heap was motivated by the desire to reduce
the asymptotic running time of decrease-key while maintaining the amor-
tized O (log N) bound on delete-min because the decrease-key operation is
executed many more times than the delete-min operation in most graph
types [3]. Because Fibonacci heap was designed with Dijkstra’s algorithm in
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mind, it is an excellent benchmark in the experiments, especially ones using
DIJKSTRA-DEC.

3.1.3 Two Pass Pairing Heap

The Two Pass Pairing Heap is an easier to implement, higher-performance
response to the Fibonacci Heap. The structure of the Pairing Heap is similar
to the Binomial Heap but contains self-adjusting operations similar to the
Splay Heap. The Pairing Heap supports insert and decrease-key operations
in O (1) worst-case time [5]. This implementation also supports delete-min
and delete operations in O (log N) amortized time. The delete-min operation
is designed to move down the heap pairing potential new minimum elements
and then move back up the heap connecting these pairs until the new Pairing
Heap is formed [5]. Given that the Pairing Heap is a response to the Fibonacci
Heap and can also support the decrease-key operation in amortized O (1)
time, the Pairing Heap should be included in experiments with DIJKSTRA-
DEC.

3.1.4 Splay Heap

The Splay Heap is a priority queue implementation developed by Sleator and
Tarjan [8]. The Splay Heap is described as self-adjusting and is designed to
be efficient over a sequence of priority queue operations even though any
individual Splay Heap operation could be expensive. The Splay heap does
not maintain global properties, and instead performs local operations on
nodes to be efficient. The Splay Heap supports the insert and delete-min
operations inO (log N) amortized running time [8]. The Splay Heap supports
a meld operation that merges two Splay Heaps into one large heap, and most
operations depend heavily on the meld operation. The meld combines the
two right paths of the input trees into the left path of the result heap, while
maintaining heap order [7]. The Splay Heap was chosen due to its focus on
efficiency in an amortized sense, the open questions available, and its ease of
implementation. Later in the study, the decrease-key and delete operations
of the Splay Heap are analyzed.
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3.2 Buffer Heap and Auxiliary Buffer Heap

The Buffer Heap and the Auxiliary Buffer Heap are cache-oblivious priority
queue implementations [2]. The Buffer Heap fully supports insert, delete-
min, delete, and decrease-key operations. The amortized running time of
insert, delete-min, delete, and decrease-key operations is O (log N) [2]. The
Buffer Heap is very cache efficient and can support these operations with
O

(
1
B

log2
N
M

)
amortized number of block transfers where B is the block size,

M is the size of the cache, and N is the maximum number of elements in
the queue [2]. The structure of the Buffer Heap is based on two buffers,
an update (U) buffer and an element (B) buffer that is split into different
levels. Operations enter the U buffers and are not applied until a delete-min
is executed, where all of the operations are then processed. The deeper levels
contain updates and elements that are not likely to be referenced soon, and
are stored on disk [2].

The Auxiliary Buffer Heap is similar to the Buffer Heap in structure, yet
the Auxiliary Buffer Heap only supports the insert and delete-min operations
[2]. The amortized and block transfer bounds are the same as the buffer
heap, but the implementation of the Auxiliary Buffer Heap is more efficient
because it does not support the decrease-key operation. Stripping away the
unnecessary operations allows the Auxiliary Buffer Heap to become very high
performance while remaining cache efficient.

3.3 High-Performance Priority Queue Software

3.3.1 4-ary Aligned Heap

The 4-ary Aligned Heap is a priority queue implementation that was designed
by LaMarca and Ladner [6]. The implementation used in the experimental
study is an optimized version of the 4-ary Aligned Heap from Peter Sanders
[6]. The 4-ary Aligned Heap is an array-based priority queue implementation
where data is aligned to the cache blocks. This requires that the algorithm
know the size of the blocks on the architecture that the implementation will
execute on, making this a cache-aware algorithm. The 4-ary Aligned Heap
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is not affected by the size of the cache, but by the size of the block. The
cache-aware property ensures that any access to an entry in the priority
queue can incur at most only one block transfer. The 4-ary Aligned Heap’s
insert and delete-min operations both run in worst-case O (log4 N) time [6]
with O (log4 N) amortized number of block transfers, but the 4-ary Aligned
Heap does not support decrease-key. This priority queue will be excellent
competition to memory efficient implementations such as the cache-oblivious
Auxiliary Buffer Heap.

3.3.2 Fast Binary Heap

The Fast Binary Heap obtained from Peter Sanders is a highly optimized
version of the Binary Heap [6]. This Fast Binary Heap has amortized run-
ning time of O (log N) for the insert and delete-min operations [6]. The Fast
Binary Heap has O (log N) amortized number of block transfers for both
operations. The optimizations reduce the number of conditional branches
and memory accesses that the delete-min operation executes. These tech-
niques greatly reduce cache misses and improve the performance of indi-
vidual delete-min operations. This highly optimized Fast Binary Heap will
be another high-performance priority queue in the study. The Fast Binary
Heap does not support decrease-key or delete operations, further increasing
its performance [6].

3.3.3 Sequence Heap

The Sequence Heap is a highly-optimized cache-aware priority queue imple-
mentation developed by Peter Sanders [6]. Sequence Heap is designed to
use k-way merging techniques to implement a priority queue. The Sequence
Heap maintains an insertion buffer of the most recently inserted elements
that has to be smaller than the cache being optimized for. When the in-
sertion buffer is too full, the buffer is sorted and sent to external memory.
When needed, the sorted sequences combine using k-way merging and the
smallest key values are sent to a deletion buffer for quick delete-min opera-
tions [6]. The value k is changed depending on the architecture, making this
implementation cache-aware. Therefore, the Sequence Heap can be very I/O
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efficient because of the insertion buffer and a correctly chosen k value for
the architecture. The k value must be less than the size of the fast memory
available to the architecture. Sanders states that k=128 is a good value for
most current architectures and is used in the experimental studies [6]. The
Sequence Heap also does not support decrease-key.

4 STXXL

In order to measure the performance of the priority queues in out-of-core,
memory intensive situations, the study needs a tool that can handle large
datasets and provide the ability to restrict the size of cache memory available
to the priority queues. The STXXL interface [4] is the tool that allows
the experiments to test the out-of-core performance of the priority queues.
STXXL allows for the use of extremely large datasets, provides more efficient
I/O operations, and provides cache and memory statistics along with timing
results [4]. STXXL is an extension of the C++ Standard Template Library
and interfaces with C++ in a similar fashion as STL. STXXL generates a
virtual two-level memory structure with a limited-size, but quick cache and
an unlimited-sized, but slow hard disk [4]. The cache and the hard disk are
partitioned into fixed sized blocks. The cache is fully associative and the
cache utilizes a Least Recently Used (LRU) paging strategy [4]. The user
can specify the size of the blocks as well as the capacity of cache by passing
parameters into the STXXL container classes.

4.1 STXXL Interface

STXXL is accessed through a variety of container classes representing com-
mon data structures. The out-of-core implementations in the experimental
study are created using the STXXL container Vector. The STXXL Vector
functions exactly like the STL Vector and very similar to a primitive array
data structure. The STXXL vector has a flat structure, is indexed using the
[] operator like an array, and can be resized dynamically [4].

However, STXXL has a major restriction; only primitive data types can
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be stored in an STXXL Vector. The STXXL Vector container cannot store
objects, structures, or pointers of any kind. Therefore, the priority queue
implementations are forced to be constructed without these programmer
friendly constructs. This caused some very interesting implementation chal-
lenges for the Buffer Heap, 4-ary Aligned Heap, and Fast Binary Heap.

4.2 STXXL Implementation Challenges

All of the priority queue implementations used in the out-of-core experiments
have an STXXL vector as the data structure that holds the priority queue
entries. The STXXL vector allows the size of the priority queue to become
very large while the amount of memory available to the priority queue can be
limited. However, the restriction that only primitive data types are allowed
in the STXXL containers created a tough implementation challenge for the
Buffer Heap [9], 4-ary Aligned Heap [6], and Fast Binary Heap [6].

Converting the Buffer Heap to be compatible with the STXXL Vector
container class was a complex task. The Buffer Heap already had a rela-
tively complex implementation. To represent the entries in the Buffer Heap,
a C++ struct was used [9]. The fields inside the struct, which included such
information as key value, time stamp, and element id, varied depending on
if the entry was in update buffer or element buffer. The core data struc-
ture of the entire buffer heap was a large array of pointers to these structs
representing entries. The update and element buffer entries were interleaved
throughout the core array by level. Thus, the array would start with the first
level update buffer, followed by the first level element buffer, and then move
to the next level throughout the array, continuing the interleaving technique
[9]. Therefore, indexing into the proper entry required finding the correct
buffer type, correct buffer level, correct entry in the buffer, and finally the
field needed. The struct that represented an entry in the heap needed to be
eliminated in order to support STXXL.

The entry struct was emulated by manually performing the actions of a
C++ struct within all the methods of the Buffer Heap. Therefore, the core
array was changed to an array of primitives. The idea is that the fields orig-
inally stored in the entry struct are now stored directly in the core STXXL
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array. Since all of the data is stored in one core array, this STXXL array is
extremely large. Global offsets are available for each field of the old entry
struct. The implementation challenge came in how to properly index a de-
sired piece of data in the heap. Since each entry struct has a fixed size, called
REC-SIZE, entries of the Buffer Heap now have to be aligned on a multiple of
REC-SIZE. When traversing or indexing into the array, all original methods
that moved by increments of one have to now move in increments of REC-
SIZE. This change implies that any method that accessed the core array in
the original design had to be changed to fit this new backbone of the Buffer
Heap. Since the implementation was complex, the data structure referenced
the primary array in a number of different ways, which made converting the
Buffer Heap to STXXL particularly challenging.

The 4-ary Aligned Heap [6] and Fast Binary Heap [6] were also difficult
to convert into STXXL versions. The core data structure of 4-ary Aligned
Heap and Fast Binary Heap is already an array, so these priority queues
were easier to convert to STXXL than the Buffer Heap. However, the loop
unrolling techniques used in the implementations were not compatible. These
optimizations rely heavily on macros and generic programming techniques
that STXXL does not support.

5 Experimental Results

5.1 Input Graphs and Hardware

The inputs to the experiments consist of two major types. The first input
type is a graph representation that is given to the two versions of Dijkstra’s
algorithm using different priority queue implementations. Gn,m graphs are
the most common graph type used as input into Dijkstra’s algorithm. A
Gn,m graph in a graph type where N = the number of vertices and M =
the number of edges in the graph. The edges of the graph are randomly
placed between the different vertices with a non-negative edge weight. The
graphs are generated so that the graph is one large connected component.
The experiments also include graph types such as d-ary and grid graphs.
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In addition, the priority queues are run individually on sequences of pri-
ority queue operations. The sequences are generated by running the de-
sired version of Dijkstra’s algorithm and printing out the operations and
what their inputs are. The sequence is then read in at a later time and
the priority queues are run independently. This removes any overhead that
might be incurred by the Dijkstra’s algorithm implementations. The priority
queue implementations execute on sequences that both contain and omit the
decrease-key operation.

The implementations that comprise the experiments come from a variety
of sources. I developed the implementations of Splay Heap, both with and
without decrease-key. The STXXL compatible versions of the Buffer Heap
[2], part of the Auxiliary Buffer Heap [2], 4-ary Aligned Heap [6], and Fast
Binary Heap [6] were also developed by me. Lingling Tong is responsible
for in-core version of the Buffer Heap [9]. Rezaul Chowdhury developed the
Binary Heap, Fibonacci Heap, and Pairing Heap implementations used in
the experiments [1]. The in-core implementations of the Sequence Heap [6],
4-ary Aligned Heap [6], and Fast Binary Heap [6] were obtained from publicly
available code by Peter Sanders. The DIMACS solver was obtained from the
DIMACS challenge website.

The computer architecture that the experiments run on is a dual proces-
sor 3.06GHz Intel Xeon shared memory machine with 4GB of RAM. Each
processor’s memory hierarchy contains an 8KB Level 1 data cache and an
on-die 512KB Level 2 cache with a block size of 64 bytes. This memory hi-
erarchy will be used during the in-core experiments while the out-of-core ex-
periments will use the two-level memory hierarchy of STXXL. In both cases,
the cache-aware algorithms, namely Sequence Heap and 4-ary Aligned Heap,
are provided with the size of the block or the size of the cache, whichever is
necessary for the algorithm. In addition, a 73.5 GB hard drive supports the
virtual disk necessary for the STXXL experiments.

5.2 In-Core Results

The experiments run in this section contain in-core versions of the priority
queue implementations being tested. Thus, the in-core implementations were
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not modified for STXXL in any way. It is expected that the I/O efficiency
of the priority queues will not have as great an impact when the input size is
small. The cache-aware algorithms are given the block size of 64 bytes from
the Intel Xeon L2 cache. Figure 1 shows the in-core execution times of various
priority queue implementations being used in Dijkstra’s algorithm on a Gn,m

graph where m = 8n. This in-core experiment contains an Auxiliary Buffer

Figure 1:

Heap harboring optimizations that do not exist in the out-of-core version,
but are similar to optimizations in 4-ary aligned heap and sequence heap. A
good benchmark for in-core performance in this experiment is the DIMACS
challenge solver, which is touted to be very high performance on the integer
data type.

The Sequence Heap [6] is the highest performing priority queue implemen-
tation in-core followed by the Auxiliary Buffer Heap [2]. Both of these priority
queues perform faster than the DIMACS challenge solver. The three slowest
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priority queues include the traditional designs: Fibonacci Heap, Splay Heap
[8], and Binary Heap. This implies the traditional priority queue implemen-
tations are significantly slower than newer designs like the cache-oblivious
Auxiliary Buffer Heap and the cache-aware Sequence Heap. Using the DI-
MACS challenge solver as a metric for performance, the 4-ary Aligned Heap,
Fast Binary Heap, Sequence Heap, and Auxiliary Buffer Heap can be con-
sidered high-performance priority queues. One factor that improves the per-
formance of these 4 priority queues is they do not support decrease-key. To
help distinguish between which priority queues have higher performance in-
core, the priority implementations were run on a sequence of priority queue
operations only (Figure 2).

Figure 2:

Removing the potential overhead from Dijkstra’s algorithm clearly groups
the priority queue implementation into two distinct groups. The highest
performing designs, Sequence Heap, Auxiliary Buffer Heap, 4-ary Aligned
Heap, and Fast Binary Heap (in that order), perform on average 7.25 times
faster than the slower designs, Fibonacci Heap, Splay Heap, Two Pass Pairing
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Heap, and Binary Heap. This reinforces the concept that modern algorithm
designs must consider the memory hierarchy in order to be efficient in practice
for sufficiently large input sizes. The Sequence Heap is the fastest, being twice
as fast as its nearest competitor, the Auxiliary Buffer Heap.

5.3 Out-of-Core Results using STXXL

The out-of-core experimental results test the cache and memory efficiency of
some of the high-performance priority queues in the study. STXXL is used
to measure the I/O efficiency of the different priority queue designs. Due
to the resource issues of working with large datasets, the experiments were
easier to execute by taking medium sized inputs and using STXXL to restrict
the amount of fast memory available. Therefore, the out-of-core experiments
take as input graphs of similar size as the in-core graphs, but the priority
queues are restricted to a small-sized cache.

To see how the high performing priority queues in-core compare to the
traditional implementations in memory intensive situations, the Binary Heap,
Fibonacci Heap, and Pairing Heap [1] were tested using Dijkstra’s Algorithm
against the Auxiliary Buffer Heap [2] on the same input size where the cache
size was less than four times the number of vertices in the input graph. This
sized cache forces the majority of the priority queue to reside on the STXXL
disk. Figure 3 shows how many times slower each traditional priority queue
is compared to the Auxiliary Buffer Heap as well as how many times more
block transfers these implementations incurred.

Figure 3:

18



Each priority queue was run in the version of Dijkstra’s algorithm stated
next to their name. The slow performance of the Binary Heap could be
attributed to Binary Heap supporting the optional decrease-key operation
and Binary Heap ignoring the memory hierarchy. However, the Fibonacci
Heap and Pairing Heap using decrease keys have low performance compared
to the Auxiliary Buffer Heap due to these two implementations not consid-
ering the memory hierarchy. These results indicate that there is a major
performance difference between the traditional and the newer priority queue
implementations when the memory hierarchy is involved.

Next, the experiment focused on which of the high-performance prior-
ity queues, the cache-oblivious Auxiliary Buffer Heap [2], Fast Binary Heap
[6], or cache-aware 4-ary Aligned Heap [6] has the best memory efficiency.
The Sequence Heap was omitted from the out-of-core experiments due to the
complexity of the implementation and the data structure being incompatible
with STXXL. In each experiment, the cache-aware 4-ary Aligned Heap is
passed the size of the block used in the STXXL experiment, usually 4 kilo-
bytes. Figure 4 shows the block reads, block writes and I/O time of the three

Figure 4:
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priority queues on a sequence of delete-min and insert operations where the
implementations were only allowed an 8MB cache. The input sequence was
generated using DIJKSTRA-NODEC [1] on a Gn,m graph where m = 8n.

As the number of operations that a priority queue executes increases, the
4-ary Aligned Heap and Fast Binary Heap incur many more block transfers
than the Auxiliary Buffer Heap. At the largest input size, the 4-ary Aligned
Heap creates 12 times more block read and block writes than the Auxiliary
Buffer Heap. This results in the 4-ary Aligned Heap incurring approximately
40 times more I/O wait time than the Auxiliary Buffer Heap. This is an
expected result because the theoritcal bounds predict the 4-ary Aligned Heap
will createO (log N) block transfers and the Auxiliary Buffer Heap will create

O
(

1
B

log2
N
M

)
. This predicts a B times improvement for the Auxiliary Buffer

Heap. Since each B=4096 bytes and each block can hold 64 priority queue
entries in this experiment, the number of block transfers is expected to be
64 times less for Auxiliary Buffer Heap. However, due to overhead in the
implementations and the optimizations provided by Sanders [6], the speed is
reduced by a factor of 5, to approximately 12 times, which is what is seen in
figure 4.

Figure 5:
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The possible explanation for the 12 times decrease in block transfers re-
sulting in 40 times better I/O wait performance is that Auxiliary Buffer Heap
behaves like a stack. In general, elements are both added and removed from
the top update and element buffers. The stack like structure will result in
block transfers being read and written to the same tracks on the hard disk.
Since the Auxiliary Buffer Heap reads and writes to the same tracks on the
hard disk, this results in much less seek time. The 4-ary Aligned Heap and
Fast Binary Heap, which are array based implementations, have accesses
that can span the entire physical structure of the implementation, resulting
in more data being stored on different tracks on the hard disk.

Figure 5 shows the execution times of the three priority queues on this
same sequence of priority queue operations. The data shows that when the
input size was small, the 4-ary Aligned Heap was the fastest. However, as the
input size grew and the priority queue size grew, the I/O wait time began to
dominate running time. In the largest inputs, the Auxiliary Buffer Heap per-
formed approximately 4.5 times faster than the other two implementations.
This experiment suggests the Auxiliary Buffer Heap is the most efficient with
regards to the memory hierarchy.

Figure 6:
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However, Figure 6 shows that the performance advantage of the Auxiliary
Buffer Heap is not as dramatic when run on DIJKSTRA-NODEC [1] with a
16MB cache.

In this experiment, the Auxiliary Buffer Heap was only about 80 per-
cent faster than the 4-ary Aligned Heap. However, the smaller difference in
performance of DIJKSTRA-NODEC in this case could be attributed to the
bookkeeping associated with DIJKSTRA-NODEC. Given other experimental
results, decreasing the cache size would allow the priority queue implemen-
tations to wield more influence over the execution time.

5.4 Summary of Results

• Using the DIMACS solver as a benchmark for in-core performance of
Dijkstra’s Algorithm, the Sequence Heap [6], Auxiliary Buffer Heap
[2], 4-ary Aligned Heap [6], and Fast Binary Heap [6] are all very high-
performance. Traditional implementations performed worse than the
DIMACS solver. (Figure 1)

• The raw in-core performance of Sequence Heap and other high-performance
priority queues are on average 7.25 times fast than traditional imple-
mentations. (Figure 2)

• With traditional implementations running approximately 100 times
(Figure 3) slower than the high-performance priority queues, the re-
sults indicate the cache-aware and cache-oblivious strategies in the
high-performance priority queues contribute significantly to out-of-core
performance.

• Auxiliary Buffer Heap is faster than Fast Binary Heap and 4-ary Aligned
Heap in large, out-of-core input sizes. (Figure 5)

• When DIJKSTRA-NODEC is run out-of-core, the performance dif-
ference between the highly specialized priority queues shrinks due to
overhead involved with DIJKSTRA-NODEC. (Figure 6)
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6 Splay Heap Analysis

The Splay Tree made a huge impact with regards to the binary tree data
structure. Based on the same principles as the Splay Tree, the Splay Heap
is a self-adjusting priority queue by Sleator and Tarjan [7]. The Splay Heap
strives to be simple to implement while being efficient over a sequence of
operations. The original Splay Heap does not support the decrease-key or
delete operations. While Sleator and Tarjan do propose one method to sup-
port the optional operations, no formal analysis of the optional operations is
presented [7]. However, the question is open if the strategy presented is the
most efficient way to implement decrease-key and delete. To start, we will
examine the Splay Heap’s most important operation, the meld, and prove
its correctness. In addition, the strategy purposed by Sleator and Tarjan to
implement the decrease-key and delete operations will be examined [7]. Also,
potential strategies for improving the optional operations are discussed.

6.1 Splay Heap Structure and Meld Operation

The Splay Heap has a structure similar to the binary tree. Nodes in the heap
store the element and key value and can have up to two children. There exists
a pointer to the root of the tree. Similar to the Binary Heap, the Splay Heap
must maintain the heap property, where a node’s key value must be less
than the key value of its children [7]. This structure results in the minimum
element being placed at the root of the tree [7].

The original Splay Heap supports the standard delete-min and insert
operations in O (log N) amortized running time [8]. In addition, the Splay
Heap supports a meld operation in O (log N) amortized running time [8].
The meld operation takes as input the roots to two disjoint Splay Heaps
and combines them into one Splay Heap. Most operations in the Splay Heap
depend heavily on the meld operation [7]. The Splay Heap inserts new entries
by creating a Splay Heap with one node containing the input information and
then uses meld on the singleton heap and the Splay Heap. The Splay Heap
deletes the minimum element by melding the two children of the root followed
by eliminating the root node [7].
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The meld operation is the most important operation in the Splay Heap
design. The meld operation takes as input two disjoint Splay Heaps and
returns a pointer to the root of the newly formed Splay Heap. Melding follows
the general strategy of combining the two right paths of the input trees in
heap order [7]. To reduce the amortized complexity, the children along the
path are swapped to reduce the length of the right paths. The result heap
has the far left path as the merger of the two right paths of the original heaps,
maintaining heap order. Sleator and Tarjan prove the amortized running time
of the meld operation [7] and therefore prove the amortized running time of
the delete-min and insert operations [7]. However, Sleator and Tarjan do
not provide a full proof of correctness for the meld operation. I provide a
full proof of correctness of the meld operation in Appendix B. This exercise
is important to understanding the self-adjusting strategy and the properties
that the Splay Heap must maintain throughout a meld, which was helpful in
thinking about ways to change the decrease-key and delete operations.

6.2 Decrease-Key and Delete

Sleator and Tarjan present a strategy for allowing the Splay Heap to support
the decrease-key and delete operation. [7] The Splay Heap structure changes
by adding a parent pointer to each node. Thus, the parent of node X points
to the node Y such that CHILD(Y) == X. The root nodes parent is null.
Now, the Splay Heap can delete a node X inside the heap by using the parent
pointer to attach the result of melding the children of X to node X’s parent.
The node can be removed and the heap property is maintained [7]. The Splay
Heap can now use the decrease-key operation by using the delete and insert
operations. The strategy is to delete the node with the old key and insert a
new node with the same element, but the updated key value [7]. The delete
operation takes O (log N) amortized running time while decrease-key takes
two O (log N) operations to complete. While the amortized running time of
decrease-key is still O (log N), executing two operations could hurt real-life
performance.

Using this strategy by Sleator and Tarjan, I created an STXXL compat-
ible implementation of Splay Heap that supports decrease-key and delete.
The pseudo-code of this implementation is available in Appendix A.
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Figure 7:

Figure 7 shows the in-core performance of the Splay Heap run on DIJKSTRA-
DEC [1], Splay Heap run on DIJKSTRA-NODEC [1], Fibonacci Heap, and
the Binary Heap. Fibonacci Heap and Binary Heap are both using DIJKSTRA-
DEC. The addition of the decrease-key and delete operation improves perfor-
mance in this experiment by 30 percent as the input size increased. However,
both versions of the Splay Heap did not perform better than the Binary Heap
using decrease-keys. Since Splay Heap using decrease-key performed better
than Splay Heap without, there is practical application for continuing to
improve the decrease-key and delete operation.

6.3 Future Work/ Improving Decrease-Key and Delete

With the Splay Heap supporting the decrease-key purposed by Sleator and
Tarjan [7] showing an improvement over the Splay Heap without decrease-
keys, it is apparent that adding a more efficient decrease-key or delete method
could greatly improve the practical performance of the Splay Heap. It is
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important that the idea of a self-adjusting data structure continue to be
preserved with new decrease-key ideas. Maintaining global information about
the heap may not be feasible for the Splay Heap.

Since the Splay Heap has a similar structure to the Binary Heap, one pos-
sible strategy for implementing decrease-key is creating an operation similar
to Heapify for the Splay Heap [3]. This Heapify method would move the node
with the new key up the heap until the heap property is restored. While this
method would remove the redundant delete and insert operations, the worst-
case running time for this decrease-key operation could be as bad as O (N)
if the tree becomes a linked list [3].

Another idea to improve the decrease-key is to design an insert method
specifically for the decrease-key operation. The new insert method could
use the knowledge about the old key and the new key to help improve the
speed of the insert. Also, using a meld to insert one node ensures that the
new node will be inserted along the left path of the main heap. If the left
path is extremely long, the insert could waste time moving in a top-down
fashion. One idea is to take the difference between the old and new key and
then make a decision to meld in a top-down fashion or move in a bottom-up
direction. This strategy could be successful in a min-heap where the keys
are non-negative, because then a node can guess how close it is to being the
minimum.

There are ways for improving the practical performance of the decrease-
key operation and these ideas should be tested in practice where applicable.
The question is still open if there is a way to achieve a better amortized
running time for the decrease-key operation.

7 Conclusion

The need for more memory efficient algorithms is crucial because of the
increasing size of data sets in industry and the increasing speed disparity
between CPUs and hard disks. This experimental study focused on the out-
of-core performance of a variety of high-performance priority queues in addi-
tion to well-known priority queue implementations. The priority queues were
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tested sequences of priority queue operations using Dijkstra’s Algorithm solv-
ing the Single Source Shortest Paths problem. Some of the priority queues
did not consider the memory hierarchy, while other implementations were
cache-oblivious or cache-aware. The study used STXXL to measure the I/O
efficiency of the priority queues. Converting the Buffer Heap, 4-ary Aligned
Heap, and Fast Binary Heap to STXXL format was an interesting implemen-
tation challenge.

The results indicate that overall, the priority queues that do not attempt
to support the optional decrease-key operation perform the fastest in both in-
core and out-of-core experiments. The Sequence Heap was the fastest priority
queue in-core while the Auxiliary Buffer Heap had the highest performance
out-of-core followed closely by the 4-ary Aligned Heap and Fast Binary Heap.
The traditional priority queues, such as Binary Heap and Fibonacci Heap,
perform very poor compared to these high-performance priority queues, es-
pecially in memory intensive situations. The major difference in performance
is likely due to the traditional heaps not considering the memory hierarchy
in their designs.

In addition, the Splay Heap is an interesting priority queue implementa-
tion that has potential for improvement. The correctness of the crucial meld
operation is presented as well as an implementation of the Splay Heap includ-
ing decrease-key. While no explicit improvement to the data structure was
made, the Splay Heap has the potential to improve its performance through
a new decrease-key operation.

This experimental study was intended to display the strengths and weak-
nesses of the different priority queues available. The priority queues that
kept the memory hierarchy in consideration tended to perform the best in
the out-of-core experiments. Algorithm and data structure design must con-
tinue to strongly consider the impact of the memory hierarchy in order to
continue to get performance that matches with theoretical predictions.
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Appendix A

This appendix contains the pseudocode for the major operations of the Splay
Heap that supports decrease-key.

Line 1: int SplayHeap::Insert( int x, int k ) {
Line 2: new index = new node(x,k);
Line 3: root = Meld(root, new index);
Line 4: root→PARENT = NIL;
Line 5: return new index;
Line 6: }

Line 1: SplayHeap::Do Delete Min(localRoot, x, k )
Line 2: {
Line 3: if(localRoot == NIL)
Line 4: {
Line 5: x = NIL
Line 6: k = INF;
Line 7: }
Line 8: else
Line 9: {
Line 10:
Line 11: x = localRoot → ID
Line 12: k = localRoot → KEY
Line 13: new root = Meld(localRoot→ LEFT, localRoot→ RIGHT);
Line 14: free node(localRoot);
Line 15: localRoot = new root;
Line 16: }
Line 17: }
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Line 1: SplayHeap::Decrease Key( x, k )
Line 2: {
Line 3: if ( k < xp → KEY )
Line 4: {
Line 5: if(x == root)
Line 6: {
Line 7: root → KEY = k
Line 8: }
Line 9: else
Line 10: {
Line 11: int mx; int mk
Line 12: Delete(x,mx,mk)
Line 13: Insert(mx,k)
Line 14: }
Line 15: }
Line 16: }

Line 1: SplayHeap::Delete Min( mx, mk )
Line 2: {
Line 3: Do Delete Min(root, mx, mk)
Line 4: root → PARENT = NIL
Line 5: }

Line 1: SplayHeap:: Delete( node, mx, mk )
Line 2: {
Line 3: if(node == root)
Line 4: Delete Min(mx,mk)
Line 5: else
Line 6: {
Line 7: int parent = node → PARENT
Line 8: if(parent → LEFT == node)
Line 9: {
Line 10: Do Delete Min(node,mx,mk)
Line 11: parent → LEFT = node
Line 12: }
Line 13: else
Line 14: {
Line 15: Do Delete Min(node,mx,mk)
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Line 16: parent → RIGHT = node
Line 17: }
Line 18: if(node != NIL)
Line 19: node → PARENT = parent
Line 20: }
Line 21: }

Line 1: int SplayHeap::Meld(int heap1, int heap2) {
Line 2: int root, leftPath, activeHeap, inactiveHeap;
Line 3: if(heap1 == NIL)
Line 4: return heap2;
Line 5: else if(heap2 == NIL)
Line 6: return heap1;
Line 7: /* Start Initialization */
Line 8: if(heap1→KEY > heap2→KEY ) {
Line 9: swap(heap1,heap2);
Line 10: }
Line 11: activeHeap = heap1; inactiveHeap = heap2;
Line 12: root = activeHeap;
Line 13: leftPath = activeHeap;
Line 14: activeHeap = root→RIGHT;
Line 15: leftPath→RIGHT = leftPath→LEFT;
Line 16: activeHeap→PARENT = NIL;
Line 17:
Line 18: while( activeHeap != NIL) {
Line 19: if( activeHeap→KEY > inactiveHeap→KEY ) {
Line 20: swap(activeHeap,inactiveHeap);
Line 21: }
Line 22: leftPath→LEFT = activeHeap;
Line 23: activeHeap→PARENT = leftPath;
Line 24: leftPath = activeHeap;
Line 25: activeHeap = leftPath→RIGHT;
Line 26: leftPath→RIGHT = leftPath→LEFT;
Line 27: activeHeap→PARENT = NIL;
Line 28: }
Line 29: leftPath→LEFT = inactiveHeap;
Line 30: inactiveHeap→PARENT = leftPath;
Line 31: return root;
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Line 32: }

Appendix B

To prove the correctness of meld, we will prove the correctness of the while loop
used to implement meld.

Proof of Loop Invariants:

Pre-condition: Heap1 and heap2 are correct splay heaps that obey heap order
and have correct parent pointers. Heap1 and heap2 are destroyed by the meld
process.

Post-condition: Meld function returns the root to a new heap that is a combi-
nation of the two input heaps. The new heap has a left path that is a combination,
maintaining heap order, of the two right paths of the input heaps. The left chil-
dren of the nodes on the two right merge paths have become the right children
of the resulting left path. All parent pointers have been correctly updated on the
input elements.

Definitions:

1.) Let the notation [H, X,Y] denote the set of nodes on the path between
node X and node Y in the splay heap H, where X and Y are included in the set.
(if X==Y, the set is X)

2.) Let the notation [H, X,Y) denote the set of nodes on the path between
node X and node Y in the splay heap H, where only X is included in the set. (If
X==Y, the set is NIL)

3.) If a node X is a left child or right child of a different node, node Y, then
Y is defined as the parent node of X. The parent of the root node is NIL.

textbfLoop Invariants:

1.) The paths [heap1, active/inactiveHeap) and [heap2, active/inactiveHeap)
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are both right-paths of the input trees and have already been melded into the
result tree.

2.) The path [root, leftPath] is the left path of the result tree and that path
is comprised of nodes from the paths, [heap1, active/inactiveHeap) and [heap2,
active/inactiveHeap).

3.) The key value of activeHeap is greater than the key value of leftPath.

4.) Each node on [root, leftPath] has had its original left sub tree changed
to become its right sub tree.

5.) The parent pointer of leftPath is properly updated according to the above
parent definition.

Meld Operation Pseudo-code

Line 1: int SplayHeap::Meld(int heap1, int heap2) {
Line 2: int root, leftPath, activeHeap, inactiveHeap;
/* Start Default Cases */
Line 3: if(heap1 == NIL)
Line 4: return heap2;
Line 5: else if(heap2 == NIL)
Line 6: return heap1;
Line 7: /* Start Initialization */
Line 8: if(heap1→KEY > heap2→KEY ) {
Line 9: swap(heap1,heap2);
Line 10: }
Line 11: activeHeap = heap1; inactiveHeap = heap2;
Line 12: root = activeHeap;
Line 13: leftPath = activeHeap;
Line 14: activeHeap = root→RIGHT;
Line 15: leftPath→RIGHT = leftPath→LEFT;
Line 16: activeHeap→PARENT = NIL;

After Initialization,
Invariant 1 holds due to line 13 and 14 and inactiveHeap == heap2.
Invariant 2 holds because the only node melded is the root and leftPath ==
root. (Line 14)
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Invariant 3 is true because activeHeap is leftPaths child. (Line 13,14) and Line
8 and 9 guarantee root is the min element.
Invariant 4 is true by Line 15.
Invariant 5 is true by Line 16 removing any stale pointer.

Line 18: while( activeHeap != NIL) {

Assuming activeHeap traces a right path, the loop will repeat as long as each
right path still has nodes left to be melded.

Line 19: if( activeHeap→KEY > inactiveHeap→KEY ) {
Line 20: swap(activeHeap,inactiveHeap);
Line 21: }

Lines 19-21 ensures that the smallest element between the two right paths rooted
at activeHeap and inactiveHeap is the next node to be melded. (Invariant 3)

Line 22: leftPath→LEFT = activeHeap;

Line 22 melds the next node from the right path ( by Invariant 1), into leftPath.
This satisfies Invariant 2 because the result tree continues to meld on [root, left-
Path] from [heap1, active/inactiveHeap) and [heap2, active/inactiveHeap) by
invariant 1.

Line 23: activeHeap→PARENT = leftPath;

Maintains Invariant 5 because activeHeap has become the left child of a dif-
ferent node.

Line 24: leftPath = activeHeap;

Moving leftPath down the leftmost path makes Invariant 5 complete and main-
tains Invariant 2 because the next iteration will continue to meld on the left most
path of the result tree.

Line 25: activeHeap = leftPath→RIGHT;

Maintains Invariant 1 because the activePath is still building [heap1, active/inactiveHeap)
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or [heap2, active/inactiveHeap) by continuing to move the meld path down the
heap to the right only.

Line 26: leftPath→RIGHT = leftPath→LEFT;

Maintains Invariant 4 because leftPaths Left subtree is becoming its right subtree
and this is the deepest node of [root, leftPath].

Line 27: activeHeap→PARENT = NIL;
Line 28: }

Removes any stale pointers to maintain Loop invariant 5.

At the end of the loop, with invariant 1 holding throughout iterations, [heap1,
active/inactiveHeap) and [heap2, active/inactiveHeap) can only have traced
right-most paths of the input trees. When Invariant 2 is maintained throughout
the loop, the left-most path of the result tree will be made up only of the com-
bination of the two right-most paths of the input tree. Since invariant 3 says the
smallest element on the two input paths is the next to be melded, the resulting
left path must also obey heap order. Since invariant 4 made each node on [root,
leftPath] change its left subtree to become its right subtree, all left children on
the merge path have become right children of the result path. By updating the
parent pointers of leftPath, the parent pointers are maintained throughout the
entire tree.

Line 29: leftPath→LEFT = inactiveHeap;

Merges the remaining right path.
Line 30: inactiveHeap→PARENT = leftPath;
Adjust its parent pointer.
Line 31: return root;
Line 32: }
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